首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (47.5% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36 to 42 h (83.6% vs. 96.7%, p<0.05). However, no statistical difference was observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.3%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

2.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (45.7% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36h to 42h (83.6% vs. 96.7%, p<0.05). However, no statistical difference were observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.8%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

3.
Somatic cell nuclear transfer (SCNT), combined with genome modification techniques, is a very pow-erful tool for agriculture, medicine and fundamental research on basic biological mechanisms. The effi-ciency of producing transgenic animals is greatly prom…  相似文献   

4.
In the present study, nuclear transferred embryos (NTEs) were reconstructed by using pig fetal fibroblasts as donors and in vitro matured oocytes as recipients. The effects of G418 selection on donor cells, duration of IVM of prepubertal gilt oocytes and oxygen tension in IVM of oocytes were investigated. The results were as follows: (i) When G418 selected cells expressing GFP were used as donors, the cleavage rate of NTEs decreased drastically in comparison to NTEs derived from donors without antibiotic selection (45.7% vs. 71.6%, p<0.05). For the blastocyst rate, no significant difference was observed between two groups (10% vs. 10.4%, p>0.05). (ii) The rate of nuclear maturation of oocytes increased significantly when IVM duration time was extended from 36h to 42h (83.6% vs. 96.7%, p<0.05). However, no statistical difference were observed between NTEs derived from oocytes of 36 h IVM group and NTEs from oocytes of 42 h IVM group in the rates of cleavage (59.3% vs. 73.6%, p>0.05) and blastocyst formation (9.3% vs. 13.2%, p>0.05); (iii) no significant difference was observed between NTEs reconstructed from oocytes matured under lower oxygen (7% O2) tension and NTEs derived from oocytes matured under higher oxygen tension (20% O2) in cleavage rate (70.6% vs. 67.1%, p>0.05) and blastocyst rate (11.8% vs. 12.8%, p>0.05). These results suggest that: (i) G418 selection does not have a significant effect on cleavage rate of NTEs expressing GFP. (ii) Nuclear maturation is greatly improved by prolonging IVM duration from 36 to 42 h, while no significant differences were observed for developmental potential of transgenic embryos. Thus IVM 42 h is the better choice in order to obtain maximum number of MII oocytes as recipients. (iii) Lower oxygen tension and higher oxygen tension in IVM have no significant effect on development of cloned embryos.  相似文献   

5.
Fu Y  Fu J  Ren Q  Chen X  Wang A 《Molecular biology reports》2012,39(3):2179-2185
Eph–Ephrin system can induce repulsive forces in cell migration and adhesion during embryonic development in various mammals. In this study, the attachment sites of swine endometrium during pregnancy were used and the physiological role of this system in the step of mammalian embryo implantation was estimated to investigate the involvement of the Eph–Ephrin system in swine embryo implantation. Real-time quantitative PCR indicated that mRNA expression of Eph A1 on endometrium increased extremely significantly around the implantation period (P < 0.01), while expression of Eph A2 and A4 decreased significantly during this period (P < 0.05). Immunostaining showed that protein expression of Eph A1, A2 and A4 in the endometrial stroma underlying the luminal epithelium was higher during mid-implantation compared with early or post-implantation. Western blotting examination demonstrated that protein expression of Eph A1, A2 and A4 at the attachment sites of swine endometrium increased from pregnancy day 13 to 18 (P < 0.01), and then decreased from pregnancy day 18 to 24 (P < 0.01). These findings suggest that the Eph–Ephrin A system might play an important role in regulating the swine contact between blastocysts and endometrium during embryo implantation.  相似文献   

6.
Oxidative stress negatively affects the in vitro maturation (IVM) of oocytes. Procyanidin B1 (PB1) is a natural polyphenolic compound that has antioxidant properties. In this study, we investigated the effect of PB1 supplementation during IVM of porcine oocytes. Treatment with 100 μM PB1 significantly increased the MII oocytes rate (p <0.05), the parthenogenetic (PA) blastocyst rate (p <0.01) and the total cell number in the PA blastocyst (p < 0.01) which were cultured in regular in vitro culture (IVC) medium. The PA blastocyst rate of regular MII oocytes activated and cultured in IVC medium supplemented with 100 and 150 μM PB1 significantly increased compared with control (p < 0.01 and p < 0.05). We also evaluated the reactive oxygen species (ROS) levels, mitochondrial membrane potential (Δψm) levels, glutathione (GSH) levels, and apoptotic levels in MII oocytes and cumulus cells following 100 μM PB1 treatment. The results showed that the PB1 supplementation decreased ROS production and apoptotic levels. In addition, PB1 was found to increase Δψm levels and GSH levels. In conclusion, PB1 inhibited apoptosis of oocytes and cumulus cells by reducing oxidative stress. Moreover, PB1 improved the quality of oocytes and promoted PA embryo development. Taken together, our results suggest that PB1 is a promising antioxidant additive for IVM of oocytes.  相似文献   

