首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Ageing affects many components of the immune system, including innate immune cells like monocytes. They are important in the early response to pathogens and for their role to differentiate into macrophages and dendritic cells. Recent studies have revealed significant age-related changes in genomic DNA methylation in peripheral blood mononuclear cells, however information on epigenetic changes in specific leukocyte subsets is still lacking. Here, we aimed to analyse DNA methylation in purified monocyte populations from young and elderly individuals.

Findings

We analysed the methylation changes in monocytes purified from young and elderly individuals using the HumanMethylation450 BeadChip array. Interestingly, we found that among 26 differentially methylated CpG sites, the majority of sites were hypomethylated in elderly individuals. The most hypomethylated CpG sites were located in neuropilin 1 (NRP1; cg24892069) and neurexin 2 (NRXN2; cg27209729) genes, and upstream of miR-29b-2 gene (cg10501210). The age-related hypomethylation of these three sites was confirmed in a separate group of young and elderly individuals.

Conclusions

We identified significant age-related hypomethylation in human purified monocytes at CpG sites within the regions of NRP1, NRXN2 and miR-29b-2 genes.  相似文献   

2.
Smoking increases the risk of many diseases and could act through changes in DNA methylation patterns. The aims of this study were to determine the association between smoking and DNA methylation throughout the genome at cytosine-phosphate-guanine (CpG) site level and genomic regions. A discovery cross-sectional epigenome-wide association study nested in the follow-up of the REGICOR cohort was designed and included 645 individuals. Blood DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip. Smoking status was self-reported using a standardized questionnaire. We identified 66 differentially methylated CpG sites associated with smoking, located in 38 genes. In most of these CpG sites, we observed a trend among those quitting smoking to recover methylation levels typical of never smokers. A CpG site located in a novel smoking-associated gene (cg06394460 in LNX2) was hypomethylated in current smokers. Moreover, we validated two previously reported CpG sites (cg05886626 in THBS1, and cg24838345 in MTSS1) for their potential relation to atherosclerosis and cancer diseases, using several different approaches: CpG site methylation, gene expression, and plasma protein level determinations. Smoking was also associated with higher THBS1 gene expression but with lower levels of thrombospondin-1 in plasma. Finally, we identified differential methylation regions in 13 genes and in four non-coding RNAs. In summary, this study replicated previous findings and identified and validated a new CpG site located in LNX2 associated with smoking.  相似文献   

3.
Triple‐negative breast cancer (TNBC) is a highly heterogeneous disease. The aim of this study is to identify the diagnostic and poor prognostic signatures in TNBC by exploring the aberrant DNA methylation and gene expression. Differential expression and methylation analysis of the TNBC and paracancer samples from The Cancer Genome Atlas were performed. Gene set enrichment and protein–protein interaction (PPI) network analysis was used to explore the mechanisms of TNBC. Methylation‐gene expression correlation analysis was performed, and multivariate Cox analysis and receiver operating characteristics analysis were used to further screen the hub genes for TNBC. We identified 1,525 differentially expressed genes and 150 differentially methylated genes between TNBC and paracancer samples. About 96.64% of the methylation sites were located on the CpG island. A total of 17 Gene Ontology biological process terms and 18 signal pathways were significantly enriched. GNG4, GNG11, PENK, MAOA, and AOX1 were identified as the core genes of the PPI network. Methylation‐expression correlations revealed that ABCC9 (cg06951626), NKAPL (cg18675097, cg01031101, and cg17384889), and TMEM132C (cg03530754) showed promise as diagnostic and prognostic markers in TNBC. ABCC9 (cg06951626), NKAPL (cg18675097, cg01031101, and cg17384889), and TMEM132C (cg03530754) were potential diagnostic and prognostic markers in TNBC.  相似文献   

4.
DNA methylation (DNAm) is an important epigenetic process involved in the regulation of gene expression. While many studies have identified thousands of loci associated with age, few have differentiated between linear and non-linear DNAm trends with age. Non-linear trends could indicate early- or late-life gene regulatory processes. Using data from the Illumina 450K array on 336 human peripheral blood samples, we identified 21 CpG sites that associated with age (P<1.03E-7) and exhibited changing rates of DNAm change with age (P<1.94E-6). For 2 of these CpG sites (cg07955995 and cg22285878), DNAm increased with age at an increasing rate, indicating that differential DNAm was greatest among elderly individuals. We observed significant replication for both CpG sites (P<5.0E-8) in a second set of peripheral blood samples. In 8 of 9 additional data sets comprising samples of monocytes, T cell subtypes, and brain tissue, we observed a pattern directionally consistent with DNAm increasing with age at an increasing rate, which was nominally significant in the 3 largest data sets (4.3E-15<P<0.039). cg07955995 and cg22285878 reside in the promoter region of KLF14, which encodes a protein involved in immune cell differentiation via the repression of FOXP3. These findings may suggest a possible role for cg07955995 and cg22285878 in immunosenescence.  相似文献   

