首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Secreted frizzled related protein 3 (SFRP3) contains a cysteine-rich domain (CRD) that shares homology with Frizzled CRD and regulates WNT signaling. Independent studies showed epigenetic silencing of SFRP3 in melanoma and hepatocellular carcinoma. Moreover, a tumor suppressive function of SFRP3 was shown in androgen-independent prostate and gastric cancer cells. The current study is the first to investigate SFRP3 expression and its potential clinical impact on non-small cell lung carcinoma (NSCLC). WNT signaling components present on NSCLC subtypes were preliminary elucidated by expression data of The Cancer Genome Atlas (TCGA). We identified a distinct expression signature of relevant WNT signaling components that differ between adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Of interest, canonical WNT signaling is predominant in LUAD samples and non-canonical WNT signaling is predominant in LUSC. In line, high SFRP3 expression resulted in beneficial clinical outcome for LUAD but not for LUSC patients. Furthermore, SFRP3 mRNA expression was significantly decreased in NSCLC tissue compared to normal lung samples. TCGA data verified the reduction of SFRP3 in LUAD and LUSC patients. Moreover, DNA hypermethylation of SFRP3 was evaluated in the TCGA methylation dataset resulting in epigenetic inactivation of SFRP3 expression in LUAD, but not in LUSC, and was validated by pyrosequencing of our NSCLC tissue cohort and in vitro demethylation experiments. Immunohistochemistry confirmed SFRP3 protein downregulation in primary NSCLC and indicated abundant expression in normal lung tissue. Two adenocarcinoma gain-of-function models were used to analyze the functional impact of SFRP3 on cell proliferation and regulation of CyclinD1 expression in vitro. Our results indicate that SFRP3 acts as a novel putative tumor suppressor gene in adenocarcinoma of the lung possibly regulating canonical WNT signaling.  相似文献   

2.
Cutaneous melanoma (CM) is an aggressive cancer; given that initial and specific signs are lacking, diagnosis is often late and the prognosis is poor. RNA modification has been widely studied in tumour progression. Nevertheless, little progress has been made in the signature of N1-methyladenosine (m1A), 5-methylcytosine (m5C), N6-methyladenosine (m6A)-related regulators and the tumour microenvironment (TME) cell infiltration in CM. Our study identified the characteristics of m1A-, m5C- and m6A-related regulators based on 468 CM samples from the public database. Using univariate, multivariate and LASSO Cox regression analysis, a risk model of regulators was established and validated by a nomogram on independent prognostic factors. The gene set variation analysis (GSVA) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) clarified the involved functional pathways. A combined single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT approach revealed TME of regulator-related prognostic signature. The nine-gene signature stratified the patients into distinct risk subgroups for personalized prognostic assessment. Additionally, functional enrichment, immune infiltration and immunotherapy response analysis indicated that the high-risk group was correlated with T-cell suppression, while the low-risk group was more sensitive to immunotherapy. The findings presented here contribute to our understanding of the TME molecular heterogeneity in CM. Nine m1A-, m5C- and m6A-related regulators may also be promising biomarkers for future research.  相似文献   

3.
Lung cancer is one of the most frequently diagnosed malignant tumors and the main reason for cancer-related death around the world, whereas nonsmall cell lung cancer that consists two subtypes: lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) is responsible for an estimated 85% of all lung cancers. The current study aimed to explore gene expression and methylation differences between LUAD and LUSC. EdgeR was used to identify differentially regulated genes between normal and cancer in the LUAD and LUSC extracted from The Cancer Genome Atlas (TCGA), respectively, whereas SAM was used to find genes with differential methylation between normal and cancer in the LUAD and LUSC, respectively. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed to analyze the function which these genes enriched in. A total of 391 genes with opposite methylation patterns in LUAD and LUSC and four functional pathways were obtained (false discovery rate (FDR) < 0.1). These pathways mainly included fat digestion and absorption, phenylalanine metabolism, bile secretion, and so on, which were related to the airframe nutrition metabolic pathway. Moreover, two genes CTSE (cathepsin E) and solute carrier family 5 member 7 (SLC5A7) were also found, among which CTSE was overexpressed and hypomethylated in LUAD corresponding to normal lung tissues, whereas SLC5A7 showed the opposite in LUAD. In conclusion, this study investigated the differences between the gene expression and methylation patterns in LUAD and LUSC, and explored their different biological characteristics. Further understanding of these differences may promote the discovery and development of new, accurate strategies for the prevention, diagnosis, and treatment of lung cancer.  相似文献   

