首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 68 毫秒
1.
Breast cancer is one of the most prevalent cancers in women. Triple-negative breast cancer consists 15% to 20% of breast cancer cases and has a poor prognosis. Cancerous transformation has several causes one of which is dysregulation of microRNAs (miRNAs) expression. Exosomes can transfer miRNAs to neighboring and distant cells. Thus, exosomal miRNAs can transfer cancerous phenotype to distant cells. We used gene expression omnibus (GEO) datasets and miRNA target prediction tools to find overexpressed miRNA in breast cancer cells and their target genes, respectively. Exosomes were extracted from MDA-MB-231 and MCF-7 cells and characterized. Overexpression of the miRNAs of MDA-MB-231 cells and their exosomes were analyzed using quantitative Real-time PCR. The target genes expression was also evaluated in the cell lines. Luciferase assay was performed to confirm the miRNAs: mRNAs interactions. Finally, MCF-7 cells were treated with MDA-MB-231 cells’ exosomes. The target genes expression was evaluated in the recipient cells. GSE60714 results indicated that miR-9 and miR-155 were among the overexpressed miRNAs in highly metastatic triple negative breast cancer cells and their exosomes. Bioinformatic studies showed that these two miRNAs target PTEN and DUSP14 tumor suppressor genes. Quantitative Real-time PCR confirmed the overexpression of the miRNAs and downregulation of their targets. Luciferase assay confirmed that the miRNAs target PTEN and DUSP14. Treatment of MCF-7 cells with MDA-MB-231 cells’ exosomes resulted in target genes downregulation in MCF-7 cells. We found that miR-9 and miR-155 were enriched in metastatic breast cancer exosomes. Therefore, exosomal miRNAs can transfer from cancer cells to other cells and can suppress their target genes in the recipient cells.  相似文献   

2.
Background: We aimed to develop a diagnostic indicator of stroke based on serum miRNAs correlated to systolic blood pressure.Methods: Using miRNA expression profiles in GSE117604 from the Gene Expression Omnibus (GEO), we utilized the WGCNA to identify hub miRNAs correlated to systolic blood pressure (SBP). Differential analysis was applied to highlight hub differentially expressed miRNAs (DE-miRNAs), whereby we built a miRNA-based diagnostic indicator for stroke using bootstrap ranking Least Absolute Shrinkage and Selection Operator (LASSO) regression with 10-fold cross-validation. The classification value of the indicator was validated with receiver operating characteristic (ROC) analysis in both the training set and test set, as well as quantitative real-time PCR (qRT-PCR) for the feature miRNAs. Further, target genes of hub miRNAs and hub DE-miRNAs were retrieved for functional enrichment.Results: A total of 447 hub miRNAs in the blue modules were significantly correlated with systolic blood pressure (r = 0.32, false discovery rate = 10−6). Target genes predicted with the hub miRNAs were mostly implicated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) terms including mitogen-activated protein kinase (MAPK) pathway, senescence, and TGF-β signaling pathway. The diagnostic indicator with miR-4420 and miR-6793-5p showed remarkable performance in the training set (area under curve [AUC]= 0.953), as well as in the test set (AUC = 0.894). Results of qRT-PCR validated the diagnostic value of the two miRNAs embedded in the proposed indicator.Conclusions: We developed a panel of two miRNAs, which is a good diagnostic indicator for stroke. These results require further investigation.  相似文献   

3.
To clarify crucial key micro-RNAs and mRNAs associated with hand, foot, and mouth disease (HFMD) virus infection, we conducted this bioinformatics analysis from four GEO datasets. The following datasets were used for the analysis: GSE85829, GSE94551, GSE52780, and GSE45589. Differentially expressed genes (DEGs) were acquired, and the analysis of functional and pathway enrichment and the relative regulatory network were conducted. After screening common differentially expressed miRNAs (DE-miRNAs), five key miRNAs were acquired: miR-100-3p, miR-125a-3p, miR-1273g-3p, miR-5585-3p, and miR-671-5p. There were three common enriched GO terms between miRNA-derived prediction and mRNA-derived analysis: biosynthetic process, cytosol, and nucleoplasm. There was one common KEGG pathway, i.e., cell cycle shared between miRNA-based and mRNA-based enrichment. Using TarBase V8 in DIANA tools, we acquired 1,520 potential targets (mRNA) from the five key DE-miRNAs, among which the159 DE-mRNAs also included 11 DEGs. These common DEGs showed a PPI network mainly connected by SMC1A, SMARCC1, SF3B3, LIG1, and BRMS1L. Together, changes in five key miRNAs and 11 key mRNAs may play crucial roles in HFMD progression. A combination of these roles may benefit the early diagnosis and treatment of HFMD.Key words: HFMD, micro-RNA, protein-protein interaction, microarray, regulatory network  相似文献   