7.
8.
microRNAs (miRNAs) play a critical role in implantation and development of mouse embryos. In this study, we aim to evaluate the possibility of miRNAs as potential biomarkers in the blastocyst culture to assess embryo quality. We also intend to investigate whether improved clinical outcomes of vitrified embryos agree with altered miRNA expressions. Mouse embryos from in vitro fertilization were vitrified at the two-cell stage. After thawing, the embryos were individually cultured and developed to the blastocyst stage. We used quantitative real-time polymerase chain reaction to evaluate miRNA expression levels in both vitrified and fresh groups, and culture medium (CM). The fibronectin binding assay was performed to examine for blastocyst attachment. The findings showed reduced expressions of miR-16-1 (0.2 ± 0.06) and miR-Let-7a (0.65 ± 0.1) after vitrification compared to fresh embryos. We observed significant upregulation of the target genes Vav3 (4.33 ± 0.25), integrin β-3 (Itg β3; 4.73 ± 0.2), and Bcl2 (2.29 ± 0.16) in the vitrified embryos compared to the fresh groups. Evaluation of blastocyst CM showed upregulation of miR-Let-7a (15.68 ± 0.89), miR-16-1 (16.18 ± 0.75), and miR-15a (13.36 ± 0.73) in the vitrified group in comparison to the fresh blastocysts (P < .05). The expression levels of miR-16-1 (3.28 ± 0.63), miR-15a (5.91 ± 0.38), and miR-Let-7a (9.07 ± 0.6) in CM of the vitrified blastocysts conducted on fibronectin were significantly higher than the fresh group (P < .05).This study showed that vitrification of embryos changes implantation and proliferation biomarkers. In addition, upregulated miRNAs in CM could be potentially used for noninvasive early assessment of embryo quality.  相似文献   

9.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   

10.
11.
Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced.Abbreviations: ART, assisted reproductive technologies; BO, Brackett and Oliphant; BSA, bovine serum albumin; CaI, calcium ionophore; CC, cumulus cells; COC, cumulus–oocyte complex; CO2, carbon dioxide; CR1aa, Charles Rosenkran’s 1 amino acid; DNA, deoxyribonucleic acid; DO, denuded oocyte; EA, early apoptosis; FBS, fetal bovine serum; FITC, fluorescein isothiocyanate; FSH, follicle stimulating hormone; GSH, glutathione; hpi, hours post insemination; IVC, in vitro culture; IVF, in vitro fertilization; IVM, in vitro maturation; IVP, in vitro produced; LA, late apoptosis; LH, luteinizing hormone; PBS, phosphate buffered saline; PI, propidium iodide; PS, phosphatidylserine; TUNEL, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labeling.  相似文献   

12.
Experiments were conducted to investigate the beneficial effects of adding retinol (RT) and retinoic acid (RA) to bovine oocyte maturation media and insulin-like growth factor-I (IGF-I) to embryo culture under chemically-defined conditions. In Experiment 1.1, in vitro maturation (IVM) was performed in basic maturation media (bMM) and supplemented with 0.3microM RT or 0.5microM RA. For embryo development presumptive zygotes and embryos were placed in droplets of potassium simplex optimized medium (KSOM). Addition of RT and RA to bMM improved (p<0.05) blastocyst formation as compared with control treatments. In Experiment 1.2, using embryos originating from oocytes previously treated with RT and RA, the presumptive zygotes were placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The number of 2-4-cell stage embryos developing to the blastocyst and expanded blastocyst stages were greater (p<0.05) when embryo culture media was supplemented with IGF-I. In Experiment 2.1, IVM was conducted with bMM+FSH containing 0.3microM RT or 0.5microM RA. For embryo development, presumptive zygotes were placed in droplets of KSOM. Addition of RT or RA to IVM medium also enhanced (p<0.05) blastocyst formation. The supplementation of embryo culture media with IGF-I resulted in a greater number (p<0.05) of 2-4-cell stage embryos developing into blastocysts, expanded blastocysts and hatched blastocysts. In Experiment 2.2, using embryos originating from oocytes previously treated with RT and RA, presumptive zygotes were also placed in droplets of KSOM and embryos (2-4 cells) in droplets of fresh KSOM supplemented or not with IGF-I. The supplementation of embryo culture media with IGF-I resulted in a greater (p<0.05) number of 2-4-cell stage embryos developing to the blastocyst, expanded blastocyst and hatched blastocyst stages.  相似文献   