5.
Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02–1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA was associated with a decreased risk for future T2D (OR = 0.85, 95% CI = 0.75–0.95, P-value = 0.006, Q-value = 0.018) after adjustment for age, gender, fasting glucose, and family relation. Furthermore, the level of DNA methylation at the ABCG1 locus cg06500161 in blood DNA correlated positively with BMI, HbA1c, fasting insulin, and triglyceride levels, and was increased in adipose tissue and blood from the diabetic twin among monozygotic twin pairs discordant for T2D. DNA methylation at the PHOSPHO1 locus cg02650017 in blood correlated positively with HDL levels, and was decreased in skeletal muscle from diabetic vs. non-diabetic monozygotic twins. DNA methylation of cg18181703 (SOCS3), cg11024682 (SREBF1), and cg19693031 (TXNIP) was not associated with future T2D risk in subjects from the Botnia prospective study.  相似文献   

6.
DNA methylation is important for lung cancer prognosis. In this work, it is aimed to seek novel biomarkers with DNA methylation-expression-pathway pattern and explore its underlying mechanism. Prognostic DNA methylation sites and mRNAs were screened in NSCLC data set from TCGA, and further validated using the samples retrospectively collected, and EXT1 was identified as a potential target. Gene body methylation of three CpG sites (cg03276982, cg11592677, cg16286281) on EXT1 was significantly associated with clinical outcome, and the EXT1 gene expression also predicted prognosis. The expression level of EXT1 was also correlated with its DNA methylation level. This observation was further validated in a new data set consist of 170 samples. Knocking down of EXT1 resulted in decreased proliferation and migration. EXT1 targets were analysed using GSEA. It is found that the WNT signalling is the potential downstream target of EXT1. Further analyses revealed that the EXT1 targets the beta-catenin and effect migration rate of NSCLC cell lines. The WNT signalling inhibitor, XAV-939, effectively disrupted the migration promotion effect induced by EXT1. In summary, EXT1 methylation regulates the gene expression, effects the proliferation and migration via WNT pathway and predicted a poor prognosis for NSCLC.  相似文献   

7.
李红东  洪贵妮  郭政 《遗传》2015,37(2):165-173
机体老化与癌症、神经退行性疾病等许多复杂疾病相关。目前,研究者已在外周全血中识别了大量的与老化相关的DNA甲基化标记,这些标记可能反映外周血白细胞在机体老化过程中发生的变化,也可能反映外周血中与年龄相关的细胞构成比例的变化。文章利用3组正常个体外周全血DNA甲基化谱,采用Spearman秩相关分析识别了与老化相关的CpG甲基化位点(age-related DNA methylation CpG sites, arCpGs)并评价了其可重复性;利用去卷积算法估计了各外周血样本中髓性和淋巴性细胞的比例并分析了其与年龄的相关性;比较了在外周全血、CD4+T细胞和CD14+单核细胞中识别的arCpGs的一致性。结果显示,在独立外周全血数据中识别的arCpGs具有显著的可重复性(超几何检验,P=1.65×10-11)。外周血髓性和淋巴性细胞的比例分别与年龄显著正、负相关(Spearman秩相关检验,P<0.05,r≤0.22),它们间DNA甲基化水平差异较大的CpG位点倾向于在外周全血中被识别为arCpGs。在CD4+T细胞中识别的arCpGs与在外周全血中识别的arCpGs显著交叠(超几何检验,P=6.14×10-12),且99.1%的交叠位点在CD4+T细胞及外周全血中的DNA甲基化水平与年龄的正、负相关性一致。尽管在CD14+单核细胞中识别的arCpGs与在外周全血中识别的arCpGs并不显著交叠,但是在交叠的51个arCpGs中,有90.1%的位点在CD14+单核细胞、外周全血以及CD4+T细胞中的DNA甲基化水平与年龄的正、负相关性一致,提示它们可能主要反映细胞间共同的改变。在外周全血中识别的arCpGs主要反映某些白细胞共同或特异的DNA甲基化改变,但是也有一部分反映外周血细胞比例构成的变化。  相似文献   

8.
《Epigenetics》2013,8(7):929-933
Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6–15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources.  相似文献   

