首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In Europe and North America the western flower thrips,Frankliniella occidentalis, is an important pest in various greenhouse crops, such as sweet pepper and cucumber. Two species of predatory mite are commercially applied for biological control of this pest:Amblyseius cucumeris andA. barkeri. Thrips control is generally successful from March onwards. During winter, however, thrips control by these predatory mites is less effective. An important reason for this is that the commercially applied strains of both mite species enter reproductive diapause under short-day photoperiods, whereas the western flower thrips does not enter diapause. In this paper we report on selection experiments for non-diapause in strains of both mite species, aimed at obtaining predators that do not enter diapause under light- and temperature conditions prevailing in winter. Additional experiments were done to estimate the potential of the selected lines as control agents ofF. occidentalis. Selection for non-diapause proved highly successful in both predatory mite species. In a New Zealand strain ofA. cucumeris diapause incidence decreased from 41% to 0% in about ten generations; in a Dutch strain ofA. barkeri diapause incidence decreased from 67% to 0% in about six generations. Furthermore, selection for non-diapause had no influence on predator performance, measured as predation rate and oviposition rate on a diet of first instar thirps larvae. Rates of predation and oviposition were the same for selected and unselected lines in both species; rates of predation and oviposition were higher forA. cucumeris than forA. barkeri. After 18 months under non-diapause conditions, no less than 92% of a sample of the selected non-diapause line ofA. cucumeris did not enter diapause when tested under diapause-inducing conditions. This indicates that ‘non-diapause’ is a stable trait in these predatory mites. Finally, a small-scale greenhouse experiment in a sweet pepper crop showed that the selected non-diapause line ofA. cucumeris established successfully under diapause-inducing short-day conditions.  相似文献   

2.
Two species of predaceous mites,Amblyseius barkeri (Hughes) [=A. mckenziei Schuster & Pritchard] andA. cucumeris (Oudemans) [Acarina: Phytoseiidae] were evaluated as potential biological control agents forThrips tabaci Lindeman [Thysanoptera: Thripidae] on cabbage.A. barkeri colonized cabbage heads in preliminary trials. Field releases of different numbers of mites per plant during 1987 showed thatA. barkeri reduced the number of thrips in cabbage heads at harvest, and the reduction was proportional to the number of mites released, but thrips damage was unaffected. ReleasingA. cucumeris at different times during 1988, but releasing the same number of mites each time, we found that earlier releases resulted in fewer thrips and less damage at harvest; these relationships were not present, however, in plots treated with pyrethroid insecticides. We conclude that inoculative release ofAmblyseius spp. is a potentially useful thrips management strategy, but improvements in release timing and strategy will be required to provide commercially acceptable control.   相似文献   

3.
Ten predatory mite species, all phytoseiids, were evaluated for control of western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on greenhouse cucumber. This study was done to further improve biological control of thrips on this crop. Neoseiulus cucumeris (Oudemans) is at present used for biological control of thrips in greenhouses. Compared to this species, Typhlodromalus limonicus (Garman & McGregor), Typhlodromips swirskii (Athias-Henriot) and Euseius ovalis (Evans) reached much higher population levels resulting in a significantly better control of thrips. T. limonicus was clearly the best predator of WFT. Also Euseius scutalis (Athias-Henriot) increased to higher populations levels than N. cucumeris, but without controlling the thrips, probably because of an unequal distribution of this predator on the plant. Iphiseius degenerans (Berlese), Neoseiulus barkeri (Hughes), Euseius finlandicus (Oudemans) and Typhlodromus pyri (Scheuten) did not establish better than N. cucumeris. A non-diapausing exotic strain of N. cucumeris did not differ from the North European strain. The best performers in this study were all of sub-tropical origin. T. limonicus, T. swirskii and E. ovalis have good potentials for controlling not only thrips but also whiteflies. Factors affecting the efficacy of phytoseiids on greenhouse cucumbers are discussed.  相似文献   

