首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Bajohrs M  Rickman C  Binz T  Davletov B 《EMBO reports》2004,5(11):1090-1095
Botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of the proteins responsible for vesicle exocytosis. Paradoxically, two serotypes of BoNTs, A and E, cleave the same molecule, synaptosome-associated protein with relative molecular mass 25K (SNAP-25), and yet they cause synaptic blockade with very different properties. Here we compared the action of BoNTs A and E on the plasma membrane fusion machinery composed of syntaxin and SNAP-25. We now show that the BoNT/A-cleaved SNAP-25 maintains its association with two syntaxin isoforms in vitro, which is mirrored by retention of SNAP-25 on the plasma membrane in vivo. In contrast, BoNT/E severely compromises the ability of SNAP-25 to bind the plasma membrane syntaxin isoforms, leading to dissociation of SNAP-25. The distinct properties of botulinum intoxication, therefore, can result from the ability of shortened SNAP-25 to maintain its association with syntaxins-in the case of BoNT/A poisoning resulting in unproductive syntaxin/SNAP-25 complexes that impede vesicle exocytosis.  相似文献   

2.
Botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT) inhibit neurotransmitter release by proteolyzing a single peptide bond in one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors SNAP-25, syntaxin, and vesicle-associated membrane protein (VAMP)/synaptobrevin. TeNT and BoNT/B, D, F, and G of the seven known BoNTs cleave the synaptic vesicle protein VAMP/synaptobrevin. Except for BoNT/B and TeNT, they cleave unique peptide bonds, and prior work suggested that different substrate segments are required for the interaction of each toxin. Although the mode of SNAP-25 cleavage by BoNT/A and E has recently been studied in detail, the mechanism of VAMP/synaptobrevin proteolysis is fragmentary. Here, we report the determination of all substrate residues that are involved in the interaction with BoNT/B, D, and F and TeNT by means of systematic mutagenesis of VAMP/synaptobrevin. For each of the toxins, three or more residues clustered at an N-terminal site remote from the respective scissile bond are identified that affect solely substrate binding. These exosites exhibit different sizes and distances to the scissile peptide bonds for each neurotoxin. Substrate segments C-terminal of the cleavage site (P4-P4') do not play a role in the catalytic process. Mutation of residues in the proximity of the scissile bond exclusively affects the turnover number; however, the importance of individual positions at the cleavage sites varied for each toxin. The data show that, similar to the SNAP-25 proteolyzing BoNT/A and E, VAMP/synaptobrevin-specific clostridial neurotoxins also initiate substrate interaction, employing an exosite located N-terminal of the scissile peptide bond.  相似文献   

3.
Proteolysis of SNAP-25 Isoforms by Botulinum Neurotoxin Types A, C, and E   总被引:7,自引:2,他引:5  
Abstract : Tetanus toxin and the seven serologically distinct botulinal neurotoxins (BoNT/A to BoNT/G) abrogate synaptic transmission at nerve endings through the action of their light chains (L chains), which proteolytically cleave VAMP (vesicle-associated membrane protein)/synaptobrevin, SNAP-25 (synaptosome-associated protein of 25 kDa), or syntaxin. BoNT/C was reported to proteolyze both syntaxin and SNAP-25. Here, we demonstrate that cleavage of SNAP-25 occurs between Arg198 and Ala199, depends on the presence of regions Asn93 to Glu145 and Ile156 to Met202, and requires about 1,000-fold higher L chain concentrations in comparison with BoNT/A and BoNT/E. Analyses of the BoNT/A and BoNT/E cleavage sites revealed that changes in the carboxyl-terminal residues, in contrast with changes in the amino-terminal residues, drastically impair proteolysis. A proteolytically inactive BoNT/A L chain mutant failed to bind to VAMP/synaptobrevin and syntaxin, but formed a stable complex ( K D = 1.9 × 10-7 M ) with SNAP-25. The minimal essential domain of SNAP-25 required for cleavage by BoNT/A involves the segment Met146-Gln197, and binding was optimal only with full-length SNAP-25. Proteolysis by BoNT/E required the presence of the domain Ile156-Asp186. Murine SNAP-23 was cleaved by BoNT/E and, to a reduced extent, by BoNT/A, whereas human SNAP-23 was resistant to all clostridial L chains. Lys185Asp or Pro182Arg mutations of human SNAP-23 induced susceptibility toward BoNT/E or toward both BoNT/A and BoNT/E, respectively.  相似文献   

