首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.  相似文献   

2.
The retroviral-mediated transfer of a suicide gene into donor T cells has been proposed as a method to control alloreactivity after hematopoietic stem cell (HSC) transplantation. Gene-modified cells (GMC) may be infused into the patient either at the time of transplantation, together with a T-cell depleted HSC graft, or after transplantation, as a donor lymphocyte infusion. Administration of a so-called pro-drug activating the "suicide" mechanism only after occurrence of GvHD should selectively destroy the alloreactive GMC in vivo, eventually leading to GvHD abrogation. Although phase I-II clinical trials provided vital proof of the principle of GvHD control by suicide-gene therapy, this approach is still suboptimal. Indeed, current gene transfer strategies rely on gamma-retroviral vectors that require extensive T-cell activation and expansion for efficient transduction. Both in vitro and in vivo studies have shown that the activation, cell expansion, transduction and selection steps lead to TCR repertoire alterations and impairment of crucial T-cell functions, such as alloreactivity and anti-EBV reactivity. Thus, improvements of the suicide-gene transfer processes are required in order to preserve T-cell function. This could be achieved by using CD3/CD28 co-stimulation and immunomagnetic selection of transduced cells. In future clinical trials, lentiviral vectors may prove to be a better alternative to gamma-retroviral-mediated gene transfer, by reducing the need for prolonged ex vivo culture.  相似文献   

3.
BACKGROUND AIMS. Previously, cytotoxic T lymphocyte antigen 4 (CTLA4) immunoglobulin (Ig) has been shown to allow sustained engraftment in dog leukocyte antigen (DLA)-identical hematopoietic cell transplant (HCT) after non-myeloablative conditioning with 100 cGy total body irradiation (TBI). In the current study, we investigated the efficacy of pre-transplant CTLA4-Ig in promoting engraftment across a DLA-mismatched barrier after non-myeloablative conditioning. METHODS. Eight dogs were treated with CTLA4-Ig and donor peripheral blood mononuclear cells (PBMC) prior to receiving 200 cGy TBI followed by transplantation of granulocyte-colony-stimulating factor (G-CSF) mobilized peripheral blood stem cells from DLA haplo-identical littermates with post-grafting immunosuppression. A control group of six dogs was conditioned with 200 cGy only and transplanted with grafts from DLA haplo-identical littermates followed by post-grafting immunosuppression. RESULTS. In vitro and in vivo donor-specific hyporesponsiveness was demonstrated on day 0 before TBI in eight dogs that received CTLA4-Ig combined with donor PBMC infusions. Four of five dogs treated with increased doses of CTLA4-Ig achieved initial engraftment but eventually rejected, with a duration of mixed chimerism ranging from 12 to 22 weeks. CTLA4-Ig did not show any effect on host natural killer (NK) cell function in vitro or in vivo. No graft-versus-host disease (GvHD) was observed in dogs receiving CTLA4-Ig treatment. CONCLUSIONS. Non-myeloablative conditioning with 200 cGy TBI and CTLA4-Ig combined with donor PBMC infusion was able to overcome the T-cell barrier to achieve initial engraftment without GvHD in dogs receiving DLA haplo-identical grafts. However, rejection eventually occurred; we hypothesize because of the inability of CTLA4-Ig to abate natural killer cell function.  相似文献   

4.
Human PBMC engraft in mice homozygous for the severe combined immunodeficiency (Prkdcscid) mutation (Hu-PBL-scid mice). Hu-PBL-NOD-scid mice generate 5- to 10-fold higher levels of human cells than do Hu-PBL-C.B-17-scid mice, and Hu-PBL-NOD-scid beta2-microglobulin-null (NOD-scid-B2mnull) mice support even higher levels of engraftment, particularly CD4+ T cells. The basis for increased engraftment of human PBMC and the functional capabilities of these cells in NOD-scid and NOD-scid-B2mnull mice are unknown. We now report that human cell proliferation in NOD-scid mice increased after in vivo depletion of NK cells. Human cell engraftment depended on CD4+ cells and required CD40-CD154 interaction, but engrafted CD4+ cells rapidly became nonresponsive to anti-CD3 Ab stimulation. Depletion of human CD8+ cells led to increased human CD4+ and CD20+ cell engraftment and increased levels of human Ig. We further document that Hu-PBL-NOD-scid mice are resistant to development of human EBV-related lymphoproliferative disorders. These disorders, however, develop rapidly following depletion of human CD8+ cells and are prevented by re-engraftment of CD8+ T cells. These data demonstrate that 1) murine NK cells regulate human cell engraftment in scid recipients; 2) human CD4+ cells are required for human CD8+ cell engraftment; and 3) once engrafted, human CD8+ cells regulate human CD4+ and CD20+ cell expansion, Ig levels, and outgrowth of EBV-related lymphoproliferative disorders. We propose that the Hu-PBL-NOD-scid model is suitable for the in vivo analysis of immunoregulatory interactions between human CD4+ and CD8+ cells.  相似文献   

