首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
32-Oxo-24,25-dihydrolanosterol (32-oxo-DHL) was deformylated to 4,4-dimethylcholesta-8,14-dien-3 beta-ol, the product of 14 alpha-demethylation of 24,25-dihydro-lanosterol (DHL), by the reconstituted lanosterol 14 alpha-demethylase system consisting of cytochrome P-45014DM and NADPH-cytochrome P-450 reductase of yeast. Affinity of 32-oxo-DHL to the cytochrome was considerably higher than those of lanosterol and DHL, and the rate of deformylation of 32-oxo-DHL was faster than the rate of demethylation of lanosterol and DHL. Spectral analysis of the 32-oxo-DHL complex of cytochrome P-45014DM suggested the interaction between the 32-aldehyde group and the heme iron. These observations, together with our preceding findings on the metabolism of 32-hydroxy-24,25-dihydrolanosterol (Aoyama, Y., Yoshida, Y., Sonoda, Y., and Sato, Y. (1987) J. Biol. Chem. 262, 1239-1243), indicate that the 14 alpha-demethylation of lanosterol catalyzed by cytochrome P-45014DM proceeds with three step monooxygenations via the 32-hydroxy and 32-oxo intermediates, and the cytochrome mediates this sequential reaction without releasing the intermediates.  相似文献   

2.
Cytochrome P-45014DM, which catalyzes lanosterol 14 alpha-demethylation, from pig liver microsomes was purified to a state of virtually homogeneous by gel electrophoresis. Its apparent monomeric molecular weight was estimated to be 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the amino-terminal amino acid sequence was Gly-Leu-Leu-Thr-Gly(Leu)-Asp-Leu-Leu-Gly-Ile. When reconstituted with NADPH-cytochrome P-450-reductase, the enzyme showed a high activity for lanosterol and 24,25-dihydrolanosterol 14 alpha-demethylation. Furthermore, the oxygenated intermediates of 24,25-dihydrolanosterol 14 alpha-demethylation, 32-hydroxy-24,25-dihydrolanosterol and 32-oxo-24,25-dihydrolanosterol, were converted to the 32-nor compound, 4,4-dimethylcholesta-8,14-dien-3 beta-ol, by the reconstituted enzyme system.  相似文献   

3.
The role of the side-chain of lanosterol in the enzyme-substrate interaction of yeast P-450(14)DM (lanosterol 14 alpha-demethylase) was analyzed with lanosterol derivatives having functional groups on the side-chain. Purified P-450(14)DM from Saccharomyces cerevisiae catalyzed 14 alpha-demethylation of 26-hydroxylanosterol and 25-hydroxy-24,25-dihydrolanosterol with a lower activity than lanosterol and 24,25-dihydrolanosterol. This enzyme demethylated the (Z)-24-ethylidene-24,25-dihydrolanosterol with a low rate, but did not metabolize the E-isomer. The apparent Km of 26-hydroxylanosterol was 10.8 microM, which was higher than that of lanosterol, but lower than that of 24,25-dihydrolanosterol. On the other hand, competition experiments suggested that the affinity of 25-hydroxy-24,25-dihydrolanosterol and (Z)-24-ethylidene-24,25-dihydrolanosterol for P-450(14)DM was significantly lower than that of 24,25-dihydrolanosterol. Integration of the present results with the preceding ones (Aoyama, Y., Yoshida, Y., Sonoda, Y. and Sato, Y. (1991) Biochim. Biophys. Acta, 1081, 262-266 and Aoyama, Y. and Yoshida, Y. (1991) Biochem. Biophys. Res. Commun., 178, 1064-1071) suggests that yeast P-450(14)DM recognizes two parts of the side-chain, the structure around C-24 and the terminal fork consisting of C-25, C-26 and C-27.  相似文献   