9.
Many epidemiologic studies of environmental exposures and disease susceptibility measure DNA methylation in white blood cells (WBC). Some studies are also starting to use saliva DNA as it is usually more readily available in large epidemiologic studies. However, little is known about the correlation of methylation between WBC and saliva DNA. We examined DNA methylation in three repetitive elements, Sat2, Alu, and LINE-1, and in four CpG sites, including AHRR (cg23576855, cg05575921), cg05951221 at 2q37.1, and cg11924019 at CYP1A1, in 57 girls aged 6–15 years with blood and saliva collected on the same day. We measured all DNA methylation markers by bisulfite-pyrosequencing, except for Sat2 and Alu, which were measured by the MethyLight assay. Methylation levels measured in saliva DNA were lower than those in WBC DNA, with differences ranging from 2.8% for Alu to 14.1% for cg05575921. Methylation levels for the three repetitive elements measured in saliva DNA were all positively correlated with those in WBC DNA. However, there was a wide range in the Spearman correlations, with the smallest correlation found for Alu (0.24) and the strongest correlation found for LINE-1 (0.73). Spearman correlations for cg05575921, cg05951221, and cg11924019 were 0.33, 0.42, and 0.79, respectively. If these findings are replicated in larger studies, they suggest that, for selected methylation markers (e.g., LINE-1), methylation levels may be highly correlated between blood and saliva, while for others methylation markers, the levels may be more tissue specific. Thus, in studies that differ by DNA source, each interrogated site should be separately examined in order to evaluate the correlation in DNA methylation levels across DNA sources.  相似文献   

10.
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

11.
Oral squamous cell carcinoma (OSCC) represents one of the most common head and neck cancer that with dire prognosis due partly to the lack of reliable prognostic biomarker. Here, we aimed to develop a CpG site–based prognostic signature through which we could accurately predict overall survival (OS) of patients with OSCC. We obtained OSCC-related DNA methylation and gene expression data sets from the public accessible Gene Expression Omnibus. Correlations between methylation level of CpG sites and OS of patients with OSCC were assessed by univariate Cox regression analysis followed by robust likelihood-based survival analysis on those CpG sites with permutation P < 0.05 for further screening the optimal CpG sites for OSCC OS prediction based on the risk score formula that composed of the methylation level of optimal CpG sites weighted by their regression coefficients. Besides, differential expression genes (DEGs) and differential methylation genes (DMGs) in OSCC samples compared with normal samples were obtained and shared genes were considered as vital genes in OSCC tumorgenesis and progression. As a result, two CpG sites including cg17892178 and cg17378966 that located in NID2 and IDO1, respectively, were identified as the optimal prognostic signatures for OSCC OS. In addition, 12 overlapping genes between DEGs and DMGs that closely associated with inflammation or blood and tissue development–related biological processes were obtained. In conclusions, this study should provide valuable signatures for OSCC diagnosis and treatment.  相似文献   

12.
Exposure to arsenic early in life has been associated with increased risk of several chronic diseases and is believed to alter epigenetic programming in utero. In the present study, we evaluate the epigenome-wide association of arsenic exposure in utero and DNA methylation in placenta (n = 37), umbilical artery (n = 45) and human umbilical vein endothelial cells (HUVEC) (n = 52) in a birth cohort using the Infinium HumanMethylation450 BeadChip array. Unadjusted and cell mixture adjusted associations for each tissue were examined along with enrichment analyses relative to CpG island location and omnibus permutation tests of association among biological pathways. One CpG in artery (cg26587014) and 4 CpGs in placenta (cg12825509; cg20554753; cg23439277; cg21055948) reached a Bonferroni adjusted level of significance. Several CpGs were differentially methylated in artery and placenta when controlling the false discovery rate (q-value<0.05), but none in HUVEC. Enrichment of hypomethylated CpG islands was observed for artery while hypermethylation of open sea regions were present in placenta relative to prenatal arsenic exposure. The melanogenesis pathway was differentially methylated in artery (Max F P < 0.001), placenta (Max F P < 0.001), and HUVEC (Max F P = 0.02). Similarly, the insulin-signaling pathway was differentially methylated in artery (Max F P = 0.02), placenta (Max F P = 0.02), and HUVEC (Max F P = 0.02). Our results show that prenatal arsenic exposure can alter DNA methylation in artery and placenta but not in HUVEC. Further studies are needed to determine if these alterations in DNA methylation mediate the effect of prenatal arsenic exposure and health outcomes later in life.  相似文献   

13.
14.
《Epigenetics》2013,8(4):503-512
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