4.
Many microRNAs (miRNAs) play vital roles in the tumorigenesis and development of cancers. In this study, we aimed to identify the differentially expressed miRNAs and their specific mechanisms in non-small-cell lung cancer (NSCLC). Based on data from the GSE56036 database, miR-30a-5p expression was identified to be downregulated in NSCLC. Further investigations showed that overexpression of miR-30a-5p inhibited cell proliferation, migration, and promoted apoptosis in NSCLC. Increase of miR-30a-5p level could induce the increase of Bax protein level and decrease of Bcl-2 protein level. In addition, chromatin immunoprecipitation assays showed that miR-30a-5p expression was induced by binding of p53 to the promoter of MIR30A. Bioinformatics prediction indicated that miR-30a-5p targets SOX4, and western blot analysis indicated that overexpression of the miRNA decreases the SOX4 protein expression level, which in turn regulated the level of p53. Thus, this study provides evidence for the existence of a p53/miR-30a-5p/SOX4 feedback loop, which likely plays a key role in the regulation of proliferation, apoptosis, and migration in NSCLC, highlighting a new therapeutic target.  相似文献   

5.
Although patients with coronary artery disease (CAD) have a high mortality rate, the pathogenesis of CAD is still poorly understood. The purpose of this study was to explore the underlying molecular mechanisms and potential target molecules for CAD. The platelet miRNA (GSE28858) and blood mRNA (GSE42148) expression profiles of patients with CAD and healthy controls were downloaded from Gene Expression Omnibus. Differentially expressed miRNAs and genes (DEGs) were identified by significant analysis of microarray algorithm after data preprocessing. Furthermore, the miRNA-target gene regulatory network was constructed based on miRecords database. The spearman correlation coefficients (ρ) between miRNAs and their target genes were calculated. Six up- (miR-340, miR-545, miR-451, miR454-5p, miR-624 and miR-585) and four down-regulated (miR-199a, miR-17-3p, miR-154 and miR-339) miRNAs were screened. Total 295 target genes of miR-545, miR-451, miR-585 and miR-154 were predicted. Among these 295 target genes, 7 genes were DEGs. Further analysis showed miR-545-TFEC and miR-585-SPOCK1 were highly positively correlated (ρ = 0.808091264; ρ = 0.874680776) in CAD samples. Therefore, differentially expressed miRNAs might participate in the pathogenesis of CAD by regulating their target genes.  相似文献   

6.
Exosomal microRNA (miRNA) exerts potential roles in non-small-cell lung cancer (NSCLC). The current study elucidated the role of miR-30b-5p shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived exosomes in treating NSCLC. Bioinformatics analysis was performed with NSCLC-related miRNA microarray GSE169587 and mRNA data GSE74706 obtained for collection of the differentially expressed miRNAs and mRNAs. The relationship between miR-30b-5p and EZH2 was predicted and confirmed. Exosomes were isolated from BMSCs and identified. BMSCs-derived exosomes overexpressing miR-30b-5p were used to establish subcutaneous tumorigenesis models to study the effects of miR-30b-5p, EZH2 and PI3K/AKT signalling pathway on tumour growth. A total of 86 BMSC-exo-miRNAs were differentially expressed in NSCLC. Bioinfomatics analysis found that BMSC-exo-miR-30b-5p could regulate NSCLC progression by targeting EZH2, which was verified by in vitro cell experiments. Besides, the target genes of miR-30b-5p were enriched in PI3K/AKT signalling pathway. Animal experiments validated that BMSC-exo-miR-30b-5p promoted NSCLC cell apoptosis and prevented tumorigenesis in nude mice via EZH2/PI3K/AKT axis. Collectively, the inhibitory role of BMSC-derived exosomes-loaded miR-30b-5p in NSCLC was achieved through blocking the EZH2/PI3K/AKT axis.  相似文献   

7.