4.
7-Oxo-24,25-dihydrolanosterol (3 beta-hydroxy-8-lanosten-7-one, 7-oxo-HDL) was a potent competitive inhibitor for lanosterol 14 alpha-demethylase (cytochrome P-45014DM) of Saccharomyces cerevisiae. Affinity of 7-oxo-DHL for the enzyme was more than 50-times higher than those of the inherent substrates, lanosterol and 24,25-dihydrolanosterol. 7-Oxo-DHL accelerated NADPH-dependent reduction of cytochrome P-45014DM in the reconstituted system consisting of the cytochrome and NADPH-cytochrome P-450 reductase. These observations indicated that 7-oxo-DHL interacted with the substrate site of cytochrome P-45014DM. However, 7-oxo-DHL was not metabolized by the reconstituted system. Incubation of 7-oxo-DHL with the reconstituted system caused accumulation of oxyferro intermediate of cytochrome P-45014DM. It can thus be concluded that 7-oxo-DHL interfered with electron transfer to the oxyferro intermediate of the cytochrome, though it stimulated reduction of the heme iron. So far as we know, 7-oxo-DHL is the first example of a cytochrome P-450 inhibitor which selectively interferes with the electron transfer to oxyferro intermediate. 7 alpha-Hydroxy-24,25-dihydrolanosterol was also a competitive inhibitor of cytochrome P-45014DM. However, this compound was metabolized by the reconstituted system and could not block the electron transfer to oxyferro intermediate. 11-Oxo-24,25-dihydrolanosterol, an isomer of 7-oxo-DHL, did not have such inhibitory effects. These lines of evidence suggest a possibility that the keto group at C-7 of lanost-8-ene skeleton may interact with a certain site of cytochrome P-45014DM which has an important role in the electron transfer to oxyferro intermediate.  相似文献   

5.
The purified lanosterol 14a-demethylase (P-45014DM) of S. cerevisiae catalyzed the 14a-demethylation of 24-methylene-24,25-dihydrolanosterol (24-methylenelanost-8-en-3 beta-ol, 24-methylene-DHL), the natural substrate of the demethylase of filamentous fungi, as well as its natural substrate, lanosterol. Lanosterol 14a-demethylase of rat liver microsomes also catalyzed the 14a-demethylation of 24-methylene-DHL, but the activity was considerably lower than that for lanosterol. The activity of the rat liver enzyme for 24-methylene-DHL was also lower than that for 24,25-dihydrolanosterol (DHL), while the activity of yeast P-45014DM for 24-methylene-DHL was considerably higher than that for DHL. Since 24-substituted sterols are not found in mammals and DHL is not an intermediate of ergosterol biosynthesis by yeast, above-mentioned different substrate specificities between the yeast and the mammalian 14a-demethylases may reflect certain evolutional alteration in their active sites in relation to the difference in their sterol biosynthetic pathways.  相似文献   

6.
The involvement of oxygenated cholesterol precursors in the regulation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity was studied by examining the effect of ketoconazole on the metabolism of mevalonic acid, lanosterol and the lanosterol metabolites, lanost-8-ene-3 beta,32-diol,3 beta-hydroxylanost-8-en-32-al and 4,4-dimethylcholesta-8,14-dien-3 beta-ol, in liver subcellular fractions and hepatocyte cultures. Inhibition of cholesterol synthesis from mevalonate by ketoconazole at concentrations up to 30 microM was due exclusively to a suppression of cytochrome P-450LDM (LDM = lanosterol demethylase) activity, resulting in a decreased rate of lanosterol 14 alpha-demethylation. No enzyme after the 14 alpha-demethylase step was affected. When [14C]mevalonate was the cholesterol precursor, inhibition of cytochrome P450LDM was accompanied by the accumulation of several labelled oxygenated sterols, quantitatively the most important of which was the C-32 aldehyde derivative of lanosterol. There was no accumulation of the 24,25-oxide derivative of lanosterol, nor of the C-32 alcohol. Under these conditions the activity of HMG-CoA reductase declined. The C-32 aldehyde accumulated to a far greater extent when lanost-8-ene-3 beta,32-diol rather than mevalonate was used as the cholesterol precursor in the presence of ketoconazole. With both precursors, this accumulation was reversed at higher concentrations of ketoconazole in liver subcellular fractions. A similar reversal was not observed in hepatocyte cultures.  相似文献   