4.
Jin R  Sikorra S  Stegmann CM  Pich A  Binz T  Brunger AT 《Biochemistry》2007,46(37):10685-10693
Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.  相似文献   

5.
Clostridial neurotoxins inhibit neurotransmitter release by selective and specific intracellular proteolysis of synaptobrevin/VAMP, synaptosomal-associated protein of 25 kDa (SNAP-25) or syntaxin. Here we show that in binary reactions synaptobrevin binds weakly to both SNAP-25 and syntaxin, and SNAP-25 binds to syntaxin. In the presence of all three components, a dramatic increase in the interaction strengths occurs and a stable sodium dodecyl sulfate-resistant complex forms. Mapping of the interacting sequences reveals that complex formation correlates with the presence of predicted alpha-helical structures, suggesting that membrane fusion involves intermolecular interactions via coiled-coil structures. Most toxins only attack the free, and not the complexed, proteins, and proteolysis of the proteins by different clostridial neurotoxins has distinct inhibitory effects on the formation of synaptobrevin-syntaxin-SNAP-25 complexes. Our data suggest that synaptobrevin, syntaxin and SNAP-25 associate into a unique stable complex that functions in synaptic vesicle exocytosis.  相似文献   

6.
Mechanism of action of tetanus and botulinum neurotoxins   总被引:23,自引:0,他引:23  
The clostridial neurotoxins responsible for tetanus and botulism are metallo-proteases that enter nerve cells and block neurotransmitter release via zinc-dependent cleavage of protein components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular Junction and is internalized and transported retroaxonally to the spinal cord. Whilst TeNT causes spastic paralysis by acting on the spinal inhibitory interneurons, the seven serotypes of botullnum neurotoxins (BoNT) induce a flaccid paralysis because they intoxicate the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G specifically cleave VAMP/synaptobrevin, a membrane protein of small synaptic vesicles, at different single peptide bonds. Proteins of the presynaptic membrane are specifically attacked by the other BoNTs: serotypes A and E cleave SNAP-25 at two different sites located within the carboxyl terminus, whereas the specific target of serotype C is syntaxin.  相似文献   

7.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

8.
Tetanus and botulinum neurotoxins: mechanism of action and therapeutic uses   总被引:11,自引:0,他引:11  
The clostridial neurotoxins responsible for tetanus and botulism are proteins consisting of three domains endowed with different functions: neurospecific binding, membrane translocation and proteolysis for specific components of the neuroexocytosis apparatus. Tetanus neurotoxin (TeNT) binds to the presynaptic membrane of the neuromuscular junction, is internalized and transported retroaxonally to the spinal cord. The spastic paralysis induced by the toxin is due to the blockade of neurotransmitter release from spinal inhibitory interneurons. In contrast, the seven serotypes of botulinum neurotoxins (BoNTs) act at the periphery by inducing a flaccid paralysis due to the inhibition of acetylcholine release at the neuromuscular junction. TeNT and BoNT serotypes B, D, F and G cleave specifically at single but different peptide bonds, of the vesicle associated membrane protein (VAMP) synaptobrevin, a membrane protein of small synaptic vesicles (SSVs). BoNT types A, C and E cleave SNAP-25 at different sites located within the carboxyl-terminus, while BoNT type C additionally cleaves syntaxin. The remarkable specificity of BoNTs is exploited in the treatment of human diseases characterized by a hyperfunction of cholinergic terminals.  相似文献   

