首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Several recent studies have supported the hypothesis that brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, might be associated with nicotine addiction. Association studies have also suggested that the BDNF gene might play a role in the susceptibility to nicotine dependence but results appear contradictory. The present work was therefore undertaken to examine the association of smoking with the BDNF Val66Met gene polymorphism in Chinese population. The BDNF Val66Met gene polymorphism was examined in 628 healthy male volunteers including 322 smokers and 306 non-smokers. Also, the BDNF serum levels were measured in 136 smokers and 97 nonsmokers. Our results showed no significant association between the BDNF Val66Met polymorphism or serum levels among smokers and non-smokers. Smokers with the Met allele however started smoking significantly earlier than those with the Val/Val genotype (mean age at smoking initiation of 17.4, 17.9 and 21.2 years for Met/Met, Met/Val, and Val/Val, respectively; both p<0.05). No other significant differences between other variables such as number of cigarettes per day, smoking severity as measured by the Fagerstrom Test for Nicotine Dependence (FTND) score and carbon monoxide (CO) levels (all p>0.05). In addition, there was no main effect of genotype on serum BDNF levels. Our findings suggest that the BDNF Val66Met polymorphism may not be involved in susceptibility to smoking among the Chinese male population, but may influence the age at which smoking is initiated. However, the findings must be interpreted with caution because of the relatively small sample size for an association study. Results should be confirmed in a larger cohort.  相似文献   

2.
Epigenetic mechanisms can mediate gene-environment interactions relevant for complex disorders. The BDNF gene is crucial for development and brain plasticity, is sensitive to environmental stressors, such as hypoxia, and harbors the functional SNP rs6265 (Val66Met), which creates or abolishes a CpG dinucleotide for DNA methylation. We found that methylation at the BDNF rs6265 Val allele in peripheral blood of healthy subjects is associated with hypoxia-related early life events (hOCs) and intermediate phenotypes for schizophrenia in a distinctive manner, depending on rs6265 genotype: in ValVal individuals increased methylation is associated with exposure to hOCs and impaired working memory (WM) accuracy, while the opposite is true for ValMet subjects. Also, rs6265 methylation and hOCs interact in modulating WM-related prefrontal activity, another intermediate phenotype for schizophrenia, with an analogous opposite direction in the 2 genotypes. Consistently, rs6265 methylation has a different association with schizophrenia risk in ValVals and ValMets. The relationships of methylation with BDNF levels and of genotype with BHLHB2 binding likely contribute to these opposite effects of methylation. We conclude that BDNF rs6265 methylation interacts with genotype to bridge early environmental exposures to adult phenotypes, relevant for schizophrenia. The study of epigenetic changes in regions containing genetic variation relevant for human diseases may have beneficial implications for the understanding of how genes are actually translated into phenotypes.  相似文献   

3.
Brain-derived neurotrophic factor (BDNF) is the most-abundant neurotrophin in the brain. In mammals, it is synthesized as a precursor called proBDNF, which is proteolytically cleaved to generate mature BDNF. The BDNF gene is located on chromosome 11p13, and a functional single nucleotide polymorphism (SNP) of this gene has been shown to produce a valine (Val)-to-methionine (Met) substitution in the proBDNF protein at codon 66 (Val66Met). Several papers suggest that this SNP is related to decreased hippocampal volume and hippocampus-mediated memory performance in humans. Recently, Chen et al. generated a variant BDNF mouse (BDNF(Met/Met)) that reproduces the phenotypic hallmarks in humans with a variant Met allele. In the behavioral analysis, BDNF(Met/Met) mice show increased anxiety-related behaviors. This mini-review examines the impact of Met substitution of proBDNF on anxiety-related behaviors.  相似文献   

