首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the chicken gizzard G-actin X DNase I complex has been determined at 5 A resolution by an X-ray diffraction method. Protein phases were computed by the multiple isomorphous replacement method using four heavy atom derivatives. The mean figure of merit was 0.65. Dimensions of the three molecular species, the complex, G-actin and DNase I, were determined based on the "cypress wood" models derived from the electron density map. The natures of the heavy atom binding sites are discussed in relation to the distinction between the two component molecules. The pattern of successive contacts between actin molecules observed in the present crystal seems unrelated to that found in F-actin.  相似文献   

2.
X-ray diffraction photographs of a chicken gizzard G-actin.DNase I complex crystal have been recorded using the synchrotron radiation beam emitted by the Synchrotron Radiation Source at Daresbury and the Photon Factory at Tsukuba. The resolution limit was extended to 2.4 A and the exposure time was reduced approximately by a factor of 10, when data recorded at the Photon Factory, were compared with those recorded with a conventional rotating-anode source. Using a newly designed Weissenberg camera equipped with a multi-layer line screen, the diffraction data in a 36 degrees oscillation range were recorded on a single film up to 3.5 A resolution.  相似文献   

3.
Crystals of a complex of chicken gizzard G-actin and DNase I were soaked in a solution of radioactive 4-hydroxymercuribenzoate (MB). The soaked crystals, which contained 0.93 mol of MB per mol of G-actin, were dissolved in "G-buffer" and digested with trypsin, and the resulting peptides were fractionated by thin-layer chromatography. The MB is exchangeable between peptides that contain cysteine residues, but the data obtained here suggested that MB attached to the cysteine residue at the 373rd position of the G-actin molecule.  相似文献   

4.
Deoxyribonuclease I (DNase I) forms a 1:1 complex with globular actin (G-actin) and also will depolymerize filamentous actin (F-actin) to form a 1:1 complex. The effect of DNase I on the exchange of the actin nucleotide has been investigated. When DNase I is added to G-actin, the rate of nucleotide exchange is decreased from 1.16 +/- 0.25 X 10(-4) s-1 to 0.28 +/- 0.09 X 10(-4) s-1 (0 degrees C). The presence of ATP or ADP in the actin has little effect on the rate of exchange of the nucleotide for ATP. This suggests that the weaker affinity of ADP than ATP for actin is due to a slower association rate of ADP. The rate of the nucleotide exchange in the actinDNase I complex is increased by the addition of NaCl or MgCl2. When DNase I is added to F-actin, the rate of nucleotide exchange (6.2 +/- 1.6 X 10(-4) x-1, 0 degrees C) is similar to the rate of depolymerization as measured by loss of viscosity. The actinDNase I complex formed by depolymerization of F-actin exchanges nucleotide at a 4-fold faster rate than the G-actinDNase I complex in the same ionic conditions. This and other experiments suggest that DNase I binds first to F-actin before dissociating the monomer from the filament. These results are discussed in terms of possible mechanisms of action depolymerization.  相似文献   

5.
T Chen  M Haigentz  E Reisler 《Biochemistry》1992,31(11):2941-2946
The effect of myosin on the structure of two sequences on G-actin, a loop between residues 39 and 52 and a segment between residues 61 and 69 from the NH2-terminus, was probed by limited proteolytic digestions of G-actin in the presence of the myosin subfragment 1 isozyme S-1(A2). Under the experimental conditions of this work, no polymerization of actin was induced by S-1(A2) [Chen & Reisler (1991) Biochemistry 30, 4546-4552]. S-1(A2) did not change the rates of subtilisin and chymotryptic digestion of G-actin at loop 39-52. In contrast to this, the second protease-sensitive region on G-actin, segment 61-69, was protected strongly by S-1(A2) from tryptic cleavage. The minor if any involvement of loop 39-52 in S-1 binding was confirmed by determining the binding constants of S-1(A2) for pyrene-labeled G-actin (1.2 x 10(6) M-1), subtilisin-cleaved pyrenyl G-actin (0.3 x 10(6) M-1), and DNase I-pyrenyl G-actin complexes (0.3 x 10(6) M-1). Consistent with this, the activity of DNase I, which binds to actin loop 39-52 [Kabsch et al. (1990) Nature 347, 37-44], was inhibited almost equally well by actin in the presence and absence of S-1(A2). These results confirm the observation that DNase I and S-1(A2) bind to distinct sites on actin [Bettache et al. (1990) Biochemistry 29, 9085-9091] and demonstrate myosin-induced changes in segment 61-69 of G-actin.  相似文献   