9.
The interaction of the presynaptic membrane proteins SNAP-25 and syntaxin with the synaptic vesicle protein synaptobrevin (VAMP) plays a key role in the regulated exocytosis of neurotransmitters. Clostridial neurotoxins, which proteolyze these polypeptides, are potent inhibitors of neurotransmission. The cytoplasmic domains of the three membrane proteins join into a tight SDS-resistant complex (Hayashi et al., 1994). Here, we show that this reconstituted complex, as well as heterodimers composed of syntaxin and SNAP-25, can be disassembled by the concerted action of the N-ethylmaleimide-sensitive factor, NSF, and the soluble NSF attachment protein, alpha-SNAP. alpha-SNAP binds to predicted alpha-helical coiled-coil regions of syntaxin and SNAP-25, shown previously to be engaged in their direct interaction. Synaptobrevin, although incapable of binding alpha-SNAP individually, induced a third alpha-SNAP binding site when associated with syntaxin and SNAP-25 into heterotrimers. NSF released prebound alpha-SNAP from full-length syntaxin but not from a syntaxin derivative truncated at the N-terminus. Disassembly of complexes containing this syntaxin mutant was impaired, indicating a critical role for the N-terminal domain in the alpha-SNAP/NSF-mediated dissociation process. Complexes containing C-terminally deleted SNAP-25 derivatives, as generated by botulinal toxins type A and E, were dissociated more efficiently. In contrast, the N-terminal fragment generated from synaptobrevin by botulinal toxin type F produced an SDS-sensitive complex that was poorly dissociated.  相似文献   

10.
Chen YA  Scales SJ  Patel SM  Doung YC  Scheller RH 《Cell》1999,97(2):165-174
Neurotransmitter exocytosis, a process mediated by a core complex of syntaxin, SNAP-25, and VAMP (SNAREs), is inhibited by SNARE-cleaving neurotoxins. Botulinum neurotoxin E inhibition of norepinephrine release in permeabilized PC12 cells can be rescued by adding a 65 aa C-terminal fragment of SNAP-25 (S25-C). Mutations along the hydrophobic face of the S25-C helix result in SNARE complexes with different thermostabilities, and these mutants rescue exocytosis to different extents. Rescue depends on the continued presence of both S25-C and Ca2+ and correlates with complex formation. The data suggest that Ca2+ triggers S25-C binding to a low-affinity site, initiating trans-complex formation. Pairing of SNARE proteins on apposing membranes leads to bilayer fusion and results in a high-affinity cis-SNARE complex.  相似文献   

11.
Wang D  Zhang Z  Dong M  Sun S  Chapman ER  Jackson MB 《Biochemistry》2011,50(14):2711-2713
Botulinum neurotoxins cleave synaptic SNAREs and block exocytosis, demonstrating that these proteins function in neurosecretion. However, the function of the SNARE syntaxin remains less clear because no neurotoxin cleaves it selectively. Starting with a botulinum neurotoxin that cleaves both syntaxin and SNAP-25, we engineered a version that retains activity against syntaxin but spares SNAP-25. These mutants block synaptic release in neurons and norepinephrine release in neuroendocrine cells, thus establishing an essential role for syntaxin in Ca2+-triggered exocytosis. These mutants can generate syntaxin-free cells as a useful experimental system for research and may lead to pharmaceuticals that target syntaxin selectively.  相似文献   