4.
In spring and summer, two groups of natural enemies are successfully used for biological control of western flower thrips,Frankliniella occidentalis (Pergande) in greenhouses: phytoseiid mites (Amblyseius cucumeris (Oudemans) and, to a lesser extent,A. barkeri (Hughes)) and anthocorid bugs (Orius spp.). During winter, however, these predators often fail to control the pest. One likely cause for failure is the predators' tendency to enter diapause under short day conditions. In addition, eggs of predatory mites are generally susceptible to low humidity conditions, which often arise in greenhouses when outside temperatures drop below zero, or at bright, hot days in summer. In search for a thrips predator that is not hampered by these conditions, five subtropical phytoseiid species were selected which were known to feed on thrips:A. hibisci (Chant),A. degenerans Berlese,A. limonicus s.s. Garman and McGregor,A. scutalis (Athias-Henriot) andA. tularensis (Congdon). These species were compared toA. cucumeris andA. barkeri, with respect to the following features: (1) predation and oviposition rate with youngF. occidentalis larvae as prey, (2) oviposition rate on a diet of sweet pepper pollen, (3) drought tolerance spectrum of eggs, and (4) incidence of reproductive diapause under short day conditions. The results showed thatA. limonicus exhibited the highest predation and oviposition rates on a diet of thrips larvae. Moreover,A. limonicus females showed total absence of diapause under the conditions tested. A major disadvantage of this species was, however, that its eggs were most sensitive to low air humidity conditions. Least sensitive to low air humidity were eggs ofA. degenerans andA. hibisci. Females ofA. degenerans andA. hibisci also showed total absence of diapause, and intermediate rates of predation and oviposition, on both thrips larvae and pollen. In conclusion, we argue thatA. degenerans andA. hibisci are the most promising candidates for biological control ofF. occidentalis under conditions of low humidity and short day length. The success of these candidates remains to be shown in greenhouse experiments.  相似文献   

5.
The predatory mite Neoseiulus cucumeris is used for biological control of phytophagous mites and thrips on greenhouse cucumber and sweet pepper. In a previous study, N. cucumeris provided effective control of broad mite but was only rarely found on the sampled leaves, raising questions about the factors affecting N. cucumeris distribution. To determine the distribution of N. cucumeris, leaves of pepper plants were sampled three times per day: just after sunrise, at noon and just before sunset for two years and throughout a 24 h period in one year. The presence of other mites and insects was recorded. Biotic (pollen) and abiotic (temperature, humidity) factors were monitored from the three plant levels. The effect of direct and indirect sunlight on the mites was assessed. N. cucumeris was found primarily in flowers; however, the mite’s distribution was affected by other predators (intraguild predation); in the presence of the predatory bug Orius laevigatus virtually no mites occurred in the flowers. Whereas temperature and humidity varied from the top to the lower level of the plants, apparently neither these factors nor the presence of pollen outside the flowers influenced mite distribution. N. cucumeris was found to be negatively phototropic; therefore N. cucumeris were pre-conditioned to light by rearing under light conditions for 4 months before being released. The light-reared mites were initially more numerous during the noon sampling period, however, rearing conditions caused only a temporary and non-significant change in distribution.  相似文献   

6.
Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, are both important polyphagous pests of vegetables and ornamentals in greenhouses. Difficulties in biological control of these pests have prompted a search for new natural enemies. Most recently, the predatory mite Amblyseius swirskii has been commercialised as biological control agent of whiteflies and thrips. However, little is known about the suitability of thrips as prey for A. swirskii. We therefore assessed prey acceptance and life history of A. swirskii when feeding on F. occidentalis and T. tabaci at 25±1°C. Amblyseius swirskii juveniles preyed upon first larval instars of both F. occidentalis and T. tabaci but suffered from high mortality (67 and 78%). Developmental time (egg to adult) of A. swirskii was 7.8 days with either prey species. Adult A. swirskii females readily accepted first larval instars of both thrips species, which were attacked in <20 min on a leaf and <10 min in an artificial cage. Oviposition rates (0.92 and 0.99 eggs/female/day) and offspring sex ratios (63 and 70% females) were similar with F. occidentalis and T. tabaci as prey. Less than one-third of juveniles reaching adulthood and oviposition rates below one egg/female per day resulted in relatively low intrinsic rates of increase (r m) (0.056 and 0.024 per day with F. occidentalis and T. tabaci, respectively). Altogether, our study suggests that the recently reported superiority of A. swirskii to the widely used Neoseiulus cucumeris in suppression of thrips is due to other traits than its population growth capacity with thrips as prey.  相似文献   