4.
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein which is involved in cell signaling, proliferation, maturation, and movement, all of which are crucial for the proper development of cells and tissues. Cleavage of the EpCAM protein leads to the up-regulation of c-myc, e-fabp, and cyclins A and E which promote tumorigenesis. EpCAM can act as potential diagnostic and prognostic biomarker for different types of cancers as it is also found to be expressed in epithelia and epithelial-derived neoplasms. Hence, we aimed to analyze the EpCAM gene expression and any associated feedback in the patients of two major types of lung cancer (LC) i.e., lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), based on the publicly available online databases. In this study, server-based gene expression analysis represents the up-regulation of EpCAM in both LUAD and LUSC subtypes as compared to the corresponding normal tissues. Besides, the histological sections revealed the over-expression of EpCAM protein in cancerous tissues by depicting strong staining signals. Furthermore, mutation analysis suggested missense as the predominant type of mutation both in LUAD and LUSC in the EpCAM gene. A significant correlation (P-value < 0.05) between the higher EpCAM expression and lower patient survival was also found in this study. Finally, the co-expressed genes were identified with their ontological features and signaling pathways associated in LC development. The overall study suggests EpCAM to be a significant biomarker for human LC prognosis.  相似文献   

5.
6.
In the US, lung carcinoma accounted for over 150,000 deaths in 2018 and the advances in increasing survival rates are still limited. In this study, we investigated the cohorts with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) from The Cancer Genome Atlas to figure out the risk factors and genomic alterations that affected their prognosis. The histoclinical factors that differed between LUAD and LUSC were identified and the risk factors affecting the overall survival were figured out for both LUAD and LUSC. Next, the patterns of nucleotides substitutions and the mutational signatures were extracted to illustrate whether different mutational processes performed for them. Finally, the genes that had different frequencies of mutation were identified. LUAD and LUSC presented differences in histoclinical factors including age at the time of diagnosis, sex, smoking history, pathological T classification, and overall survival. This was caused by the distinct genomic alterations including the transition-to-transversion ratios, mutational signatures, and the frequently mutated genes. We proposed that the mutational signature associated with aging could be used to predict the prognosis of patients with LUAD. On the other hand, the AID/APOBEC family was associated with the prognosis of LUSC. Finally, SNTG1 and LRRK2 might be important in LUAD and LUSC, respectively.  相似文献   

7.
8.
9.
Despite the previous evidence showing that SHC adaptor protein 1 (SHC1) could encode three distinct isoforms (p46SHC, p52SHC and p66SHC) that function in different activities such as regulating life span and Ras activation, the precise underlying role of SHC1 in lung cancer also remains obscure. In this study, we firstly found that SHC1 expression was up-regulated both in lung adenocarcinoma (LUAD) and in lung squamous cell carcinoma (LUSC) tissues. Furthermore, compared to patients with lower SHC1 expression, LUAD patients with higher expression of SHC1 had poorer overall survival (OS). Moreover, higher expression of SHC1 was also associated with worse OS in patients with stages 1 and 2 but not stage 3 lung cancer. Significantly, the analysis showed that SHC1 methylation level was associated with OS in lung cancer patients. It seemed that the methylation level at specific probes within SHC1 showed negative correlations with SHC1 expression both in LUAD and in LUSC tissues. The LUAD and LUSC patients with hypermethylated SHC1 at cg12473916 and cg19356022 probes had a longer OS. Therefore, it is reasonable to conclude that SHC1 has a potential clinical significance in LUAD and LUSC patients.  相似文献   

10.
胡滨滨  张明 《生物信息学》2022,20(2):124-135
为探讨RNA m6A甲基化调节因子在肺腺癌中的作用,从TCGA数据库下载肺腺癌患者的RNA表达数据和临床数据。通过limma软件包分析12种m6A调节剂的表达情况。使用Pheatmap、vioplot和corrplot软件包生成热图、小提琴图和表达相关图。采用Kaplan-Meier方法分别计算肺腺癌中12种RNA m6A调节因子的生存曲线。使用Cox回归和Kaplan-Meier方法分析TCGA肺腺癌患者的总体存活相关的临床病理学特征。最后用Kruskal(KS)检验和logistic回归分析临床病理学特征与HNRNPC表达的关系。 在肺腺癌的TCGA队列中,发现HNRNPC、WTAP、YTHDF3、FTO、ZC3H13、METTL14、METTL3、YTHDF1、YTHDF2这些基因是差异表达的。Kaplan-Meier生存分析显示,在这些差异表达的基因中仅仅HNRNPC和YTHDF2的表达与生存显著相关。然后,通过多因素Cox回归结果表明HNRNPC的表达在肺腺癌TCGA队列中是个独立危险因素。最后,HNRNPC在肺腺癌中的表达与临床分期(IV vs I, OR=3.692 308)和组织浸润(T2 vs T1, OR=1.776 471;T4 vs T1, OR=6.303 03)显著相关(所有p<0.05)。 结论认为HNRNPC可能作为肺腺癌的独立的预后因子。  相似文献   