5.
Little is known about the in vivo conditions in which CD4+CD25+ regulatory T cells (T(reg)) exert their suppressive effect in nonlymphopenic mice. To this end, we analyzed T(reg)-mediated suppression of expansion and cytokine production at different levels of Ag-specific CD4+CD25- T cell activation. Using Ab-mediated depletion of endogenous T(reg), we show that basal immunosuppression is dependent on effector T cell activation. These polyclonal T(reg), which were poorly activated in our immunization conditions, were effective in weak but not high T cell activation context. In contrast, the same immunization conditions led to proliferation of cotransferred Ag-specific T(reg). Those efficiently inhibited T cell proliferation and cytokine production even in strong T cell activation context. Interestingly, T(reg) selectively suppressed expansion or cytokine production depending on the experimental approach. The importance of the immune context for efficient suppression is further supported by the observation that T(reg) depletion exacerbated diabetes of NOD mice only at the early stage of the disease. Overall, our study suggests that T(reg)-mediated suppression depends on the relative activation of T(reg) and effector T cells in vivo. This balance may be a critical factor in the regulation of immune responses.  相似文献   

6.
Absorption of IL-2 is one proposed mechanism of CD4+CD25+FoxP3+ regulatory T cell (Treg) suppression. Direct in vivo experimental evidence for this has recently been obtained. While modulation of IL-2 bioavailability controls CD8+ T-cell effector differentiation under strongly immunogenic conditions it is not known whether Treg modulate CD8+ T cell responses through this mechanism under steady-state conditions. Here we assess this using a mouse model in which dendritic cells (DC) are manipulated to present cognate antigen to CD8+ T cells either in the steady-state or after activation. Our observations show that Treg exert a check on expansion and effector differentiation of CD8+ T cells under strongly immunogenic conditions associated with TLR ligand activation of DC, and this is mediated by limiting IL-2 availability. In contrast, when DC remain unactivated, depletion of Treg has little apparent effect on effector differentiation or IL-2 homeostasis. We conclude that while modulation of IL-2 homeostasis is an important mechanism through which Treg control CD8+ effector differentiation under immunogenic conditions, this mechanism plays little role in modulating CD8+ T-cell differentiation under steady-state conditions.  相似文献   

7.
8.
The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.  相似文献   

9.
Blockade with B7 antagonists interferes with CD28:B7 and CTLA-4:B7 interactions, which may have opposing effects. We have examined the roles of CD28:B7 and CTLA-4:B7 on in vivo alloresponses. A critical role of B7:CD28 was demonstrated by markedly compromised expansion of CD28-deficient T cells and diminished graft-versus-host disease lethality of limited numbers of purified CD4+ or CD8+ T cells. When high numbers of T cells were infused, the requirement for CD28:B7 interaction was lessened. In lethally irradiated recipients, anti-CTLA-4 mAb enhanced in vivo donor T cell expansion, but did not affect, on a per cell basis, anti-host proliferative or CTL responses of donor T cells. Graft-versus-host lethality was accelerated by anti-CTLA-4 mAb infusion given early post-bone marrow transplantation (BMT), mostly in a CD28-dependent fashion. Donor T cells obtained from anti-CTLA-4 mAb-treated recipients were skewed toward a Th2 phenotype. Enhanced T cell expansion in mAb-treated recipients was strikingly advantageous in the graft-versus-leukemia effects of delayed donor lymphocyte infusion. In two different systems, anti-CTLA-4 mAb enhanced the rejection of allogeneic T cell-depleted marrow infused into sublethally irradiated recipients. We conclude that blockade of the selective CD28-B7 interactions early post-BMT, which preserve CTLA-4:B7 interactions, would be preferable to blocking both pathways. For later post-BMT, the selective blockade of CTLA-4:B7 interactions provides a potent and previously unidentified means for augmenting the GVL effect of delayed donor lymphocyte infusion.  相似文献   