4.
Primary dysmenorrhea (PDM), the most prevalent menstrual cycle-related problem in women of reproductive age, is associated with negative moods. Whether the menstrual pain and negative moods have a genetic basis remains unknown. Brain-derived neurotrophic factor (BDNF) plays a key role in the production of central sensitization and contributes to chronic pain conditions. BDNF has also been implicated in stress-related mood disorders. We screened and genotyped the BDNF Val66Met polymorphism (rs6265) in 99 Taiwanese (Asian) PDMs (20–30 years old) and 101 age-matched healthy female controls. We found that there was a significantly higher frequency of the Met allele of the BDNF Val66Met polymorphism in the PDM group. Furthermore, BDNF Met/Met homozygosity had a significantly stronger association with PDM compared with Val carrier status. Subsequent behavioral/hormonal assessments of sub-groups (PDMs = 78, controls = 81; eligible for longitudinal multimodal neuroimaging battery studies) revealed that the BDNF Met/Met homozygous PDMs exhibited a higher menstrual pain score (sensory dimension) and a more anxious mood than the Val carrier PDMs during the menstrual phase. Although preliminary, our study suggests that the BDNF Val66Met polymorphism is associated with PDM in Taiwanese (Asian) people, and BDNF Met/Met homozygosity may be associated with an increased risk of PDM. Our data also suggest the BDNF Val66Met polymorphism as a possible regulator of menstrual pain and pain-related emotions in PDM. Absence of thermal hypersensitivity may connote an ethnic attribution. The presentation of our findings calls for further genetic and neuroscientific investigations of PDM.  相似文献   

5.
Recent data suggest that brain‐derived neurotrophic factor (BDNF) plays an essential role in neuronal plasticity and etiology of bipolar disorders (BPD). However, results from different studies have been inconsistent. In present study, 342 patients who met DSM‐IV (Diagnostic and Statistical Manual of Mental Disorders, 4th Edition) criteria for bipolar disorders type I (BPD‐I) or type II (BPD‐II) and 386 matched health controls were enrolled, and TaqMan® SNP Genotyping Assays (Applied Biosystems, Foster City, CA, USA) were applied to detect the functional polymorphism rs6265 (Val66Met) of BDNF gene. Treatment response to lithium and valproate was retrospectively determined. The association between Val66Met polymorphism and BPD, treatment response to mood stabilizers, was estimated. The genotype and allele distribution of Val66Met polymorphism between BPD patients and control subjects showed significant difference (genotype: χ2 = 6.18, df = 2, P = 0.046; allele: χ2 = 5.01, df = 1, P = 0.025) with Met allele as risk factor for disease susceptibility (OR = 0.79, 95%CI as 0.64–0.97). The post hoc analysis interestingly showed that Met allele had opposite effect on the treatment response for BPD‐I and BPD‐II separately. For BPD‐I patients, the response score in Val/Val group was significantly lower than that in Met allele carriers (t = ?2.27, df = 144, P = 0.025); for BPD‐II patients, the response score in Val/Val group was significantly higher than that in Met allele carriers (t = 2.33, df = 26, P = 0.028). Although these results should be interpreted with caution because of the limited sample for Val/Val genotype in BPD‐II patients (N = 5), these findings strengthen the hypothesis that BDNF pathway gets involved in the etiology and pharmacology of BPD and suggest the differences between BPD‐I and BPD‐II.  相似文献   

6.
Recent evidence suggests that brain-derived neurotrophic factor (BDNF) regulates food intake and the control of body weight. A common polymorphism in human BDNF, Val66Met (single-nucleotide polymorphism database (dbSNP) no. rs6265), impairs intracellular trafficking, resulting in the reduced secretion of BDNF. Several European studies have indicated that Val66Met is associated with BMI. In this study, we examined the association of the Val66Met polymorphism with BMI in Koreans (n = 20,270) from three independent epidemiological cohorts. All three studies observed a consistent association of this polymorphism with BMI, and their combined analysis demonstrated a robust correlation (β = -0.17 ± 0.03 and P = 5.6 × 10(-8)). We also examined the effect of smoking on the link between Val66Met and BMI. The association of Val66Met with BMI was statistically significant only in the smoking group, reflecting a possible interaction between smoking and the BDNF polymorphism for BMI. Thus, we have confirmed BDNF as a genetic risk factor for BMI in an Asian population and hypothesize that the Val66Met mutation influences individual differences in BMI. In addition, smoking might interact with BDNF Val66Met to modulate BMI.  相似文献   