7.
Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) and Frankliniella occidentalis (Thysanoptera: Thripidae) are major pests in greenhouse grown cucumber crops. Recently, Amblyseius swirskii Athias-Henriot (Acari: Phytoseiidae) was shown an effective biological control agent of both pests. Hence, perhaps both pests can be controlled simultaneously by this predator. However, with simultaneous infestation of both pests, synergistic effects, or interference could affect biological control and perhaps require changes in release rates of the predator. Thus, the aim of the present study was to evaluate different release rates of A. swirskii to control both pests under a worst case scenario of rapid immigration into a cucumber greenhouse. Two experiments were conducted, one simulating the influx of whiteflies alone (whitefly experiment) and the other immigration of whiteflies and thrips together (whitefly plus thrips experiment). Three treatments were compared in the whitefly experiment: (1) B. tabaci alone, (2) B. tabaci + 25 A. swirskii m−2 and (3) B. tabaci + 75 A. swirskii m−2. The high release rate was more effective than the low rate in controlling B. tabaci alone. The high rate was subsequently tested against B. tabaci and F. occidentalis for the whitefly and thrips experiment in which five treatments were compared: (1) B. tabaci alone, (2) F. occidentalis alone, (3) B. tabaci + 75 A. swirskii m−2, (4) F. occidentalis + 75 A. swirskii m−2 and (5) B. tabaci + F. occidentalis + 75 A. swirskii m−2. This rate of A. swirskii controlled whiteflies and thrips either alone or together. Therefore, 75 A. swirskii m−2 should be an adequate rate for controlling both pests either alone or simultaneously in cucumber greenhouses.  相似文献   

8.
The occurrence and strength of interactions among natural enemies and herbivores depend on their foraging decisions, and several of these decisions are based on odours. To investigate interactions among arthropods in a greenhouse cropping system, we studied the behavioural response of the predatory bug Orius laevigatus (Fieber) (Hemiptera: Anthocoridae) towards cucumber plants infested either with thrips (Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae)) or with spider mites (Tetranychus urticae Koch (Acari: Tetranychidae)). In greenhouse release-recapture experiments, the predatory bug showed a significant preference for both thrips-infested plants and spider mite-infested plants over clean plants. Predatory bugs preferred plants infested with spider mites to plants with thrips. Experience with spider mites on cucumber leaves prior to their release in the greenhouse had no effect on the preference of the predatory bugs. However, this experience did increase the percentage of predators recaptured. Y-tube olfactometer experiments showed that O. laevigatus was more attracted to odours from plants infested with spider mites than to odours from clean plants. Thus, O. laevigatus is able to perceive odours and may use them to find plants with prey in more natural conditions. The consequences of the searching behaviour for pest control are discussed.  相似文献   

9.
Phytoseiids are known to attack whiteflies, but it is an open question whether they can be used for biological control of these pest insects. Preselection experiments in the laboratory showed that two out of five phytoseiid species tested, Euseius scutalis and Typhlodromips swirskii, stood out in terms of their ability to develop and reproduce on a diet of Bemisia tabaci immatures. In this paper, we show that both predators are able to suppress whitefly populations on isolated cucumber plants in a greenhouse. Predatory mites were released 2 weeks in advance of the release of B. tabaci. To enable their survival and promote their population growth, they were provided weekly with alternative food, that is, Typha sp. pollen. A few weeks after whitefly introduction, the numbers of adult whiteflies on plants with predators were consistently lower than on plants without predators, where B. tabaci populations grew exponentially. After 9 weeks, this amounted to a 16- to 21-fold difference in adult whitefly population size. This shows that the two phytoseiid species are promising biocontrol agents of B. tabaci on greenhouse cucumber. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Neoseiulus barkeri (= Amblyseius mckenziei) and Amblyseius cucumeris (Acari:Phytoseiidae) are used as control agents of Thrips tabaci (Insecta:Thripidae) in greenhouse crops. Their success in capturing prey larval stages is related to both the feeding state of the predators and to the size of the larvae. When starved, predators are more successful in seizing larvae. Upon contact with a starved predator second stage prey larvae incur a lower death risk than first stage larvae. The larvae of T. tabaci reduce the attack success of their predators by jerking the abdomen and by producing a drop of rectal fluid. When this defensive behaviour is prevented by anaesthetising the larvae with CO2, predator attack success increases. Anaesthesia does not, however, level out the difference in death risk of the two larval stages. Conceivable causes for this discrepancy are discussed.Availability of suitable prey is dependent on the dynamics of the age structure of the prey population and, hence, may be lower than total thrips density suggests. If so, alternative food sources may be important to maintain the predator population.
Zusammenfassung Neoseiulus barkeri (= Amblyseius mckenziei) und Amblyseius cucumeris (Acari: Phytoseiidae) werden zur Bekämpfung von Thrips tabaci (Insecta: Thripidae) in Gewächshauskulturen eingesetzt. Sowohl der Ernährungszustand der räuberischen Milben als auch die Grösse der Thripslarven haben Einfluss auf das Ausmass der Beutenahme. Die Prädatoren sind erfolgreicher, wenn sie eine Zeitlang ohne Nahrung gehalten wurden. Beim Zusammentreffen mit einer ausgehungerten Raubmilbe besteht für Thripslarven des zweiten Stadiums ein geringeres Risiko erbeutet und gefressen zu werden als für Larven des ersten Stadiums. T. tabaci Larven mindern den Angriffserfolg der Prädatoren durch kräftiges Hin- und Herschlagen des Abdomens und durch Abgabe eines Tropfens Rektalflüssigkeit. Wird dieses Abwehrverhalten der Larven durch Anaästhesie mit CO2 verhindert, erhöht sich der Angriffserfolg der Prädatoren. Anästhesie nivelliert jedoch nicht das für beide Larvenstadien unterschiedlich hohe Risiko erbeutet zu werden. Mögliche Ursachen für diesen Unterschied werden diskutiert.Die Verfügbarkeit geeigneter Beutetiere hängt ab von der zeitlichen Entwicklung der Altersstruktur ihrer Population. Das Angebot an wirklich geeigneten Beutetieren kan also unter Umständen geringer sein, als dies die Gesamtthripsdichte zunächst vermuten lässt. Ist das der Fall, dürften alternative Nahrungsquellen für die Ernährung der Prädatorenpopulation wichtig sein.
  相似文献   