12.
Sharma SK  Singh BR 《Biochemistry》2004,43(16):4791-4798
In botulism disease, neurotransmitter release is blocked by a group of structurally related neurotoxin proteins produced by Clostridium botulinum. Botulinum neurotoxins (BoNT, A-G) enter nerve terminals and irreversibly inhibit exocytosis via their endopeptidase activities against synaptic proteins SNAP-25, VAMP, and Syntaxin. Type A C. botulinum secretes the neurotoxin along with 5 other proteins called neurotoxin associated proteins (NAPs). Here, we report that hemagglutinin-33 (Hn-33), one of the NAP components, enhances the endopeptidase activity of not only BoNT/A but also that of BoNT/E, both under in vitro conditions and in rat synaptosomes. BoNT/A endopeptidase activity in vitro is about twice as high as that of BoNT/E under disulfide-reduced conditions. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E (which otherwise have only residual endopeptidase activity) enhanced their in vitro endopeptidase activity by 21- and 25-fold, respectively. Cleavage of rat-brain synaptosome SNAP-25 by BoNTs was used to assay endopeptidase activity under nerve-cell conditions. Reduced BoNT/A and BoNT/E cleaved synaptosomal SNAP-25 by 20% and 15%, respectively. Addition of Hn-33 separately to nonreduced BoNT/A and BoNT/E enhanced their endopeptidase activities by 13-fold for the cleavage of SNAP-25 in synaptosomes, suggesting a possible functional role of Hn-33 in association with BoNTs. We believe that Hn-33 could be used as an activator in the formulation of the neurotoxin for therapeutic use.  相似文献   

13.
Abstract : The synaptic plasma membrane proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) are central participants in synaptic vesicle trafficking and neurotransmitter release. Together with the synaptic vesicle protein synaptobrevin/vesicle-associated membrane protein (VAMP), they serve as receptors for the general membrane trafficking factors N -ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment protein (α-SNAP). Consequently, syntaxin, SNAP-25, and VAMP (and their isoforms in other membrane trafficking pathways) have been termed SNAP receptors (SNAREs). Because protein phosphorylation is a common and important mechanism for regulating a variety of cellular processes, including synaptic transmission, we have investigated the ability of syntaxin and SNAP-25 isoforms to serve as substrates for a variety of serine/threonine protein kinases. Syntaxins 1A and 4 were phosphorylated by casein kinase II, whereas syntaxin 3 and SNAP-25 were phosphorylated by Ca2+ - and calmodulin-dependent protein kinase II and cyclic AMP-dependent protein kinase, respectively. The biochemical consequences of SNARE protein phosphorylation included a reduced interaction between SNAP-25 and phosphorylated syntaxin 4 and an enhanced interaction between phosphorylated syntaxin 1A and the synaptic vesicle protein synaptotagmin I, a potential Ca2+ sensor in triggering synaptic vesicle exocytosis. No other effects on the formation of SNARE complexes (comprised of syntaxin, SNAP-25, and VAMP) or interactions involving n-Sec1 or α-SNAP were observed. These findings suggest that although phosphorylation does not directly regulate the assembly of the synaptic SNARE complex, it may serve to modulate SNARE complex function through other proteins, including synaptotagmin I.  相似文献   

14.
Botulinum neurotoxins (BoNT/A-G), the most potent toxins known, act by cleaving three SNARE proteins required for synaptic vesicle exocytosis. Previous studies on BoNTs have generally utilized the major SNARE homologues expressed in brain (VAMP2, syntaxin 1, and SNAP-25). However, BoNTs target peripheral motor neurons and cause death by paralyzing respiratory muscles such as the diaphragm. Here we report that VAMP1, but not VAMP2, is the SNARE homologue predominantly expressed in adult rodent diaphragm motor nerve terminals and in differentiated human motor neurons. In contrast to the highly conserved VAMP2, BoNT-resistant variations in VAMP1 are widespread across vertebrates. In particular, we identified a polymorphism at position 48 of VAMP1 in rats, which renders VAMP1 either resistant (I48) or sensitive (M48) to BoNT/D. Taking advantage of this finding, we showed that rat diaphragms with I48 in VAMP1 are insensitive to BoNT/D compared to rat diaphragms with M48 in VAMP1. This unique intra-species comparison establishes VAMP1 as a physiological toxin target in diaphragm motor nerve terminals, and demonstrates that the resistance of VAMP1 to BoNTs can underlie the insensitivity of a species to members of BoNTs. Consistently, human VAMP1 contains I48, which may explain why humans are insensitive to BoNT/D. Finally, we report that residue 48 of VAMP1 varies frequently between M and I across seventeen closely related primate species, suggesting a potential selective pressure from members of BoNTs for resistance in vertebrates.  相似文献   