10.
CD4+CD25+ T regulatory (T(R)) cells are an important regulatory component of the adaptive immune system that limit autoreactive T cell responses in various models of autoimmunity. This knowledge was generated by previous studies from our lab and others using T(R) cell supplementation and depletion. Contrary to dogma, we report here that injection of anti-CD25 mAb results in the functional inactivation, not depletion, of T(R) cells, resulting in exacerbated autoimmune disease. Supporting this, mice receiving anti-CD25 mAb treatment display significantly lower numbers of CD4+CD25+ T cells but no change in the number of CD4+FoxP3+ T(R) cells. In addition, anti-CD25 mAb treatment fails to both reduce the number of Thy1.1+ congenic CD4+CD25+ T(R) cells or alter levels of CD25 mRNA expression in treatment recipients. Taken together, these findings have far-reaching implications for the interpretation of all previous studies forming conclusions about CD4+CD25+ T(R) cell depletion in vivo.  相似文献   

11.
Initial attempts at haplo-identical transplantation with T-cell replete bone marrow (BM) were associated with a high transplant-related mortality (TRM), mainly caused by severe graft-versus-host disease (GvHD), and previous efforts to prevent GvHD by ex vivo T-cell depletion of haplo-identical BM were associated with a high risk of graft failure and other complications. Improvements in large-scale T-cell depletion techniques of haplo-identical peripheral mobilized stem cells (PBSC) have overcome the human leukocyte antigen (HLA) barrier by using megadose numbers of stem cells obtained by either highly purified CD34(+) selection or negative depletion of T cells. In addition, recent insights into the role of graft-facilitating and anti-leukemic alloreactive natural killer (NK) cells, the permanent availability of the haplo-identical donor post-transplant and continuous improvements in graft-engineering techniques for the generation of effector cells for post-transplant adoptive transfer, have facilitated the development of strategies to decrease regimen-related toxicity through the use of less intensive preparative regimens, prevent severe infections by rebuilding the immune system and decrease the risk of relapse by exploiting the alloreactivity of donor NK cells and other donor-derived effector cells.  相似文献   

12.
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.  相似文献   

13.
In allogeneic hematopoietic cell transplantation (allo-HCT), donor lymphocytes play a central therapeutic role in both GvL and immune reconstitution. However, the full exploitation of these therapeutic properties is limited by the occurrence of GvHD. Different strategies have been investigated to obtain all the benefits derived from donor lymphocytes while avoiding the risk of GvHD. The genetic engineering of donor lymphocytes with the herpes simplex virus-thymidine kinase (HSV-TK) suicide gene confers the ability to modulate GvHD by invivo ganciclovir-induced elimination of the transduced cells. The suicide-gene strategy has applications in both donor lymphocyte infusion (DLI) for disease relapse and in add-back infusions after T-cell depleted allo-HCT. TK cell DLI resulted in anti-tumor activity in a relevant proportion of treated patients. Haplo-identical stem cell transplantation (haplo-HCT) is a promising therapeutic option for patients with high risk hematologic malignancies lacking an HLA-matched donor. However, the profound T-cell depletion required to overcome the risk of lethal GvHD has been associated with a marked delayed T-cell recovery with a prolonged risk of post-transplant viral, fungal and other opportunistic infections. TK cell add-backs efficiently promote early immune reconstitution after haplo-HCT and prevent disease relapse, providing a unique tool for the control of GvHD. The genetic manipulation of donor lymphocytes with a suicide gene is a promising strategy to increase feasibility and safety of allo-HCT.  相似文献   

14.
A 20-day treatment with LF15-0195, a deoxyspergualine analogue, induced allograft tolerance in a fully MHC-mismatched heart allograft model in the rat. Long-term allografts displayed minimal cell infiltration with no signs of chronic rejection. CD4+ spleen T cells from tolerant LF15-0195-treated recipients were able to suppress in vitro proliferation of allogeneic CD4+ T cells and to transfer tolerance to second syngeneic recipients, demonstrating dominant suppression by regulatory cells. A significant increase in the percentage of CD4+CD25+ T cells was observed in the thymus and spleen from tolerant LF15-0195-treated recipient. In vitro direct stimulation with donor APCs demonstrated that CD4+ regulatory T cells proliferated weakly and expressed low levels of IFN-gamma, IL-10, and IL-2. CD4+CD25+ cell depletion increased IL-2 production by CD4+CD25- thymic cells, but not splenic cells. Moreover, tolerance was transferable with splenic and thymic CD4+CD25+ cells, but also in 50% of cases with splenic CD4+CD25- cells, demonstrating that CD25 can be a marker for regulatory cells in the thymus, but not in the periphery. In addition, we presented evidences that donor APCs were required to induce tolerance and to expand regulatory CD4+ T cells. This study demonstrates that LF15-0195 treatment induces donor APCs to expand powerful regulatory CD4+CD25+/- T cells present in both the central and peripheral compartments.  相似文献   