7.
The brain‐derived neurotrophic factor (BDNF) is a member of the neurotrophin family and involved in nerve growth and survival. It has also become a major research focus in the investigation of both cognitive and affective processes in the human brain in the last years. Especially, a single nucleotide polymorphism on the BDNF gene called BDNF Val66Met gained a lot of attention, because of its effect on activity‐dependent BDNF secretion and its link to negative emotionality and impaired memory processes. A well‐replicated finding from genetic structural imaging showed that carriers of the less frequent 66Met allele show diminished gray matter volume in several areas of the temporal lobe. New imaging techniques like diffusion tensor imaging now allow investigating the influence of BDNF Val66Met on white matter integrity. We applied tract‐based spatial statistics in a brain image dataset including n = 99 healthy participants. No significant differences between the 66Met and homozygous 66Val carriers were observed when correcting for multiple comparisons. In summary, the BDNF Val66Met polymorphism seems not to play a substantial role with respect to the modulation of the white matter integrity in healthy subjects. Although not in the focus of this study, we also investigated the influence of Eysenck's Personality Questionnaire on the white matter tracts. No significant results could be observed.  相似文献   

8.
9.
Episodic memory deficits are frequent symptoms in Multiple Sclerosis and have been associated with dysfunctions of the hippocampus, a key region for learning. However, it is unclear whether genetic factors that influence neural plasticity modulate episodic memory in MS. We thus studied how the Brain Derived Neurotrophic Factor Val66Met genotype, a common polymorphism influencing the hippocampal function in healthy controls, impacted on brain networks underlying episodic memory in patients with Multiple Sclerosis. Functional magnetic resonance imaging was used to assess how the Brain Derived Neurotrophic Factor Val66Met polymorphism modulated brain regional activity and functional connectivity in 26 cognitively unimpaired Multiple Sclerosis patients and 25 age- and education-matched healthy controls while performing an episodic memory task that included encoding and retrieving visual scenes. We found a highly significant group by genotype interaction in the left posterior hippocampus, bilateral parahippocampus, and left posterior cingulate cortex. In particular, Multiple Sclerosis patients homozygous for the Val66 allele, relative to Met66 carriers, showed greater brain responses during both encoding and retrieval while the opposite was true for healthy controls. Furthermore, a robust group by genotype by task interaction was detected for the functional connectivity between the left posterior hippocampus and the ipsilateral posterior cingulate cortex. Here, greater hippocampus-posterior cingulate cortex connectivity was observed in Multiple Sclerosis Met66 carriers relative to Val66 homozygous during retrieval (but not encoding) while, again, the reverse was true for healthy controls. The Val66Met polymorphism has opposite effects on hippocampal circuitry underlying episodic memory in Multiple Sclerosis patients and healthy controls. Enhancing the knowledge of how genetic factors influence cognitive functions may improve the clinical management of memory deficits in patients with Multiple Sclerosis.  相似文献   

10.

Background

The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265) may impact on the in-vivo binding of important serotonergic structures such as the serotonin transporter (5-HTT) and the serotonin-1A (5-HT1A) receptor. Previous positron emission tomography (PET) studies on the association between Val66Met and 5-HTT and 5-HT1A binding potential (BPND) have demonstrated equivocal results.

Methods

We conducted an imaging genetics study investigating the effect of Val66Met genotype on 5-HTT or 5-HT1A BPND in 92 subjects. Forty-one subjects (25 healthy subjects and 16 depressive patients) underwent genotyping for Val66Met and PET imaging with the 5-HTT specific radioligand [11C]DASB. Additionally, in 51 healthy subjects Val66Met genotypes and 5-HT1A binding with the radioligand [carbonyl-11C]WAY-100635 were ascertained. Voxel-wise and region of interest-based analyses of variance were used to examine the influence of Val66Met on 5-HTT and 5-HT1A BPND.