15.
Tetanus toxin and botulinal toxins are potent inhibitors of neuronal exocytosis. Within the past five years the protein sequences of all eight neurotoxins have been determined, their mode of action as metalloproteases has been established, and their intraneuronal targets have been identified. The toxins act by selectively proteolysing the synaptic vesicle protein synaptobrevin (VAMP) or the presynaptic membrane proteins syntaxin (HPC-1) and SNAP-25. These three proteins form the core of a complex that mediates fusion of carrier vesicles to target membranes. Tetanus and botulinal neurotoxins could serve in the future as tools to study membrane trafficking events, or even higher brain functions such as behaviour and learning.  相似文献   

16.
The impact of syntaxin and SNAP-25 cleavage on [3H]noradrenaline ([3H]NA) and [3H]dopamine ([3H]DA) exocytotic release evoked by different stimuli was studied in superfused rat synaptosomes. The external Ca2+-dependent K+-induced [3H]catecholamine overflows were almost totally abolished by botulinum toxin C1 (BoNT/C1), which hydrolyses syntaxin and SNAP-25, or by botulinum toxin E (BoNT/E), selective for SNAP-25. BoNT/C1 cleaved 25% of total syntaxin and 40% of SNAP-25; BoNT/E cleaved 40% of SNAP-25 but left syntaxin intact. The GABA uptake-induced releases of [3H]NA and [3H]DA were differentially affected: both toxins blocked the former, dependent on external Ca2+, but not the latter, internal Ca2+-dependent. BoNT/C1 or BoNT/E only slightly reduced the ionomycin-evoked [3H]catecholamine release. More precisely, [3H]NA exocytosis induced by ionomycin was sensitive to toxins in the early phase of release but not later. The Ca2+-independent [3H]NA exocytosis evoked by hypertonic sucrose, thought to release from the readily releasable pool (RRP) of vesicles, was significantly reduced by BoNT/C1. Pre-treating synaptosomes with phorbol-12-myristate-13-acetate, to increase the RRP, enhanced the sensitivity to BoNT/C1 of [3H]NA release elicited by sucrose or ionomycin. Accordingly, cleavage of syntaxin was augmented by the phorbol-ester. To conclude, our results suggest that clostridial toxins selectively target exocytosis involving vesicles set into the RRP.  相似文献   

17.
The regulation of SNARE complex assembly likely plays an important role in governing the specificity as well as the timing of membrane fusion. Here we identify a novel brain-enriched protein, amisyn, with a tomosyn- and VAMP-like coiled-coil-forming domain that binds specifically to syntaxin 1a and syntaxin 4 both in vitro and in vivo, as assessed by co-immunoprecipitation from rat brain. Amisyn is mostly cytosolic, but a fraction co-sediments with membranes. The amisyn coil domain can form SNARE complexes of greater thermostability than can VAMP2 with syntaxin 1a and SNAP-25 in vitro, but it lacks a transmembrane anchor and so cannot act as a v-SNARE in this complex. The amisyn coil domain prevents the SNAP-25 C-terminally mediated rescue of botulinum neurotoxin E inhibition of norepinephrine exocytosis in permeabilized PC12 cells to a greater extent than it prevents the regular exocytosis of these vesicles. We propose that amisyn forms nonfusogenic complexes with syntaxin 1a and SNAP-25, holding them in a conformation ready for VAMP2 to replace it to mediate the membrane fusion event, thereby contributing to the regulation of SNARE complex formation.  相似文献   