7.
Lanosterol 14 alpha-demethylase (P45014DM) is the cytochrome P450 enzyme complex responsible for an early step in cholesterol biosynthesis, namely the 14 alpha-demethylation of lanosterol. We have synthesized a novel series of steroidal substrate analogues, designed to be specific and potent inhibitors of P45014DM. We describe here the effects of these compounds on sterol biosynthesis downstream from lanosterol, focusing ultimately on their efficacy as inhibitors of cholesterol biosynthesis. Results using a radio-high performance liquid chromatography (HPLC) assay show that in rat liver microsomal preparations, with [24,25-3H]dihydrolanosterol as substrate, the compounds do indeed inhibit the biosynthesis of sterols downstream from lanosterol. A range of inhibitory potencies was observed, and the key enzyme being inhibited was believed to be P45014DM. Inhibitor efficacy was readily correlated with non-metabolized [24,25-3H]dihydrolanosterol, formation of 4,4-dimethyl-cholest-8-en-3 beta-ol, and formation of lathosterol, a sterol believed to be an excellent indicator of whole body cholesterol biosynthesis in humans.  相似文献   

8.
An altered cytochrome P-450 (SG1 P-450) was partially purified from Saccharomyces cerevisiae mutant SG1 which is defective in lanosterol 14 alpha-demethylation. Oxidized SG1 P-450 showed a Soret peak at 422 nm and the alpha peak was lower than the beta peak. This spectrum was considerably different from those of known low-spin P-450s, indicating a unique ligand structure of SG1 P-450. The absorption spectrum of ferric SG1 P-450 was superimposable on that of the imidazole complex of ferric P-450, suggesting the presence of a nitrogenous ligand such as histidine of the apoprotein at the 6th coordination position. SG1 P-450 was immunochemically indistinguishable from cytochrome P-450 of S. cerevisiae catalyzing lanosterol 14 alpha-demethylation (P-45014DM) but had no lanosterol 14 alpha-demethylase activity.  相似文献   

9.
The 14 alpha-demethylation of 24,25-dihydrolanosterol (DHL) derivatives having trimmed side chains, 27-nor-DHL, 26,27-dinor-DHL, 25,26,27-trinor-DHL, 24,25,26,27-tetranor-DHL, 23,24,25,26,27-pentanor-DHL and 22,23,24,25,26,27-hexanor-DHL, was studied with the reconstituted lanosterol 14 alpha-demethylase system consisting of cytochrome P-450(14DM) and NADPH-cytochrome P-450 reductase both purified from yeast microsomes. The demethylase catalyzed the 14 alpha-demethylation of the derivatives having the side chains longer than tetranor but the activities for the trinor- and tetranor-derivatives were lower. Kinetic analysis indicated that affinity of the trinor-derivative for the demethylase was considerably higher than that of DHL. The affinities of the 27-nor- and dinor-derivatives were increased by this order and were the intermediates of DHL and the trinor derivative. On the other hand, Vmax values of the demethylase for the DHL derivatives were decreased depending on their side-chain lengths, and the substrate-dependent reduction rate of cytochrome P-450(14DM) was also decreased in the same manner. Based on these observations, it was concluded that interaction of the side chain of lanosterol especially C-25, 26 and 27 with the substrate site of lanosterol 14 alpha-demethylase was necessary for enhancing the catalytic activity of the enzyme. However, this interaction was considered not to be essential for substrate binding.  相似文献   