11.
The life-history parameters reproduction rate, developmental time and age specific survival of the western flower thrips,Frankliniella occidentalis (Pergande) [Thysanoptera: Thripidae], were determined on susceptible and resistant cucumber (Cucumis sativus L.) genotypes. Both newly emerged andF. occidentalis females of mixed ages showed a substantial reduction (36 to 50%) of the reproduction rate on all resistant genotypes, in particular after the second day. On the resistant genotypes 9127 and 9140,F. occidentalis had a prolonged developmental period. This was primarily due to a prolongation of the second larval stage. On all resistant genotypes,F. occidentalis suffered from high (82 to 97%) preadult mortality, predominantly at the second larval stage. It is conclude that the resistant genotypes do not cause an immediate intoxication of adult nor preadult thrips stages.  相似文献   

12.
We investigated the searching behaviour of two species of predatory mites, Typhlodromips swirskii (Athias-Henriot) and Euseius scutalis (Athias-Henriot), both known to feed on immature stages of the whitefly Bemisia tabaci Gennadius. When released in a greenhouse inside a circle of cucumber plants that were alternatingly clean or infested with immature whiteflies, the mites took several days to find plants. Both species were recaptured significantly more on plants with whiteflies. This suggests that the mites are able to discriminate between plants with and without whiteflies. The predators may either have been attracted to plants with whiteflies from a distance or arrested on plants with whiteflies. Typhlodromips swirskii that had previously fed on whitefly immatures on cucumber leaves were significantly attracted by volatiles from cucumber plants with whiteflies in a Y-tube olfactometer. This suggests that the mites use volatile cues to discriminate between infested and clean plants. However, this response waned rapidly; if predators, experienced as above, were starved for 3–4 h in absence of cucumber leaves, they no longer preferred volatiles of infested plants to clean plants. Furthermore, T. swirskii that had no experience with immature whiteflies on cucumber plants also did not prefer odours of infested plants to those of clean plants. Because the release experiment with this species in the greenhouse was done with inexperienced predators, this suggests that the aggregation of mites on plants with whiteflies was mainly caused by differential arrestment of mites on plants with prey and clean plants. For T. swirskii, this was in agreement with the finding that the fraction of predators on plants with prey increased with time to levels higher than 70%. A less clear trend was found for E. scutalis, for which the fraction of predators on plants with prey stabilized soon after release to levels from 54–70%. Hence, the predatory mites may find plants with prey by random searching, but they are subsequently arrested on these plants. An earlier study showed that 87% of all whiteflies released in a set-up as used here were recaptured within 1 day. Hence, the effectiveness with which predatory mites locate plants with whiteflies is low compared with that of their prey. We expect this to generate spatial patterns in the dynamics of predator and prey and this may have consequences for biological control of whiteflies with predatory mites.  相似文献   