15.
Naturally occurring Foxp3+CD25+CD4+ regulatory T cells (Treg) have initially been described as anergic cells; however, more recent in vivo studies suggest that Tregs vigorously proliferate under both homeostatic as well as inflammatory conditions. We have previously identified a subset of murine CD4+ Tregs, which is characterized by expression of the integrin alphaEbeta7 and which displays an effector/memory-like phenotype indicative of Ag-specific expansion and differentiation. In the present study, the alphaE+ Treg subset was found to contain a large fraction of cycling cells under homeostatic conditions in healthy mice. Using an adoptive transfer system of Ag-specific T cells, we could demonstrate that the vast majority of transferred natural, naive-like CD25+CD4+ Tregs acquired expression of the integrin alphaEbeta7 upon tolerogenic application of Ag via the oral route. In addition, using the same system, Foxp3+ Tregs could be de novo induced from conventional naive CD25-CD4+ T cells, and this conversion was associated with concomitant expression of alphaE. These findings suggest that Tregs expressing the integrin alphaE are effector/memory Tregs with a high turnover rate that can develop in the periphery upon Ag contact under tolerogenic conditions, both from thymic-derived CD25+CD4+ Tregs with a naive-like phenotype as well as from conventional naive T cells.  相似文献   

16.
Background aimsTo investigate the feasibility of using CD4 + T cells genetically modified to express an allo-HLA directed CAR and FOXP3 to suppress T cell proliferation and cytokine secretion in GvHD. Methods: Human CD4+ T cells from A*02:01 negative donors were transduced to express A*02 CAR and FOXP3 and co-cultured in mixed lymphocyte reaction assays to demonstrate T cell suppression. A*02- CAR/FOXP CD4+ T cells were then injected into mice engrafted with allogeneic T cells in a GvHD mouse model.ResultsCD4+ T cells genetically modified to express allo-HLA-directed CAR and FOXP3 proliferate rapidly, downregulate CD127 and interferon-γ, express high CD25 and Helios and convert to a stable antigen-dependent suppressive phenotype. In mixed lymphocyte reaction assays, these cells potently suppressed T-cell proliferation and secreted IL-10. In a graft-versus-host disease model, A*02-CAR/FOXP3 CD4+ T cells outperformed polyclonal Tregs by reducing liver and lung inflammation, inhibiting pro-inflammatory cytokine production and limiting grafted CD3+ T-cell expansion.ConclusionsCD4 + T cells expressing allo-antigen directed HLA-specific CAR and FOXP3 act as potent, specific and stable suppressors of inflammation that out-perform their Treg counterparts both in vitro and in vivo.  相似文献   

17.
Poor immune reconstitution after haplo-identical stem cell transplantation results in high mortality from viral infections and relapse. One approach to overcome this problem is to deplete alloreactive cells selectively by deleting T cells activated by recipient stimulators, using an immunotoxin directed against the activation marker CD25. However, the degree of depletion of alloreactive cells is variable following stimulation with recipient PBMC, and this can result in GvHD. We have shown that using recipient EBV-transformed LCL as stimulators to activate donor alloreactive T cells results in more consistent depletion of in vitro alloreactivity while preserving T-cell responses to viral and potential myeloid tumor Ag. Based on these data, we have embarked on a phase I clinical dose escalation study of add-back of allo-LCL-depleted donor T cells in the haplo-identical setting, to determine if the allodepletion we achieve to allow infusion of sufficient T cells to restore useful antiviral/anti-leukemic responses without causing GvHD. Fifteen patients have so far been treated. The incidence of significant acute or chronic GvHD has been low (2/15), as has mortality from infection (1/15). Preliminary data show accelerated immune reconstitution in dose level 2 patients. Infused allodepleted donor T cells appear able to expand significantly in the face of viral reactivations, and doses as low as 3 x 10(5)/kg may be sufficient to confer useful antiviral immunity in this setting. At a median follow-up of 19.5 months, nine of 15 patients are alive and disease-free. Five patients have relapsed, all of whom have died.  相似文献   