6.
Lamellipodium protrusion is linked to actin filament disassembly in migrating fibroblasts [Cramer, 1999: Curr. Biol. 9:1095-1105]. To further study this relationship, we have identified a method to specifically and sensitively detect G-actin in distinct spatial locations in motile cells using deoxyribonuclease I (DNase I). Although DNase I can bind both G- and F-actin in vitro [Mannherz et al., 1980: Eur. J. Biochem. 95:377-385], when cells were fixed in formaldehyde and permeabilized in detergent, fluorescently-labelled DNase I specifically stained G-actin and not F-actin. 92-98% of actin molecules were stably retained in cells during fixation and permeabilization. Further, increasing or decreasing cellular G-actin concentration by treating live cells with latrunculin-A or jasplakinolide, respectively, caused a respective increase and decrease in DNase I cell-staining intensity as expected. These changes in DNase I fluorescence intensity accurately reflected increases and decreases in cellular G-actin concentration independently measured in lysates prepared from drug-treated live cells (regression coefficient = 0.98). This shows that DNase I cell-staining is very sensitive using this method. Applying this method, we found that the ratio of G-/F-actin is lower in both the lamellipodium and in a broad band immediately behind the lamellipodium in migrating compared to non-migrating fibroblasts. Thus, we predict that protrusion of the lamellipodium in migrating fibroblasts requires tight coupling to filament disassembly at least in part because G-actin is relatively limited within and behind the lamellipodium. This is the first report to directly demonstrate high sensitivity of cell-staining for any G-actin probe and this, together with the ready commercial accessibility of fluorescently-labelled DNase I, make it a simple, convenient, and sensitive tool for cell-staining of G-actin.  相似文献   

7.
Pyridoxal 5'-phosphate (PLP), a lysine-specific reagent, has been used to modify G-actin. At pH 7.5, PLP reacted with 1.7-2 lysines on G-actin. Limited proteolytic digestion experiments indicated that, in agreement with previous works, essentially lysine-61 was modified in a 1:1 fashion by PLP, other lysines being much less reactive. A PLP-derivatized affinity label of ATP binding sites, AMPPLP, reacted with two additional lysines that do not appear to be located in the ATP site on G-actin. PLP-G-actin did not polymerize spontaneously up to 30 microM; however, it retained other essential native properties of G-actin. PLP-actin bound to the barbed ends of actin filaments with an equilibrium dissociation constant of 4 microM and prevented dilution-induced depolymerization like a capping protein. PLP-actin copolymerized with unmodified actin. The stability of F-actin copolymers decreased with the fraction of PLP-actin incorporated, consistent with a model within which the actin-PLP-actin interactions in the copolymer are 50-fold weaker, and PLP-actin-PLP-actin interactions are 200-fold weaker than regular actin-actin interactions. PLP-actin bound DNase I with an equilibrium association constant of 2 nM-1, i.e., 10-fold lower than that of unmodified actin. PLP modification did not affect the binding of G-actin to myosin subfragment 1. However, polymerization of PLP-actin by myosin subfragment 1 was not observed in low ionic strength buffers, whereas PLP-F-actin-S1 filaments, in which the stoichiometry PLP-actin:S1 is 1:1, were formed with an apparent critical concentration of 4.5 microM in the presence of 0.1 M KCl.  相似文献   

8.
Deoxyribonuclease I (DNase I) was purified 26500-fold in 39% yield from porcine pancreas to electrophoretic homogeneity using three-step column chromatography. The purified enzyme was inhibited by an antibody specific to the purified enzyme but not by G-actin. A 1303 bp cDNA encoding porcine DNase I was constructed from total RNA from porcine small intestine using a rapid amplification of cDNA ends method, followed by sequencing. Mature porcine DNase I protein was found to consist of 262 amino acids. Unlike all other mammalian DNase I enzymes that are inhibited by G-actin, porcine DNase I has H65 and S114 instead of Y65 and A114, which presumably results in the lack of inhibition. Porcine DNase I was more sensitive to low pH than rat or bovine enzymes. Compared with their primary structures, the amino acid at position 110 was N in porcine enzyme, but S in rat and bovine enzymes. A porcine mutant enzyme in which N was substituted by S alone at position 110 (N110S) became resistant to low pH to a similar extent as the rat and bovine enzymes.  相似文献   