11.
Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related deaths worldwide. YTHDF2 is a reader of N6-methyladenosine (m6A) on RNA and plays a critical role in the initiation and propagation of myeloid leukemia; however, whether YTHDF2 controls the development of LUAD remains to be explored. Here, we found that YTHDF2 was significantly upregulated in LUAD compared with paracancerous normal tissues, and YTHDF2 knockdown drastically inhibited, while its overexpression promoted, cell growth, colony formation and migration of LUAD cells in vitro. In addition, YTHDF2 knockdown significantly inhibited tumorigenesis in a murine tumor xenograft model. Through the integrative analysis of RNA-seq, m6A-seq, CLIP-seq, and RIP-seq datasets, we identified a set of potential direct targets of YTHDF2 in LUAD, among which we confirmed AXIN1, which encodes a negative regulator of the Wnt/β-catenin signaling, as a direct target of YTHDF2. YTHDF2 promoted AXIN1 mRNA decay and subsequently activated the Wnt/β-catenin signaling. Knockout of AXIN1 sufficiently rescued the inhibitory effect of YTHDF2 depletion on lung cancer cell proliferation, colony-formation, and migration. These results revealed YTHDF2 to be a contributor of LUAD development acting through the upregulation of the AXIN1/Wnt/β-catenin signaling, which can be a potential therapeutic target for LUAD.Subject terms: DNA methylation, Non-small-cell lung cancer  相似文献   

12.
N6 -methyl-adenosine (m6A) is one of the most common and abundant modifications on RNA molecules present in eukaryotes. However, the biological significance of m6A methylation remains largely unknown. Several independent lines of evidence suggest that the dynamic regulation of m6A may have a profound impact on gene expression regulation. The m6A modification is catalyzed by an unidentified methyltransferase complex containing at least one subunit methyltransferase like 3 (METTL3). m6A modification on messenger RNAs (mRNAs) mainly occurs in the exonic regions and 3’-untranslated region (3’-UTR) as revealed by high-throughput m6A-seq. One significant advance in m6A research is the recent discovery of the first two m6A RNA demethylases fat mass and obesity-associated (FTO) gene and ALKBH5, which catalyze m6A demethylation in an a-ketoglutarate (a-KG)-and Fe2+-dependent manner. Recent studies in model organisms demonstrate that METTL3, FTO and ALKBH5 play important roles in many biological processes, ranging from development and metabolism to fertility. Moreover, perturbation of activities of these enzymes leads to the disturbed expression of thousands of genes at the cellular level, implicating a regulatory role of m6A in RNA metabolism. Given the vital roles of DNA and histone methylations in epigenetic regulation of basic life processes in mammals, the dynamic and reversible chemical m6A modification on RNA may also serve as a novel epigenetic marker of profound biological significances.  相似文献   

13.
N6-methyladenosine (m6A) is one of the most widespread and highly conserved chemical modifications in cellular RNAs of eukaryotic genomes. Owing to the development of high-throughput m6A sequencing, the functions and mechanisms of m6A modification in development and diseases have been revealed. Recent studies have shown that RNA m6A methylation plays a critical role in skeletal muscle development, which regulates myoblast proliferation and differentiation, and muscle regeneration. Exploration of the functions of m6A modification and its regulators provides a deeper understanding of the regulatory mechanisms underlying skeletal muscle development. In the present review, we aim to summarize recent breakthroughs concerning the global landscape of m6A modification in mammals and examine the biological functions and mechanisms of enzymes regulating m6A RNA methylation. We describe the interplay between m6A and other epigenetic modifications and highlight the regulatory roles of m6A in development, especially that of skeletal muscle. m6A and its regulators are expected to be targets for the treatment of human muscle-related diseases and novel epigenetic markers for animal breeding in meat production.  相似文献   