13.
The present study examined the effect of epidermal growth factor (EGF) during in vitro maturation (IVM) and embryo culture on blastocyst development in the pig. In experiment 1, cumulus oocyte complexes were cultured in North Carolina State University (NCSU) 23 medium containing porcine follicular fluid, cysteine, hormonal supplements, and with or without EGF (0–40 ng/ml) for 20–22 hr. They then were cultured for an additional 20–22 hr without hormones. After maturation, cumulus-free oocytes were co-incubated with frozen-thawed spermatozoa for 5–6 hr. Putative embryos were transferred to NCSU 23 containing 0.4% BSA and cultured for 144 hr. In experiment 2, oocytes were matured in medium containing 10 ng/ml EGF, inseminated, and putative embryos were cultured in the presence of 0–40 ng/ml EGF. In experiment 3, oocytes were cultured in the presence of 0, 10 and 40 ng/ml EGF to examine the kinetics of meiotic maturation. In experiment 4, 2- to 4-cell and 8-cell to morula stage embryos derived from oocytes matured with 10 ng/ml EGF were transferred to the oviduct and uterus, respectively, of each of three recipient gilts (3 and 4 days post-estrus, respectively). The presence or absence of EGF during IVM did not affect cumulus expansion, nuclear maturation, fertilization parameters, or cleavage rate. However, compared to no addition (21%), presence of 1 (33%) and 10 ng/ml EGF (42%) during IVM increased (P < 0.01) the rate of blastocyst development in a concentration-dependent manner. Compared to 10 ng/ml EGF, higher concentrations (20 and 40 ng/ml) reduced (P < 0.01) blastocyst development in a concentration-dependent manner (35% and 24%, respectively). No difference was observed between no addition and 40 ng/ml EGF (22%). Compared to no addition and 10 ng/ml EGF, a significantly (P < 0.001) higher proportion (25% vs. 55%) of oocytes reached metaphase II stage 33 hr after IVM with 40 ng/ml EGF. However, no difference was observed at 44 hr. Transfer of embryos to six recipient gilts resulted in three pregnancies and birth of 18 piglets. The results show that EGF at certain concentrations in IVM medium can influence the developmental competence of oocytes. However, addition of EGF during the culture of pig embryos derived from oocytes matured in the presence of EGF is without effect. Birth of piglets provides evidence that embryos derived from oocytes matured in a medium containing EGF are viable. Mol. Reprod. Dev. 51:395–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Toll-like receptors (TLRs), important components of innate immune response, play a pivotal role in early recognition of pathogen as well as in the initiation of robust and specific adaptive immune response. In the present study, the expression profile of chicken TLRs (TLR2A, TLR3, TLR4, TLR5, TLR7, TLR15, and TLR21) in various chicken embryonic tissues during embryo development was examined by real-time PCR assay. All the TLR mRNAs were expressed in whole embryonic tissue as early as 3rd embryonic day (ED). Four of the seven TLRs (TLR2, TLR3, TLR4, and TLR7) mRNA expressions were significantly (P < 0.01) higher at 12ED relative to expression at 3 ED, whereas TLR15 mRNA expression was significantly (P < 0.01) higher on 7ED and TLR5 and 21 were highly expressed on 18 ED. Among all the TLRs investigated TLR4 mRNA was the highest expressed and TLR15 mRNA expression was the lowest in all tissues during chicken embryo development. Tissue wise analysis of mRNA expression of TLRs showed that liver expressed significantly (P < 0.01) higher levels of most of the genes (TLR2, TLR4, and TLR21). However no significant difference was found in TLR15 mRNA expression among the tissues during development. Our results suggest the innate preparedness of chicken embryos and also a possible role for TLRs in the regulation of chicken embryo development that needs to be further evaluated.  相似文献   