9.
《The Journal of cell biology》1984,99(4):1335-1342
Erythrocyte ghosts were loaded with pancreatic DNase I and fused with Y- 1 adrenal tumor cells to test the possibility that this enzyme might inhibit the steroidogenic responses of the cells to ACTH and cyclic AMP. Fusion of erythrocyte ghosts loaded with DNase I, but not those containing albumin, ovalbumin, boiled DNase I, or DNase I with excess G- actin, inhibited the increase in production of 20 alpha- dihydroprogesterone produced by ACTH and dibutyryl cyclic AMP; inhibition was concentration-dependent with 50% inhibition by 3 X 10(7) molecules of DNase I per cell. It was found that inhibition by DNase I was exerted at the step in the steroidogenic pathway at which cholesterol is transported to mitochondria where steroidogenesis begins. This was shown by measuring transport of cholesterol into the inner mitochondrial membrane, by measuring the production of pregnenolone by isolated mitochondria and by demonstrating that DNase I was without effect on the conversion of pregnenolone to 20 alpha- dihydroprogesterone (an end-product of steroid synthesis). The actin content of Y-1 cells was measured by two methods based upon inhibition of DNase I and by SDS gels following centrifugation. The cells were found to contain 2-3 X 10(7) molecules of actin per cell of which two- thirds is present as G-actin. Since DNase I is known to bind to G-actin to give a one to one complex, these and other findings suggest that at least some of the G-actin in the cells may be necessary for the steroidogenic responses to ACTH and cyclic AMP.  相似文献   

10.
Shiokawa D  Tanuma S 《Biochemistry》2001,40(1):143-152
We describe here the characterization of the so far identified human DNase I family DNases, DNase I, DNase X, DNase gamma, and DNAS1L2. The DNase I family genes are found to be expressed with different tissue specificities and suggested to play unique physiological roles. All the recombinant DNases are shown to be Ca(2+)/Mg(2+)-dependent endonucleases and catalyze DNA hydrolysis to produce 3'-OH/5'-P ends. High activities for DNase I, DNase X, and DNase gamma are observed under neutral conditions, whereas DNAS1L2 shows its maximum activity at acidic pH. These enzymes have also some other peculiarities: different sensitivities to G-actin, aurintricarboxylic acid, and metal ions are observed. Using a transient expression system in HeLa S3 cells, the possible involvement of the DNases in apoptosis was examined. The ectopic expression of each DNase has no toxic effect on the host cells; however, extensive DNA fragmentation is observed only in DNase gamma-transfected cells after the induction of apoptosis. Furthermore, DNase gamma is revealed to be located at the perinuclear region in living cells, and to translocate into the nucleus during apoptosis. Our results demonstrate that DNase I, DNase X, DNase gamma, and DNAS1L2 have similar but unique endonuclease activities, and that among DNase I family DNases, DNase gamma is capable of producing apoptotic DNA fragmentation in mammalian cells.  相似文献   

11.
W Kabsch  H G Mannherz    D Suck 《The EMBO journal》1985,4(8):2113-2118
The shape of an actin subunit has been derived from an improved 6 A map of the complex of rabbit skeletal muscle actin and bovine pancreatic DNase I obtained by X-ray crystallographic methods. The three-dimensional structure of DNase I determined independently at 2.5 A resolution was compared with the DNase I electron density in the actin:DNase map. The two structures are very similar at 6 A resolution thus leading to an unambiguous identification of actin as well as DNase I electron density. Furthermore the correct hand of the actin structure is determined from the DNase I atomic structure. The resolution of the actin structure was extended to 4.5 A by using a single heavy-atom derivative and the knowledge of the atomic coordinates of DNase I. The dimensions of an actin subunit are 67 A X 40 A X 37 A. It consists of a small and a large domain, the small domain containing the N terminus. Actin is an alpha,beta-protein with a beta-pleated sheet in each domain. These sheets are surrounded by several alpha-helices, comprising at least 40% of the structure. The phosphate peak of the adenine nucleotide is located between the two domains. The complex of actin and DNase I as found in solution (i.e., the actin:DNase I contacts which do not depend on crystal packing) was deduced from a comparison of monoclinic with orthorhombic crystals. Residues 44-46, 51, 52, 60-62 of DNase I are close to a loop region in the small domain of actin. At a distance of approximately 15 A there is a second contact in the large domain in which Glu13 of DNase I is involved. A possible binding region for myosin is discussed.  相似文献   