18.
The transfer of unfractionated DBA/2J (DBA) splenocytes into B6D2F(1) (DBA → F(1)) mice results in greater donor CD4 T cell engraftment in females at day 14 that persists long-term and mediates greater female lupus-like renal disease. Although donor CD8 T cells have no demonstrated role in lupus pathogenesis in this model, we recently observed that depletion of donor CD8 T cells prior to transfer eliminates sex-based differences in renal disease long-term. In this study, we demonstrate that greater day 14 female donor CD4 engraftment is also critically dependent on donor CD8 T cells. Male DBA → F(1) mice exhibit stronger CD8-dependent day 8-10 graft-versus-host (GVH) and counter-regulatory host-versus-graft (HVG) responses, followed by stronger homeostatic contraction (days 10-12). The weaker day 10-12 GVH and HVG in females are followed by persistent donor T cell activation and increasing proliferation, expansion, and cytokine production from days 12 to 14. Lastly, greater female day 14 donor T cell engraftment, activation, and cytokine production were lost with in vivo IFN-γ neutralization from days 6 to 14. We conclude the following: 1) donor CD8 T cells enhance day 10 proliferation of donor CD4 T cells in both sexes; and 2) a weaker GVH/HVG in females allows prolonged survival of donor CD4 and CD8 T cells, allowing persistent activation. These results support the novel conclusion that sex-based differences in suboptimal donor CD8 CTL activation are critical for shaping sex-based differences in donor CD4 T cell engraftment at 2 wk and lupus-like disease long-term.  相似文献   

19.
CD4-targeted mAb therapy results in permanent acceptance of cardiac allografts in rat recipients, in conjunction with features of the infectious tolerance pathway. Although CD4(+) T cells play a central role, the actual cellular and molecular tolerogenic mechanisms remain elusive. This study was designed to analyze in vitro alloimmune responses of T lymphocytes from CD4 mAb-treated engrafted hosts. Spleen, but not lymph node, cells lost proliferative response against donor alloantigen in MLR and suppressed test allograft rejection in adoptive transfer studies, suggesting compartmentalization of tolerogenic T cells in transplant recipients. A high dose of exogenous IL-2 restored the allogeneic response of tolerogenic T cells, indicating anergy as a putative mechanism. Vigorous proliferation of the tolerogenic T cells in in vivo MLR supports the existence of alloreactive lymphocytes in tolerogenic T cell repertoire and implies an active operational suppression mechanism. The tolerogenic splenocytes suppressed proliferation of naive splenocytes in vitro, consistent with their in vivo property of dominant immune regulation. Finally, CD45RC(+) but not CD45RC(-) T cells from tolerant hosts were hyporesponsive to alloantigen and suppressed the proliferation of normal T cells in the coculture assay. Thus, nondeletional, anergy-like regulatory mechanisms may operate via CD4(+)CD45RC(+) T cells in the infectious tolerance pathway in transplant recipients.  相似文献   

20.
Although engraftment following in utero stem cell transplantation can readily be achieved, a major limitation is the low level of donor chimerism. We hypothesized that a lack of space for donor cells in the recipient marrow was one of the primary reasons for failure to achieve significant engraftment, and that donor T cells could make space in an allogeneic mismatched setting. We found that 3 x 10(5) C57BL/6 (B6) naive CD3(+) cells coinjected with B6 T cell-depleted bone marrow (TCDBM) into 14- to 15-day-old BALB/c fetuses resulted in multilineage engraftment (median, 68.3%) associated with severe graft-vs-host disease (GvHD; 62 vs 0% with TCDBM alone). When 1.5 x 10(5) CD4(+) or CD8(+) cells were used, low levels of engraftment were seen vs recipients of 1.5 x 10(5) CD3(+) cells (2.4 +/- 1.1 and 6.6 +/- 3.9 vs 20.4 +/- 10.4%, respectively). To test the hypothesis that proliferation of T cells in response to alloantigen resulted in GvHD and increased engraftment, we pretreated naive T cells with photochemical therapy (PCT) using S-59 psoralen and UVA light to prevent proliferation. GvHD was reduced (60-0%), but was also associated with a significant reduction in engrafted donor cells (53.4 +/- 4.2 to 1.7 +/- 0.5%). However, when B6 T cells were sensitized to BALB/c splenocytes, treated with PCT, and coinjected with TCDBM, there was a partial restoration of engraftment (13.3 +/- 2.4% H2Kb(+) cells) with only one of nine animals developing mild to moderate GvHD. In this study we have shown that PCT-treated T cells that are cytotoxic but nonproliferative can provide an engraftment advantage to donor cells, presumably by destroying host hemopoietic cells without causing GvHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号