Results

No significant differences of 5-HTT nor 5-HT1A BPND between BDNF Val66Met genotype groups (val/val vs. met-carrier) were detected. There was no interaction between depression and Val66Met genotype status.

Conclusion

In line with previous data, our work confirms an absent effect of BDNF Val66Met on two major serotonergic structures. These results could suggest that altered protein expression associated with genetic variants, might be compensated in vivo by several levels of unknown feedback mechanisms. In conclusion, Val66Met genotype status is not associated with changes of in-vivo binding of 5-HTT and 5-HT1A receptors in human subjects.  相似文献   

11.
Child maltreatment is associated with increased risk for virtually all common mental disorders, but it is not yet clear why. One possible mechanism is emotion regulation ability. The present study investigated for the first time the influence of a BDNF Val66Met genotype × child maltreatment interaction on emotion regulation, and compared differential susceptibility and diathesis‐stress models. A sample of N = 254 healthy volunteers were genotyped for the BDNF Val66Met polymorphism and underwent an experimental assessment of reappraisal ability (i.e. the success of using reappraisal to downregulate negative affect). A self‐report instrument previously validated against a clinical interview was used to investigate child maltreatment. There was a significant BDNF Val66Met genotype × child maltreatment interaction (B = ?0.31, P < 0.015), with Met carriers showing both the lowest level of reappraisal ability in maltreated participants, and the highest level of reappraisal ability in non‐maltreated participants. By assessing alternative models, we found that the best fitting model was in line with strong differential susceptibility. As expected, reappraisal ability was negatively correlated with depressive symptoms. Therefore, the BDNF Val66Met polymorphism moderates the link between child maltreatment and emotion regulation ability. Future studies could investigate whether improving reappraisal in maltreated BDNF Met carriers results in reduced risk for mental disorders.  相似文献   

12.
There is a strong etiological link between brain‐derived neurotrophic factor and depression, but the neurocellular mechanisms and gene–environment interactions remain obscure. This study investigated whether one functional polymorphism in the brain‐derived neurotrophic factor gene (BDNF Val66Met) modulates the influence of stressful life events on adolescent depressive symptoms. A total of 780 pairs of ethnic Han Chinese adolescent twins, 11–17 years of age, were randomly assigned to one of two subgroups (twin1 and twin2). All subjects were genotyped as Val/Val, Val/Met or Met/Met, and assessed for depressive symptoms using the Children's Depression Inventory. The level of environmental stress was estimated by the frequency of stressful life events using the Life Events Checklist. The frequency of stressful life events was significantly correlated with depressive symptoms (twin1: β = 0.21, P = 0.01; twin2: β = 0.27, P < 0.01), but there was no significant main effect of the BDNF Val66Met genotype on depressive symptoms. In both subgroups, however, the interaction between the BDNF Val66Met genotype and stressful life event frequency was significant (twin1: β = 0.19, P = 0.01; twin2: β = 0.15, P = 0.04); individuals with one or two Val alleles demonstrated a greater susceptibility to both the detrimental effects of higher stress and the beneficial effects of lower stress compared to the Met/Met genotype. These findings support the ‘differential‐susceptibility’ hypothesis, whereby the BDNF Val allele modulates the influence of environmental stress on depression by enhancing the neuroplastic response to all life events.  相似文献   