18.
The importance of soluble N-ethyl maleimide (NEM)-sensitive fusion protein (NSF) attachment protein (SNAP) receptors (SNAREs) in synaptic vesicle exocytosis is well established because it has been demonstrated that clostridial neurotoxins (NTs) proteolyze the vesicle SNAREs (v-SNAREs) vesicle-associated membrane protein (VAMP)/brevins and their partners, the target SNAREs (t-SNAREs) syntaxin 1 and SNAP25. Yet, several exocytotic events, including apical exocytosis in epithelial cells, are insensitive to numerous clostridial NTs, suggesting the presence of SNARE-independent mechanisms of exocytosis. In this study we found that syntaxin 3, SNAP23, and a newly identified VAMP/brevin, tetanus neurotoxin (TeNT)-insensitive VAMP (TI-VAMP), are insensitive to clostridial NTs. In epithelial cells, TI-VAMP–containing vesicles were concentrated in the apical domain, and the protein was detected at the apical plasma membrane by immunogold labeling on ultrathin cryosections. Syntaxin 3 and SNAP23 were codistributed at the apical plasma membrane where they formed NEM-dependent SNARE complexes with TI-VAMP and cellubrevin. We suggest that TI-VAMP, SNAP23, and syntaxin 3 can participate in exocytotic processes at the apical plasma membrane of epithelial cells and, more generally, domain-specific exocytosis in clostridial NT-resistant pathways.  相似文献   

19.
The plasma membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins syntaxin and synaptosome-associated protein of 25 kDa (SNAP25) and the vesicle SNARE protein vesicle-associated membrane protein (VAMP) are essential for a late Ca(2+)-dependent step in regulated exocytosis, but their precise roles and regulation by Ca(2+) are poorly understood. Botulinum neurotoxin (BoNT) E, a protease that cleaves SNAP25 at Arg(180)-Ile(181), completely inhibits this late step in PC12 cell membranes, whereas BoNT A, which cleaves SNAP25 at Gln(197)-Arg(198), is only partially inhibitory. The difference in toxin effectiveness was found to result from a reversal of BoNT A but not BoNT E inhibition by elevated Ca(2+) concentrations. BoNT A treatment essentially increased the Ca(2+) concentration required to activate exocytosis, which suggested a role for the C terminus of SNAP25 in the Ca(2+) regulation of exocytosis. Synaptotagmin, a proposed Ca(2+) sensor for exocytosis, was found to bind SNAP25 in a Ca(2+)-stimulated manner. Ca(2+)-dependent binding was abolished by BoNT E treatment, whereas BoNT A treatment increased the Ca(2+) concentration required for binding. The C terminus of SNAP25 was also essential for Ca(2+)-dependent synaptotagmin binding to SNAP25. syntaxin and SNAP25.syntaxin.VAMP SNARE complexes. These results clarify classical observations on the Ca(2+) reversal of BoNT A inhibition of neurosecretion, and they suggest that an essential role for the C terminus of SNAP25 in regulated exocytosis is to mediate Ca(2+)-dependent interactions between synaptotagmin and SNARE protein complexes.  相似文献   

20.
Regulated secretion of neurotransmitter at the synapse is likely to be mediated by dynamic protein interactions involving components of the vesicle (vesicle-associated membrane protein; VAMP) and plasma membrane (syntaxin and synaptosomal associated protein of 25 kDa (SNAP-25)) along with additional molecules that allow for the regulation of this process. Recombinant Hrs-2 interacts with SNAP-25 in a calcium-dependent manner (they dissociate at elevated calcium levels) and inhibits neurotransmitter release. Thus, Hrs-2 has been hypothesized to serve a negative regulatory role in secretion through its interaction with SNAP-25. In this report, we show that Hrs-2 and SNAP-25 interact directly through specific coiled-coil domains in each protein. The presence of syntaxin enhances the binding of Hrs-2 to SNAP-25. Moreover, while both Hrs-2 and VAMP can separately bind to SNAP-25, they cannot bind simultaneously. Additionally, the presence of Hrs-2 reduces the incorporation of VAMP into the syntaxin.SNAP-25.VAMP (7 S) complex. These findings suggest that Hrs-2 may modulate exocytosis by regulating the assembly of a protein complex implicated in membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号