13.
Altica carduorumandAltica cirsicolaare two species of leaf-feeding beetle (Coleoptera: Chrysomelidae) which appear to be morphologically indistinguishable and reportedly hybridize in the laboratory. A European population ofA. carduorumwas previously screened for host-plant specificity and released in North America for the control of Canada thistle,Cirsium arvense.A population ofA. cirsicolafrom China is currently being considered as a biocontrol agent forC. arvenseand, as a different beetle species, must be screened using host-specificity tests similar to those used forA. carduorum.IfA. carduorumandA. cirsicolaare, in fact, one species, the screening requirements forA. cirsicolacould be significantly reduced. Hence, we investigated the taxonomic relationship betweenA. carduorumandA. cirsicolausing morphometric analyses, hybridization experiments, and DNA fingerprinting using random amplified polymorphic DNA (RAPD) analysis. Discriminant function analyses indicate thatA. carduorumandA. cirsicolacannot be reliably distinguished by their morphologies, and interspecific matings produce fertile F1offspring. However, because interspecific matings produce significantly fewer offspring than intraspecific matings, and because of clear differences in their DNA profiles, we conclude thatA. carduorumandA. cirsicolaare separate species. This study serves to highlight the value of genetic analyses in taxonomic studies and their role in biological control programs.  相似文献   

14.
【目的】西花蓟马是世界性害虫,利用西花蓟马对寄主植物嗜食性的差异,通过驱避作用防控西花蓟马,能够为绿色治理提供依据。【方法】在西花蓟马嗜食的甘蓝和非嗜食的大蒜上互喷汁液,采用黄瓜+甘蓝、黄瓜+大蒜2种相间种植方式,研究它们对西花蓟马寄主选择性的影响。【结果】在甘蓝上喷洒大蒜汁液后,甘蓝叶片上西花蓟马的虫量和产卵量均明显减少。大蒜汁液浓度越高,减少得越多;在大蒜上喷洒甘蓝汁液后,大蒜植株上西花蓟马的虫量和产卵量明显增加,且增加程度与甘蓝汁液的浓度呈正相关。黄瓜和甘蓝相间排列时,西花蓟马在黄瓜叶片上的数量与单作黄瓜叶片上无明显差异;但黄瓜和大蒜相间排列时,西花蓟马在黄瓜上的数量明显高于单作黄瓜上的虫数,多52.4%。【结论】在嗜食寄主植物上喷洒非嗜食植物汁液或间作非嗜食的寄主可以明显减少西花蓟马的选择性。研究结果为利用非嗜食植物挥发物防控西花蓟马提供了理论依据和新的方法。  相似文献   

15.
The predatory mite Neoseiulus cucumeris (Oudemans) (Acarina: Phytoseiidae) successfully controlled the broad mite Polyphagotarsonemus latus (Banks) (Acarina: Tarsonemidae) on two varieties of greenhouse-grown sweet peppers (Capsicum annuum L.). A survey of pre-plant seedlings showed that nurseries were a source of infestation for the broad mite. The predatory mites were released twice (on day 1 and 5, or 15 days later) on each plant, every second plant or every fourth plant. Broad mite populations were evaluated by sampling young leaves from the top of the plant. The effect of the broad mite on plant height, dry mass and yield was evaluated. Additionally, since N. cucumeris is known to control thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), blue sticky traps and flower sampling were used to evaluate changes in thrips populations. All three release rates of N. cucumeris significantly (P<0.05) controlled broad mite populations, but when the predatory mites were released only on every fourth plant, the overall height and yield of the plants were adversely affected by broad mites. Releasing N. cucumeris on each or every second plant was as efficacious in controlling broad mites as sulfur treatments in terms of plant height, dry mass and yield. Plants treated with sulfur, however, had significantly higher thrips populations and fruit damage.  相似文献   

16.
We studied the capacity of one species of predator to control two major pests of greenhouse crops, Western flower thrips (Frankliniella occidentalis (Pergande)) and the greenhouse whitefly (Trialeurodes vaporariorum (Westwood)). In such a one-predator–two-prey system, indirect interactions can occur between the two pest species, such as apparent competition and apparent mutualism. Whereas apparent competition is desired because it brings pest levels down, apparent mutualism is not, because it does the opposite. Because apparent competition and apparent mutualism occurs at different time scales, it is important to investigate the effects of a shared natural enemy on biological control on a time scale relevant for crop growth. We evaluated the control efficacy of the predatory mites Amblyseius swirskii (Athias-Henriot) and Euseius ovalis (Evans) in cucumber crops in greenhouse compartments with only thrips, only whiteflies or both herbivorous insects together. Each of the two predators controlled thrips, but A. swirskii reduced thrips densities the most. There was no effect of the presence of whiteflies on thrips densities. Whitefly control by each of the two predators in absence of thrips was not sufficient, yet better with E. ovalis. However, whitefly densities in presence of thrips were reduced dramatically, especially by A. swirskii. The densities of predators were up to 15 times higher in presence of both pests than in the single-pest treatments. Laboratory experiments with A. swirskii suggest that this is due to a higher juvenile survival and developmental rate on a mixed diet. Hence, better control may be achieved not only because of apparent competition, but also through a positive effect of mixed diets on predator population growth. This latter phenomenon deserves more attention in experimental and theoretical work on biological control and apparent competition.  相似文献   