15.
Three approaches were investigated for improvement of in vitro maturation (IVM), in vitro fertilization (IVF), and early embryonic development in cattle. These were: 1) Selection of oocytes, 2) medium supplementation with fetal calf serum (FCS) and cow sera (DO, Dl, D10, and D20 to correspond with estrus, metestrus, diestrus, and proestrus, respectively), and 3) addition of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol-17β (E2)during maturation. Greater proportions (percentage) of oocytes initially selected for their compact cumulus cells completed IVM and IVF when compared to unselected oocytes (P < .05). Proportions (percentage) of selected oocytes that matured and cleaved after in vitro insemination according to serum type used for IVM were: FCS: 110/175 (62.9%) and 37/110 (33.6%) and DO: 130/145 (89.7%) and 52/130 (40.0%); D1 127/130 (97.7%) and 41/127 (32.3%); D10 95/98 (96.9%) and 35/95 (36.8%); D20:113/116 (97.4%) and 49/113 (43.4%). A higher proportion (P < .05) of embryos resulting from the D20 group reached four- and eight-cell stages. In FCS-supplemented maturation media with no hormones added during maturation (control), results of IVM and IVF were 157/265 (59.2%) and 39/157 (24.8%), respectively. With E2 (1 μg/ml) and FSH (5 μg/ml), comparable results were 189/215 (87.9%) and 71/189 (37.6%); with E2 (1 μg/ml) plus LH (10 μml), 280/327 (85.6%) and 111/280 (39.6%). Added hormones improved IVM results (P < .05) and, when FSH or LH was added with E2, in vitro development to four- and eight-cell stages was markedly enhanced (P < .05). Selection of oocytes, D20 serum, and added E2 and FSH or LH for IVM improved in vitro development of bovine embryos after IVF.  相似文献   

16.
Ren Q  Guan S  Fu J  Wang A 《Molecular biology reports》2011,38(6):3829-3837
Recent evidence points to a stromal decidualization-like response in the pregnant porcine uterus. The objective of this study was to evaluate expression of tissue inhibitors of metalloproteinase-3 (TIMP-3), a sensitive indicator of endometrial stromal decidualization, in endometrium of pregnant sows and to further investigate this phenomenon. Real-time PCR, Western blot and immunostaining analysis were used to study TIMP-3 expression between/at attachment sites of endometrium of Days 13, 18 and 24 pregnant sows. The results indicate that TIMP-3 protein expression was lowest by Day 13 compared with Day 18 (P < 0.01) and 24 (P < 0.01), and the expression was higher at attachment sites than between attachment sites on Day 13 (P < 0.01) and 18 (P < 0.01). TIMP-3 intensive immunostaining was observed in stroma of endometrium on Days 13, 18 and 24, and the staining at attachment sites was stronger than between attachment sites. Collectively, these results suggest the crucial role of TIMP-3 in successful implantation and embryo survival and indicate the endometrial stromal decidualization-like in pigs.  相似文献   

17.
A total of 3427 goat oocytes were used in this study to identify possible differences during in vitro embryo production from slaughterhouse or laparoscopic ovum pick up (LOPU) oocytes. In experiment 1, one complex, one semi-defined, and one simplified IVM media were compared using slaughterhouse oocytes. In experiment 2, we checked the effect of oocyte origin (slaughterhouse or LOPU) on the kinetics of maturation (18 vs. 22 vs. 26 hours) when submitted to semi-defined or simplified media. In experiment 3, we determined the differences in embryo development between slaughterhouse and LOPU oocytes when submitted to both media and then to IVF or parthenogenetic activation (PA). Embryos from all groups were vitrified, and their viability evaluated in vitro after thawing. In experiment 1, no difference (P > 0.05) was detected among treatments for maturation rate (metaphase II [MII]; 88% on average), cleavage (72%), blastocyst from the initial number of cumulus oocyte complexes (46%) or from the cleaved ones (63%), hatching rate (69%), and the total number of blastomeres (187). In experiment 2, there was no difference of MII rate between slaughterhouse oocytes cultured for 18 or 22 hours, whereas the MII rate increased significantly (P < 0.05) between 18 and 22 hours for LOPU oocytes in the simplified medium. Moreover, slaughterhouse oocytes cultured in simplified medium matured significantly faster than LOPU oocytes at 18 and 22 hours (P < 0.05). In experiment 3, cleavage rate was significantly greater (P < 0.001) in all four groups of embryos produced by PA than IVF. Interestingly, PA reached similar rates for slaughterhouse oocytes cultured in both media, but improved (P < 0.05) the cleavage rate of LOPU oocytes. Slaughterhouse oocytes had acceptable cleavage rate after IVF (∼67%), whereas LOPU oocytes displayed a lower one (∼38%), in contrast to cleavage after PA. The percentage of blastocysts in relation to cleaved embryos was not affected by the origin of the oocytes (P > 0.05). Therefore, slaughterhouse oocytes developed a greater proportion of blastocysts than LOPU ones, expressed as the percentage of total cumulus oocyte complexes entering to IVM. Vitrified-thawed blastocysts presented similar survival and hatching rates between the oocyte origin, media, or method of activation. In conclusion, slaughterhouse and LOPU derived oocytes may have different IVM kinetics and require different IVM and IVF conditions. Although the IVM and IVF systems still need improvements to enhance embryo yield, the in vitro development step is able to generate good quality embryos from LOPU-derived oocytes.  相似文献   