12.
G-actin bound to deoxyribonuclease I (DNase I) is resistant to digestion by trypsin and chymotrypsin. In the absence of DNase I, G-actin is cleaved by these proteases to yield a 33 500 molecular weight core protein which is not degraded further. The major sites of proteolytic action in the amino acid sequence of actin have been identified as being adjacent to residues arginine-62 and lysine-68 for trypsin and leucine-57 for chymotrypsin. These residues are rendered inaccessible to proteases in the buffer by complex formation with DNase I. Digestion of G-actin with pronase from Streptomyces griseus yields fragmentation patterns that are similar to those observed with trypsin and chymotrypsin. This is likely to be because the specificities of the major constituents of pronase resemble those of trypsin and chymotrypsin. Again, complex formation with DNase I protects the otherwise vulnerable bonds in actin against proteolysis. Incubation with subtilisin Carlsberg leads to complete digestion of G-actin. No subtilisin-resistant core protein accumulates during the incubation. Protection of G-actin when complexed to DNase I is less than complete in this case but still is significant. This is interpreted in terms of the broad specificity of subtilisin and the observed fragmentation pattern of free G-actin when treated with subtilisin.  相似文献   

13.
Actin is one of the proteins that rely on chaperonins for proper folding. This paper shows that the thermal unfolding of G-actin, as studied by CD and ultraviolet difference spectrometry, coincides with a loss in DNase I-inhibiting activity of the protein. Thus, the DNase I inhibition assay should be useful for systematic studies of actin unfolding and refolding. Using this assay, we have investigated how the thermal stability of actin is affected by either Ca2 + or Mg2 + at the high affinity divalent cation binding site, by the concentration of excess nucleotide, and by the nucleotide in different states of phosphorylation (ATP, ADP.Pi, ADP. Vi, ADP.AlF4, ADP.BeFx, and ADP). Actin isoforms from different species were also compared, and the effect of profilin on the thermal stability of actin was studied. We conclude that the thermal unfolding of G-actin is a three-state process, in which an equilibrium exists between native actin with bound nucleotide and an intermediate free of nucleotide. Actins in the Mg-form were less stable than the Ca-forms, and the stability of the different isoforms decreased in the following order: rabbit skeletal muscle alpha-actin = bovine cytoplasmic gamma-actin > yeast actin > cytoplasmic beta-actin. The activation energies for the thermal unfolding reactions were in the range 200-290 kJ.mol- 1, depending on the bound ligands. Generally, the stability of the actin depended on the degree with which the nucleotide contributed to the connectivity between the two domains of the protein.  相似文献   

14.
The effects of halothane on the DNase I activity in an isolated enzyme preparation and in a DNase I-globular (G) actin complex was investigated. DNase I, DNase I-G actin complexes and G actin were exposed to various (0.2–4.0 vol./%) halothane concentrations for 3 h. Thereafter, DNase I was mixed with a DNA solution and the extinction of the acid soluble supernatant of the DNase I assay was determined as a measure of DNase I activity. After 10 min of halothane exposure the DNase I activity is inhibited in direct proportion to halothane concentrations between 0.6 and 4.0 vol/%. After 10 min halothane activates inactive DNase I by inhibiting G actin, an inhibitor of DNase I. G actin, exposed to halothane, does not inhibit the activity of DNase I. The results suggest a mechanism by which halothane may contribute to chromosomal defects and disturbances of DNA metabolism in cells.  相似文献   