17.
The incidence of predation of eight species of predacious mirids (Hemiptera: Miridae) present in an apple orchard of Québec on the green apple aphid, two-spotted spider mite and European red mite were investigated. The daily consumption rates varied from 1–2 green apple aphids forHyaliodes vitripennis Say andCampylomma verbasci Meyer to 7–9 aphids forDeraeocoris fasciolus Knight andLepidopsallus minisculus Knight.H. vitripennis consumed significantly more mites than the other mirid species with 26 and 18 mites per day for the two-spotted spider mite and the European red mite respectively. The combined use ofH. vitripennis andL. minisculus is suggested for the control of phytophagous mites. This paper is contribution No. 335/91.06.02R, Research Station, Agriculture Canada, Saint-Jean-sur-Richelieu, Québec, Canada.  相似文献   

18.
Stratiolaelaos scimitus Berlese (Acari: Laelapidae) is an important soil-dwelling predatory mite used to control thrips and it is necessary to explore its potential predation capacity. In the present study, the functional response for S. scimitus on the pupae of Frankliniella occidentalis Pergande was examined. In addition, the effects of released S. scimitus for the control of Thrips tabaci Lindeman and F. occidentalis on greenhouse cucumber were evaluated, and compared with that of the common predator Neoseiulus barkeri Hughes (Acari: Phytoseiidae). The results showed that S. scimitus exhibited a Holling type II functional response on thrips pupae. The greenhouse study indicated that the release of N. barkeri and S. scimitus separately at the density of 250 mites/m2 suppressed the population growth of thrips. In comparison with control plots, N. barkeri and S. scimitus reduced the population of T. tabaci by 76% and 64% in six weeks, respectively. Releases of N. barkeri and S. scimitus led to a reduction in F. occidentalis by 41% and 43%, respectively. Significantly lower densities of both thrips species per leaf were recorded in treatments of individual releases of N. barkeri or S. scimitus than that in the control plots. The findings highlight the potential for utilising N. barkeri and S. scimitus as biological control agents of T. tabaci and F. occidentalis, respectively.  相似文献   

19.
The exotic predaceous mite,Phytoseiulus persimilis Athias-Henriot and the 2 native onesPhytoseius finitimus Ribaga andAmblyseius gossipi Elbadry were released on greenhouse cucumber plants in Egypt to examine their efficiency to control the twospotted spider miteTetranychus urticae Koch.P. persimilis proved to be sufficiently effective for the twospotted spider mite control under greenhouse conditions in Egypt. The 2 before-mentioned native predators were lost soon after release in the greenhouse although they are key mite predators on outdoor crops in this area.   相似文献   

20.
Naturally occurring populations of immature and adultGeocoris punctipes,adultColeomegilla maculataand immature coccinellids were monitored on field-grown tomato lines susceptible and resistant toManduca sextaandHelicoverpa zea. Helicoverpa zeaandHeliothis virescenseggs and small larvae that serve as prey for these predators also were monitored. MoreH. zeaandH. virescenseggs and small larvae were found on resistant than on susceptible plant lines. However, similar populations of largeH. zeaandH. virescenslarvae were found on resistant and susceptible plants. The number of adultGeocoris punctipes,adultColeomegilla maculataand immature coccinellids on resistant plants was always as high or higher than the number on susceptible plants. The data demonstrate no incompatibility of host-plant resistance with biological control provided by these predaceous insects, but indicate that the number ofG. punctipesand coccinellids required to provide effective biological control may develop too late in the season to be of practical value. Large populations of stilt bugs (Jalysus wickhami,Hemiptera: Berytidae) and spiders were observed to occur earlier in the growing season than eitherG. punctipesor coccinellids and may be a significant source of mortality forH. zeaeggs and small larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号