18.
《Reproductive biology》2022,22(2):100632
Porcine cloning through somatic cell nuclear transfer (SCNT) has been widely used in biotechnology for generating animal disease models and genetically modified animals for xenotransplantation. Vitamin C is a multifunctional factor that reacts with several enzymes. In this study, we used porcine oocytes to investigate the effects of different concentrations of vitamin C on in vitro maturation (IVM), in vitro culture (IVC), and the derivation of nuclear transfer embryonic stem-like cells (NT-ESCs). We demonstrated that vitamin C promoted the cleavage and blastocyst rate of genetically modified cloned porcine embryos and improved the derivation of NT-ESCs. Vitamin C integrated into IVM and IVC enhanced cleavage and blastocyst formation (P < 0.05) in SCNT embryos. Glutathione level was increased, and reactive oxygen species levels were decreased (P < 0.05) due to vitamin C treatment. Vitamin C decreased the gene expression of apoptosis (BAX) and increased the expression of genes associated with nuclear reprogramming (NANOG, POU5F1, SOX2, c-Myc, Klf4, and TEAD4), antioxidation (SOD1), anti-apoptotic (Bcl2), and trophectoderm (CDX2). Moreover, vitamin C improved the attachment, derivation, and passaging of NT-ESCs, while the control group showed no outgrowths beyond the primary culture. In conclusion, supplementation of vitamin C at a dose of 50 µg/ml to the IVM and IVC culture media was appropriate to improve the outcomes of porcine IVM and IVC and for the derivation of NT-ESCs as a model to study the pre- and post-implantation embryonic development in cloned transgenic embryos. Therefore, we recommend the inclusion of vitamin C as a supplementary factor to IVM and IVC to improve porcine in vitro embryonic development.  相似文献   

19.
《Reproductive biology》2023,23(2):100733
ART is an important treatment method for infertile patients with endometriosis. However, the effects of endometriosis on embryo quality and endometrial receptivity remain unclear. Thus, we aimed to simultaneously investigate the impact of endometriosis and its stage on embryo quality and endometrial receptivity in women undergoing ART. We retrospectively analyzed the data from patients with and without endometriosis who underwent oocyte retrieval and/or high-quality embryos transfer between July 2015 and December 2020, including 1312 IVF cycles and 608 IVF or frozen-thawed embryo transfer (FET) cycles, respectively. The endometriosis group had a lower percentage of good cleavage-stage embryos and fertilization rates than those in the control group (p = 0.038 and 0.008, respectively). The number of retrieved oocytes, MII oocytes, cleavage, blastocysts, and blastulation rates was comparable between two groups. We found no significant difference in clinical pregnancy, implantation, live birth, miscarriage, or multiple pregnancy rates between the two groups among patients who transferred high-quality embryos. Stratification analysis showed that patients with stage III-IV endometriosis had fewer retrieved oocytes than those with stage I-II endometriosis (p = 0.012) and marginally fewer retrieved oocytes than the control group (p = 0.051). The stage I-II group had the lowest percentage of good cleavage-stage embryos, which was significantly lower than that of the control group (p = 0.043). In FET cycles, patients with stage III-IV endometriosis had a higher miscarriage rate than those in the control group (p = 0.023). Our results suggest that endometriosis does not alter endometrial receptivity but affects embryo quality, oocyte fertilization ability, and ovarian response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号