14.
Glioma is the most common intracranial malignant tumour. A clear diagnosis and molecular targeted therapy are of great significance for improving the survival time and quality of life of patients with low-grade glioma. 5-methylcytosine methylation is one of the ways of RNA modification, but there are limited studies on the role of m5C methylation of low-grade glioma. Single-nucleotide variant, RNA expression matrix and corresponding clinical data of low-grade glioma came from public database. The single-nucleotide variant and expression of m5C regulators were estimated. A prognostic model based on m5C regulators was constructed by Cox regression. Potential functions of these molecules were assessed by gene set enrichment analysis. DNMT3A mutation was the most frequent among the m5C regulators in low-grade glioma. NSUN3, TET2, TRDMT1, ALYREF, DNMT3B, DNMT1, NOP2 and NSUN2 were up-regulated. One prognostic model was constructed which had a strong predictive power for the overall survival of low-grade glioma. We studied the expression and prognostic characteristics of m5C regulators in low-grade glioma, supplied biomarkers for the diagnosis and prognosis and provided the foundation for the study of the pathogenesis of low-grade glioma.  相似文献   

15.
The prognostic signatures play an essential role in the era of personalised therapy for cancer patients including lung adenocarcinoma (LUAD). Long noncoding RNA (LncRNA), a relatively novel class of RNA, has shown to play a crucial role in all the areas of cancer biology. Here, we developed and validated a robust LncRNA-based prognostic signature for LUAD patients using three different cohorts. In the discovery cohort, four LncRNAs were identified with 10% false discovery rate and a hazard ratio of >10 using univariate Cox regression analysis. A risk score, generated from the four LncRNAs’ expression, was found to be a significant predictor of survival in the discovery and validation cohort (p = 9.97 × 10 −8 and 1.41 × 10 −3, respectively). Further optimisation of four LncRNAs signature in the validation cohort, generated a three LncRNAs prognostic score (LPS), which was found to be an independent predictor of survival in both the cohorts ( p = 1.00 × 10 −6 and 7.27 × 10 −4, respectively). The LPS also significantly divided survival in clinically important subsets, including Stage I ( p = 9.00 × 10 −4 and 4.40 × 10 −2, respectively), KRAS wild-type (WT), KRAS mutant ( p = 4.00 × 10 −3 and 4.30 × 10 −2, respectively) and EGFR WT ( p = 2.00 × 10 −4). In multivariate analysis LPS outperformed, eight previous prognosticators. Further, individual members of LPS showed a significant correlation with survival in microarray data sets. Mutation analysis showed that high-LPS patients have a higher mutation rate and inactivation of the TP53 pathway. In summary, we identified and validated a novel LncRNA signature LPS for LUAD.  相似文献   

16.
17.
Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6A and m5C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high‐throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR‐seq). Using CIGAR‐seq, we discovered NSUN6 as a novel mRNA m5C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non‐overlapping subsets of mRNA m5C sites and together contributed to almost all the m5C modification in mRNA. Finally, using m1A as an example, we demonstrated that CIGAR‐seq can be easily adapted for identifying regulators of other mRNA modification.  相似文献   

18.
Epigenetics has long been a hot topic in the field of scientific research. The scope of epigenetics usually includes chromatin remodelling, DNA methylation, histone modifications, non‐coding RNAs and RNA modifications. In recent years, RNA modifications have emerged as important regulators in a variety of physiological processes and in disease progression, especially in human cancers. Among the various RNA modifications, m6A is the most common. The function of m6A modifications is mainly regulated by 3 types of proteins: m6A methyltransferases (writers), m6A demethylases (erasers) and m6A‐binding proteins (readers). In this review, we focus on RNA m6A modification and its relationship with urological cancers, particularly focusing on its roles and potential clinical applications.  相似文献   

19.
20.
YTH domain containing 2 (YTHDC2) is the largest N6-Methyladenosine (m6A) binding protein of the YTH protein family and the only member containing ATP-dependent RNA helicase activity. For further analysing its biological role in epigenetic modification, we comprehensively explored YTHDC2 from gene expression, genetic alteration, protein-protein interaction (PPI) network, immune infiltration, diagnostic value and prognostic value in pan-cancer, using a series of databases and bioinformatic tools. We found that YTHDC2 with Missense mutation could cause a different prognosis in uterine corpus endometrial carcinoma (UCEC), and its different methylation level could lead to a totally various prognosis in adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), lung squamous cell carcinoma (LUSC) and UCEC. The main molecular mechanisms of YTHDC2 focused on catalytic activity, helicase activity, snRNA binding, spliceosome and mRNA surveillance. Additionally, YTHDC2 was notably correlated with tumour immune infiltration. Moreover, YTHDC2 had a high diagnostic value for seven cancer types and a prognostic value for brain lower grade glioma (LGG), rectum adenocarcinoma (READ) and skin cutaneous melanoma (SKCM). Collectively, YTHDC2 plays a significant role in epigenetic modification and immune infiltration and maybe a potential biomarker for diagnosis and prognosis in certain cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号