13.
According to recent data, the brain-derived neurotrophic factor (BDNF) is involved in schizophrenia. An association of the Val66Met polymorphism of the BDNF gene has been reported, but the results of different studies are discrepant. The allele and genotype frequency distributions of BDNF were studied in 783 schizophrenics and 633 mentally healthy controls. Significant between-group differences were not detected. When the patients were stratified by sex and schizophrenia form, men with continuous (chronic) schizophrenia were found to have a significantly higher frequency of the Val/Val genotype as compared to men with the episodic form (P = 0.047). Clinical symptoms assessed by the PANSS in men with the Val/Val genotype were more severe than in men with the Met/Met genotype (P = 0.044). No difference in BDNF genotype frequency distribution was observed between female groups differing in disease form or the severity of clinical symptoms. It was concluded that the association of the Val66Met polymorphism with schizophrenia is affected by the sex of patients and clinical heterogeneity of the disease and that the Val/Val genotype is associated with more severe schizophrenia in males.  相似文献   

14.
Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF) is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such “synaptogenic” therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load) on electrophysiological (EEG) markers of synaptic activity and their structural (MRI) correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met). Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN); and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left) prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early clinical development to examine target engagement or drug related efficacy of synaptic repair therapies in humans.  相似文献   

15.
Studies suggest that a functional polymorphism of the brain-derived neurotrophic factor gene (BDNF Val66Met) may mediate hippocampal-dependent cognitive functions. A few studies have reported its role in cognitive deficits in schizophrenia including its association with peripheral BDNF levels as a mediator of these cognitive deficits. We assessed 657 schizophrenic inpatients and 445 healthy controls on the repeatable battery for the assessment of neuropsychological status (RBANS), the presence of the BDNF Val66Met polymorphism and serum BDNF levels. We assessed patient psychopathology using the Positive and Negative Syndrome Scale. We showed that visuospatial/constructional abilities significantly differed by genotype but not genotype?×?diagnosis, and the Val allele was associated with better visuospatial/constructional performance in both schizophrenic patients and healthy controls. Attention performance showed a significant genotype by diagnosis effect. Met allele-associated attention impairment was specific to schizophrenic patients and not shown in healthy controls. In the patient group, partial correlation analysis showed a significant positive correlation between serum BDNF and the RBANS total score. Furthermore, the RBANS total score showed a statistically significant BDNF level?×?genotype interaction. We demonstrated an association between the BDNF Met variant and poor visuospatial/constructional performance. Furthermore, the BDNF Met variant may be specific to attentional decrements in schizophrenic patients. The association between decreased BDNF serum levels and cognitive impairment in schizophrenia is dependent on the BDNF Val66Met polymorphism.  相似文献   

16.
Empathy is an important driver of human social behaviors and presents genetic roots that have been studied in neuroimaging using the intermediate phenotype approach. Notably, the Val66Met polymorphism of the Brain-derived neurotrophic factor (BDNF) gene has been identified as a potential target in neuroimaging studies based on its influence on emotion perception and social cognition, but its impact on self-reported empathy has never been documented. Using a neurogenetic approach, we investigated the association between the BDNF Val66Met polymorphism and self-reported empathy (Davis’ Interpersonal Reactivity Index; IRI) in a sample of 110 young adults. Our results indicate that the BDNF genotype is significantly associated with the linear combination of the four facets of the IRI, one of the most widely used self-reported empathy questionnaire. Crucially, the effect of BDNF Val66Met goes beyond the variance explained by two polymorphisms of the oxytocin transporter gene previously associated with empathy and its neural underpinnings (OXTR rs53576 and rs2254298). These results represent the first evidence suggesting a link between the BDNF gene and self-reported empathy and warrant further studies of this polymorphism due to its potential clinical significance.  相似文献   

17.
Brain derived neurotrophic factor (BDNF) is a member of the neurotrophin family of proteins which plays a central role in neuronal survival, growth, plasticity and memory. A single Val66Met variant has been identified in the prodomain of human BDNF that is associated with anxiety, depression and memory disorders. The structural differences within the full-length prodomain Val66 and Met66 isoforms could shed light on the mechanism of action of the Met66 and its impact on the development of neuropsychiatric-associated disorders. In the present study, we report the backbone 1H, 13C, and 15N NMR assignments of both full-length Val66 and Met66 prodomains in the presence of 2 M urea. These conditions were utilized to suppress residual structure and aid subsequent native state structural investigations aimed at mapping and identifying variant-dependent conformational differences under native-state conditions.  相似文献   