10.
A cytochrome P-450 (P-450SG1) was purified from a lanosterol 14 alpha-demethylase (P-450(14DM)) defective mutant of Saccharomyces cerevisiae, strain SG1, by a method similar to that used in the purification of the wild type enzyme (Yoshida, Y., and Aoyama, Y. (1984) J. Biol. Chem. 259, 1655-1660). P-450SG1 had the same apparent Mr as and was immunochemically identical to P-450(14DM). Peptide maps of P-450SG1 made by limited proteolysis with Staphylococcus aureus V8 proteinase, chymotrypsin, or papain followed by gel electrophoresis were identical to corresponding peptide maps of P-450(14DM). However, P-450SG1 showed no lanosterol 14 alpha-demethylase activity and its mode of interaction with diniconazole [(E)-1-(2,4-dichlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-y1)-1- penten-3- o1], a specific inhibitor of P-450(14DM), was fundamentally different from that of P-450(14DM). The absorption spectrum of ferric P-450SG1 was unusual for a native low-spin cytochrome P-450 and was superimposable on that of 1-methylimidazole complex of P-450(14DM), indicating that P-450SG1 has a histidine 6th ligand trans to the thiolate 5th ligand, while the 6th ligand of other ferric low-spin cytochrome P-450s is a water molecule or a hydroxyl group of an oxyamino acid. It is concluded that P-450SG1 is an altered P-450(14DM). Difference in the primary structure between P-450SG1 and P-450(14DM) may be slight and was not detected by peptide mapping. However, the alteration caused significant change in the substrate site and heme environments of the cytochrome. P-450SG1 is the first example of a cytochrome P-450 having a histidine axial ligand trans to thiolate and of a genetically altered cytochrome P-450 isolated in a homogeneous state.  相似文献   

11.
A reconstituted monooxygenase system containing a form of cytochrome P-450, termed P-450(14)DM, and NADPH-cytochrome P-450 reductase, both purified from yeast microsomes, catalyzed the conversion of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-01) to a sterol metabolite in the presence of NADPH and molecular oxygen. This conversion did not occur anaerobically or when either P-450(14)DM, the reductase, or NADPH was omitted from the system. In both free and trimethylsilylated forms, this metabolite showed a relative retention time (relative to lanosterol) of 1.10 in gas chromatography on OV-17 columns. Comparison of its mass spectrum and retention time with those of lanosterol and 4,4-dimethylzymosterol (4,4-dimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol) indicated that the metabolite was 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol. Upon aerobic incubation of microsomes from semianaerobically grown yeast cells in the presence of NADPH and cyanide, endogenous lanosterol was converted to 4,4-dimethylzymosterol. This metabolism was inhibited by CO, metyrapone, SKF-525A, and antibodies to P-450(14)DM. It is concluded that in yeast microsomes lanosterol is 14 alpha-demethylated by a P-450(14)DM-containing monooxygenase system to give rise to 4,4-dimethyl-5 alpha-cholesta-8,14,24-trien-3 beta-ol, which is then reduced to 4,4-dimethylzymosterol by an NADPH-linked reductase.  相似文献   

12.
The potential inducibility of the lanosterol 14 alpha-demethylase (P-45014DM) from Saccharomyces cerevisiae Y222 by xenobiotics was investigated. This enzyme and NADPH-cytochrome P-450 reductase were unaffected by a number of compounds known to induce mammalian and some yeast cytochrome P-450 monooxygenases. Furthermore, dibutyryl cyclic AMP did not affect P-45014DM or P-450 reductase levels, while growth at 37 degrees C resulted in a slight decrease. P-45014DM was found to be specific for lanosterol and did not metabolize a number of P-450 substrates including benzo[a]pyrene.  相似文献   