15.
DNA methylation was involved in the progress of many types of cancer including clear cell renal cell carcinomas (ccRCCs). This study aimed to identify the prognostic DNA methylation biomarkers for the ccRCCs by a large-scale RNA-seq analysis. The DNA methylation data and the corresponding clinical information of the patients with ccRCCs were extracted from TCGA database and randomly divided into the training group and the validation group. The differentially expressed CpG sites and the survival-related CpG sites were further identified, which was combined into CpG sites pair and followed by screening the survival-related pairs. The C-index and the forward search algorithms were constructed to identify the prognostic signatures for the patients with ccRCCs. The prognostic signatures were verified by the validation dataset and the protein–protein interactions (PPI) network analysis was performed on the CPG sites of the signature. A total of 9,861 differentially expressed CPG sites were identified and 567 CpG sites were found to relate to the overall survival (OS) of the patients with ccRCCs. Besides, 1,146 CPG sites pairs were found to be related to the OS of the ccRCCs samples and the signature composed of seven CpG sites pairs were obtained to predict the prognosis of patients with ccRCCs and the results were verified in the validation dataset. Besides, the PPI network analysis showed that ELANE and PRTN3 gene may be associated with the invasion and metastasis of ccRCCs and could function as potential prognostic and therapeutic signatures for ccRCCs.  相似文献   

16.
Wei  Runmin  Wu  Yanyan 《BMC genetics》2018,19(1):75-66

Background

Identification of interactions between epigenetic factors and treatments might lead to personalized intervention of diseases. This paper aims to examine the modification effect of fenofibrate therapy on the association of methylation levels and fasting blood triglycerides (TG), and the related biological pathways among methylation sites.

Results

Mixed-effects models were employed to assess pre- and posttreatment associations and drug modification effects simultaneously. Five cytosine-phosphate-guanine (CpG) sites were found to be associated with TG levels before and after the fenofibrate therapy: cg00574958, cg17058475, and cg01082498 on CPT1A gene, chromosome 11; cg03725309 on SARS, chromosome 1; and cg06500161 on ABCG1, chromosome 21. In addition, fenofibrate therapy modified the methylation levels on the following 4 CpG sites: cg20015535 (gene EGLN1, chromosome 1); cg24870738 (gene RNF220, chromosome 1); cg06891775 (gene LOC283050, chromosome 10); and cg00607630 (gene USP7, chromosome 16). Further, gene set enrichment analysis (GSEA) identified cancer- and metabolism-related pathways that were associated with TG-related CpG sites.

Conclusions

We identified modification effects of fenofibrate on the associations between blood TG levels and several CpG sites. Pathway enrichment analysis indicated the alternations in some metabolism and cancer-related pathways. Our findings have important implications for future research in pharmacoepigenetics and personalized medicine.
  相似文献   

17.
18.
Epigenome-wide DNA methylation association studies have identified highly replicable genomic loci sensitive to maternal smoking during gestation. The role of inter-individual genetic variation in influencing DNA methylation, leading to the possibility of confounding or bias of such associations, has not been assessed. We investigated whether the DNA methylation levels at the top 10 CpG sites previously associated with exposure to maternal smoking during gestation were associated with individual genetic variation at the genome-wide level. Genome-wide association tests between DNA methylation at the top 10 candidate CpG and genome-wide SNPs were performed in 736 case and control participants of the California Childhood Leukemia Study. Three of the strongest maternal-smoking sensitive CpG sites in newborns were significantly associated with SNPs located proximal to each gene: cg18146737 in the GFI1 gene with rs141819830 (P = 8.2×10?44), cg05575921 in the AHRR gene with rs148405299 (P = 5.3×10?10), and cg12803068 in the MYO1G gene with rs61087368 (P = 1.3×10?18). For the GFI1 CpG cg18146737, the underlying genetic variation at rs141819830 confounded the association between maternal smoking and DNA methylation in our data (the regression coefficient changed from ?0.02 [P = 0.139] to ?0.03 [P = 0.015] after including the genotype). Our results suggest that further studies using DNA methylation at cg18146737, cg05575921, or cg12803068 that aim to assess exposure to maternal smoking during gestation should include genotype at the corresponding SNP. New methods are required for adequate and routine inclusion of genotypic influence on DNA methylation in epigenome-wide association studies to control for potential confounding.  相似文献   

19.
20.
《Genomics》2021,113(6):4206-4213
DNA methylation plays an important role in the development and etiology of type 2 diabetes; however, few epigenomic studies have been conducted on twins. Herein, a two-stage study was performed to explore the associations between DNA methylation and type 2 diabetes, fasting plasma glucose, and HbA1c. DNA methylation in 316 twin pairs from the Chinese National Twin Registry (CNTR) was measured using Illumina Infinium BeadChips. In the discovery sample, the results revealed that 63 CpG sites and 6 CpG sites were significantly associated with fasting plasma glucose and HbA1c, respectively. In the replication sample, cg19690313 in TXNIP was associated with both fasting plasma glucose (P = 1.23 × 10−17, FDR < 0.001) and HbA1c (P = 2.29 × 10–18, FDR < 0.001). Furthermore, cg04816311, cg08309687, and cg09249494 may provide new insight in the metabolic mechanism of HbA1c. Our study provides solid evidence that cg19690313 on TXNIP correlates with HbA1c and fasting plasma glucose levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号