15.
Physarum contains at least two distinct DNase I-binding proteins, i.e. actin and Cap 42 (a + b). The latter, a tight (1:1) complex of Cap 42 (a) and Cap 42 (b) (Maruta, H., Isenberg. G., Schreckenbach, T., Hallmann, R., Risse, G., Schibayama, T., and Hesse, J. (1983) J. Biol. Chem. 258, 10144-10150), is a Ca2+-dependent F-actin capping protein. DNase I binds to Cap 42 (b) but not to Cap 42 (a). Consequently, DNase I-agarose was used for an affinity-purification of Cap 42 (a + b), after its separation from actin by DEAE-cellulose chromatography. Cap 42 (a + b) was dissociated into its subunits when released from DNase I-agarose by 8.8 M formamide. The two subunits were subsequently separated from each other on hydroxylapatite. Both Cap 42 (a) and Cap 42 (b) were Ca2+-dependent F-actin capping proteins that cap the fast growing end of actin filaments and block actin polymerization at this end. Like Cap 42 (a + b), Cap 42 (b) required Ca2+ for its capping activity only when phosphorylated. The phosphorylation of Cap 42 (b) was completely blocked by DNase I or a tertiary complex of Cap 42 (a), actin, and Ca2+. Cap 42 (b) is not identical with native (= polymerizable) actin because (i) Cap 42 (b) was unable to form filaments, (ii) the Cap 42 (b) kinase did not phosphorylate native actin, and (iii) fragmin formed a tight (1:1) complex with native actin but not with Cap 42 (b). Although it is unlikely that Cap 42 (b) is simply a denatured form of actin that has lost its polymerizability during the preparation, it still remains to be clarified whether Cap 42 (b) is a nonpolmerizable actin variant derived from a distinct actin gene or a post-translationally modified form of polymerizable actin.  相似文献   

16.
Circular dichroic spectra of native, EDTA-treated and heat-denatured G-actin from chicken gizzard smooth muscle are virtually the same as those of rabbit skeletal muscle actin. The rates of changes produced by EDTA or heat in the secondary structure are, however, higher in the case of gizzard actin. Similar differences were found in the rates of inactivation as measured by loss of polymerizability during incubation with EDTA or Dowex 50. The results are explicable in terms of local differences in the conformation at specific site(s) important for maintaining the native state of actin monomer. Involvement of the ATP binding site was shown by measuring the equilibrium constant for the binding of ATP to the two actins. Difference in the conformation of some additional site(s) is indicated by a higher rate constant of inactivation of nucleotide-free actin observed for gizzard actin. No significant difference was found in the equilibrium constant for the binding of Ca2+ at the single high-affinity site in gizzard and skeletal muscle actin. Comparison of inactivation kinetics of actin from chicken gizzard, rabbit skeletal, bovine aorta, and bovine cardiac muscle suggests that the amino acid replacements Val-17----Cys-17 and/or Thr-89----Ser-89 have a destabilizing effect on the native conformation of G-actin. The results indicate that deletion of the acidic residue at position 1 of the amino acid sequence has no effect on the conformation of the ATP binding site and the high-affinity site for divalent cation as well.  相似文献   

17.
In the recently solved structure of TMR-modified ADP-G-actin, the nucleotide cleft is in a closed state conformation, and the D-loop contains an alpha-helix (L. R. Otterbein, P. Graceffa, and R. Dominguez, 2001, Science, 293:708-711). Subsequently, questions were raised regarding the possible role of the TMR label on Cys(374) in determining these aspects of G-actin structure. We show here that the susceptibility of D-loop on G-actin to subtilisin cleavage, and ATP/ADP-dependent changes in this cleavage, are not affected by TMR-labeling of actin. The TMR modification inhibits nucleotide exchange, but has no effect on DNase I binding and the fast phase of tryptic digestion of actin. These results show an absence of allosteric effects of TMR on subdomain 2, while confirming ATP/ADP-dependent changes in D-loop structure. In conjunction with similar results obtained on actin-gelsolin segment 1 complex, this works reveals the limitations of solution methods in probing the putative open and closed nucleotide cleft states of G-actin.  相似文献   

18.
Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells.  相似文献   

19.
Effects of isoflurane on the DNase I activity in an isolated enzyme preparation and in the DNase I-globular (G) actin complex were investigated. DNase I, DNase I-G actin complex, and G actin were exposed to various (0.2-4.0 vol%) isoflurane concentrations for 180 min. Thereafter, DNase I activity was determined. DNase I activity was inhibited in relation to time and concentration of isoflurane exposure. At concentrations ranging from 0.2 to 1.0 vol% of isoflurane inactive DNase I was activated in the DNase I-G actin complex. The DNase I inhibitor G actin showed a reduced capability to inhibit DNase I following isoflurane exposure. Albumin can inhibit the DNase I inactivation possibly by competition in the reactions between DNase I/albumin and isoflurane. After exposure to isoflurane the absorption maximum of DNase I was identical with the absorption maximum of heat-denatured DNase I. The results suggest a mechanism by which isoflurane may affect DNA in an indirect way at concentrations to which the patient is exposed during clinical anesthesia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号