13.
Recent studies have shown that a cytochrome P-450 present in microsomes of semi-anaerobically grown cells of Saccharomyces cerevisiae is functional in the 14 alpha-demethylation of lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol), but the occurrence of the same cytochrome P-450 in microsomes of aerobically grown yeast cells has not yet been reported. In this study, the microsomal fraction from aerobically grown cells was found to catalyze the lanosterol demethylation in the presence of NADPH and O2 and that this activity was sensitive to CO. In Ouchterlony double diffusion test, antibodies to the yeast cytochrome P-450 formed a single precipitin line with the microsomal fraction as well as with the purified yeast cytochrome P-450 and the two precipitin lines fused with each other. Furthermore, the antibodies inhibited the lanosterol demethylation activity of the microsomal fraction from aerobically grown cells. The quadratic-derivative absorption spectrum of the microsomal fraction measured in the presence of both Na2S2O4 and CO showed an absorption band at 450 nm which is attributable to the reduced CO compound of cytochrome P-450. These facts led to the conclusion that cytochrome P-450 actually exists in aerobically grown yeast and participates in the lanosterol 14 alpha-demethylation which is essential for the ergosterol (5 alpha-ergosta-5,7,22-trien-3 beta-ol) biogenesis by yeast.  相似文献   

14.
With [3H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1H-NMR, and infrared spectroscopy of the isolated sterols.  相似文献   

15.
Interaction of lanosterol, 3-epilanosterol, 3-oxolanosta-8,24-diene, 3-methylenelanost-8-ene and lanosterol acetate with cytochrome P-450(14DM) were studied. The cytochrome mediated the 14alpha-demethylation of 3-epilanosterol with nearly the same activity as lanosterol but could not mediate the 14alpha-demethylation of the 3-methylene derivative and the 3-acetate. The cytochrome catalyzed the 14alpha-demethylation of the 3-oxo derivative with low rate. Based on these and some additional observations the hydrogen bond formation between the 3-hydroxy group of lanosterol and the specific amino acid residue in the substrate site is assumed to be essential for orienting the substrate in the substrate site of the cytochrome.  相似文献   

16.
Lanosterol was converted to a 14-demethylated metabolite, 4,4-dimethylzymosterol by Saccharomyces cerevisiae microsomes. This metabolism was mediated by a cytochrome P-450 (P-450/14DM). However, a reconstituted system consisting of P-450/14DM and its reductase converted lanosterol to the 14-desaturated derivative of 4,4-dimethylzymosterol, 4,4-dimethyl-5 alpha-cholesta-8, 14,24-trien-3 beta-ol (trienol). When AY-9944 was added to the reaction system with the microsomes, the trienol was formed with corresponding decrease in 4,4-dimethylzymosterol. These observations indicate that the 14 alpha-demethylation of lanosterol by yeast microsomes occurs sequentially via the trienol. Reduction of the trienol to 4,4-dimethylzymosterol is mediated by an AY-9944-sensitive reductase.  相似文献   

17.
Sterol 14-demethylase P450 (CYP51) is an essential enzyme for sterol biosynthesis by eukaryotes. We have cloned rat and human CYP51 cDNAs [Aoyama, Y., Noshiro, M., Gotoh, O., Imaoka, S., Funae, Y., Kurosawa, N., Horiuchi, T., and Yoshida, Y. (1996) J. Biochem. 119, 926-933]. The cloned rat CYP51 cDNA was expressed in Escherichia coli with modification of the N-terminal amino acid sequence, and the expressed protein (CYP51m) was purified to gel-electrophoretic homogenity. The spectrophotometrically determined specific content of CYP51m was 16 nmol/mg protein and the apparent molecular weight was estimated to be 53,000 on SDS-PAGE. Soret peaks of the oxidized and reduced CO-complex of CYP51m were observed at 417 and 447 nm, respectively. The purified CYP51m catalyzed the 14-demethylation of lanosterol and 24,25-dihydrolanosterol upon reconstitution with NADPH-P450 reductase purified from rat liver microsomes. The apparent K(m) and V(max) values for lanosterol were 10.5 microM and 13.9 nmol/min/nmol P450, respectively, and those for 24, 25-dihydrolanosterol were 20.0 microM and 20.0 nmol/min/nmol P450, respectively. The lanosterol demethylase activity of the reconstituted system of CYP51m was inhibited by ketoconazole, itraconazole and fluconazole with apparent IC(50) values of 0.2, 0.7, and 160 microM, respectively.  相似文献   