18.
The brain-derived neurotrophic factor (BDNF) Val66Met (rs6265) polymorphism has been shown to moderate the extent to which memory decline manifests in preclinical Alzheimer's disease (AD). To date, no study has examined the relationship between BDNF and memory in individuals across biologically confirmed AD clinical stages (i.e., Aβ+). We aimed to understand the effect of BDNF on episodic memory decline and clinical disease progression over 126 months in individuals with preclinical, prodromal and clinical AD. Participants enrolled in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study who were Aβ + (according to positron emission tomography), and cognitively normal (CN; n = 238), classified as having mild cognitive impairment (MCI; n = 80), or AD (n = 66) were included in this study. Cognition was evaluated at 18 month intervals using an established episodic memory composite score over 126 months. We observed that in Aβ + CNs, Met66 was associated with greater memory decline with increasing age and were 1.5 times more likely to progress to MCI/AD over 126 months. In Aβ + MCIs, there was no effect of Met66 on memory decline or on disease progression to AD over 126 months. In Aβ + AD, Val66 homozygotes showed greater memory decline, while Met66 carriers performed at a constant and very impaired level. Our current results illustrate the importance of time and disease severity to clinicopathological models of the role of BDNF Val66Met in memory decline and AD clinical progression. Specifically, the effect of BDNF on memory decline is greatest in preclinical AD and reduces as AD clinical disease severity increases.  相似文献   

19.

Background

Research suggests that the COMT Val158Met, BDNF Val66Met and OPRM1 A118G polymorphisms moderate the experience of pain. In order to obtain experimental confirmation and extension of findings, cortical processing of experimentally-induced pain was used.

Method

A sample of 78 individuals with chronic low back pain complaints and 37 healthy controls underwent EEG registration. Event-Related Potentials were measured in response to electrical nociceptive stimuli and moderation by COMT Val158Met, BDNF Val66Met and OPRM1 A118G polymorphisms was assessed.

Results

Genetic variation did not have a direct effect on cortical processing of experimental pain. However, genetic effects (COMT Val158Met and BDNF Val66Met) on experimental pain were moderated by the presence of chronic pain. In the presence of chronic pain, the COMT Met allele and the BDNF Met allele augmented cortical pain processing, whilst reducing pain processing in pain-free controls. No significant effects were found concerning the OPRM1 A118G polymorphism.

Conclusions

The current study suggests that chronic experience of pain enhances genetic sensitivity to experimentally induced mildly painful stimuli, possibly through a process of epigenetic modification.  相似文献   

20.
Genetic factors, specially those related to serotoninergic activities, and childhood maltreatment have both been implicated in suicidal behaviour (SB). However, little attention has been paid to the possible interaction between genes and childhood maltreatment in the comprehension of SB. Brain-derived neurotrophic factor (BDNF) plays an important role in the growth of serotoninergic neurons during childhood and therefore is a good candidate for studies on SB. Moreover, decreased levels of BDNF have been found in the prefrontal cortex of suicide victims. In our study we wanted to see if Val66Met (a BDNF functional single-nucleotide polymorphism) could moderate the effect of childhood maltreatment on the onset, number and violence of SB in a sample of 813 Caucasian suicide attempters. Childhood maltreatment was evaluated using the Childhood Trauma Questionnaire. We used a regression framework to test the interaction between Val66Met and childhood maltreatment. Childhood sexual abuse was associated with violent suicide attempts (SA) in adulthood only among Val/Val individuals and not among Val/Met or Met/Met individuals ( P  = 0.05). The severity of childhood maltreatment was significantly associated with a higher number of SA and with a younger age at onset of suicide attempt. This result suggests that Val66Met modulates the effect of childhood sexual abuse on the violence of SB. It is proposed that childhood sexual abuse elicits brain structural modifications through BDNF dysfunction and enhances the risk of violent SB in adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号