18.
Buthiobate (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbon-imidate), a fungicide, inhibited 14 alpha-demethylation of lanosterol catalyzed by a reconstituted enzyme system consisting of cytochrome P-450 (P-450(14)-DM) and NADPH-cytochrome P-450 reductase both purified from Saccharomyces cerevisiae. Concentration of buthiobate necessary for the 50% inhibition was 0.3 microM and this value was markedly lower than those of metyrapone and SKF-525A. Buthiobate bound stoichiometrically to P-450(14)-DM and induced Type II spectral change of the cytochrome. Buthiobate inhibited lanosterol-dependent enzymatic reduction of the cytochrome. These facts indicate that buthiobate binds to P-450(14)-DM with high affinity and acts as a potent inhibitor on the cytochrome.  相似文献   

19.
According to Ohba et al. (Ohba, M., Sato, R., Yoshida, Y., Nishino, T. and Katsuki, H. (1978) Biochem. Biophys. Res. Commun. 85, 21-27), yeast microsomes catalyze the removal of three methyl groups attached to the C-4 and C-14 positions of [1,7,15,22,26,30-14C]lanosterol (4,4,14 alpha-trimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol) in the presence of NADPH, NAD+ and molecular oxygen, concomitant with the liberation of 14CO2 derived from C-30 (one of the two methyl groups at the C-4 position). In this process the methyl group at the C-14 position is first removed in a cyanide-insensitive reaction and then the two methyl groups at the C-4 position are removed by a cyanide-sensitive enzyme system. In this study it was found that the 14CO2 formation from the 14C-labeled lanosterol was inhibited by antibodies to yeast cytochrome b5 and by palmitoyl-CoA, a substrate of the cytochrome b5-containing fatty acyl-CoA desaturase system of yeast microsomes. However, neither the antibodies nor palmitoyl-CoA inhibited the conversion of lanosterol to 4,4-dimethyl zymosterol (4,4-dimethyl-5 alpha-cholesta-8,24-dien-3 beta-ol). It is concluded that cytochrome b5 and a cyanide-sensitive enzyme are involved in the 4-demethylation of 4,4-dimethylzymosterol, but not the 14 alpha-demethylation of lanosterol, by yeast microsomes. It is suggested that a cyanide-sensitive enzyme acts as the terminal 4-demethylase and cytochrome b5 transfers reducing equivalents from NADPH to the terminal enzyme, as in the case of fatty acyl-CoA desaturation. The cyanide sensitivity of the 4-demethylation was, however, much greater than that of the desaturation.  相似文献   

20.
Y Yoshida  Y Aoyama 《Chirality》1990,2(1):10-15
The effect of the four triadimenol stereoisomers on the purified yeast lanosterol 14 alpha-demethylase (cytochrome P-45014DM), the primary target of azole antifungal agents, was studied. (1S,2R)-Triadimenol was the most potent demethylase inhibitor and bound quantitatively to the enzyme below 0.05 microM. This isomer also interfered with the chemical reduction of cytochrome P-45014DM and the binding of CO to the cytochrome. The other isomers showed a lower inhibitory effect on the enzyme, and the order of activity was (1R,2R) greater than (1R,2S) greater than or equal to (1S,2S). Based on these findings and the reported preferred conformations for the triadimenol stereoisomers (Anderson, N.H. et al., Pestic. Sci. 15:310-316, 1984), it is predicted that orientation of the hydrophobic tert-butyl and p-chlorophenyl groups relative to the azole nitrogen is important to fit the antifungal agent in the active site of the demethylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号