Prostate cancer is the leading cause of death among men worldwide. Deregulation of microRNAs has been reported in many cancers. Expression of microRNAs miR-20a-5p, miR-21-5p, miR-100-5p, miR-125a-5p and miR-146a-5p in tissue blocks of histologically confirmed prostate cancer patients compared with BPH patients, to identify potential microRNA biomarker for prostate cancer. MicroRNA was isolated and expression was quantified by qRT-PCR using Taqman Advanced microRNA assay kits. The interactions between the microRNA:target mRNA were predicted by using bioinformatics tools such as miRwalk and miRTargetlink. The experimentally validated targets were analysed using gprofiler to identify their molecular function, biological process and related pathways. The expression analysis revealed that miR-21 and miR-100 were significantly down-regulated whereas miR-125a was up-regulated in prostate cancer patients. Comparative analysis of the expression levels with tumor grading reveal that miR-100 was significantly down-regulated (p?<?0.05) in high grade tumor, indicating that miR-100 associated with prostate cancer. ROC analysis revealed that combined analysis of down-regulated miRNAs (miR-21 and miR-100) shown AUC of 0.72 (95% CI 0.65–0.79). The combined analysis of all five miRNAs showed AUC of 0.87 (95% CI 0.81–0.92). The targets prediction analysis revealed several validated targets including BCL2, ROCK1, EGFR, PTEN, MTOR, NAIF1 and VEGFA. Our results provide evidence that combined analysis of all the five miRNAs as a panel can significantly improve the prediction level of the presence of prostate cancer and may be used as a potential diagnostic biomarker.

  相似文献   

8.
9.
Human lung cancer is the leading cause of cancer motility worldwide, with nearly 1.4 million deaths each year, among which non-small cell lung cancer (NSCLC) accounts for almost 85 % of this disease. The discovery of microRNAs (miRNAs) provides a new avenue for NSCLC diagnostic and treatment regiments. Currently, a large number of miRNAs have been reported to be associated with the progression of NSCLC, among which serum miR-137 has been examined to be down-regulated in NSCLC patients. However, the function of miR-137 on NSCLC cells migration and invasion and the relative mechanisms were less known. Here, we found that ectopic expression of miR-137 could inhibit cell proliferation, induce cell apoptosis, and suppress cell migration and invasion in NSCLC cell line A549. Moreover, we found that paxillin (PXN) was a target gene of miR-137 in NSCLC cells and restored expression of PXN abolished the miR-137-mediated suppression of cell migration and invasion. Taken together, our results showed that miR-137 acted as a tumor suppressor in NSCLC by targeting PXN, and it may provide novel diagnostic and therapeutic options for human NSCLC clinical operation in future.  相似文献   

10.
Cytarabine and daunorubicin are old drugs commonly used in the treatment of acute myeloid leukaemia (AML). Refractory or relapsed disease because of chemotherapy resistance is a major issue. microRNAs (miRNAs) were incriminated in resistance. This study aimed to identify miRNAs involved in chemoresistance in AML patients and to define their target genes. We focused on cytogenetically normal AML patients with wild-type NPM1 without FLT3-ITD as the treatment of this subset of patients with intermediate-risk cytogenetics is not well established. We analysed baseline AML samples by small RNA sequencing and compared the profile of chemoresistant to chemosensitive AML patients. Among the miRNAs significantly overexpressed in chemoresistant patients, we revealed miR-15a-5p and miR-21-5p as miRNAs with a major role in chemoresistance in AML. We showed that miR-15a-5p and miR-21-5p overexpression decreased apoptosis induced by cytarabine and/or daunorubicin. PDCD4, ARL2 and BTG2 genes were found to be targeted by miR-15a-5p, as well as PDCD4 and BTG2 by miR-21-5p. Inhibition experiments of the three target genes reproduced the functional effect of both miRNAs on chemosensitivity. Our study demonstrates that miR-15a-5p and miR-21-5p are overexpressed in a subgroup of chemoresistant AML patients. Both miRNAs induce chemoresistance by targeting three pro-apoptotic genes PDCD4, ARL2 and BTG2.  相似文献   

11.
Kuo TY  Hsi E  Yang IP  Tsai PC  Wang JY  Juo SH 《PloS one》2012,7(2):e31587
Colorectal cancer (CRC) is one of the leading malignant cancers with a rapid increase in incidence and mortality. The recurrences of CRC after curative resection are sometimes unavoidable and often take place within the first year after surgery. MicroRNAs may serve as biomarkers to predict early recurrence of CRC, but identifying them from over 1,400 known human microRNAs is challenging and costly. An alternative approach is to analyze existing expression data of messenger RNAs (mRNAs) because generally speaking the expression levels of microRNAs and their target mRNAs are inversely correlated. In this study, we extracted six mRNA expression data of CRC in four studies (GSE12032, GSE17538, GSE4526 and GSE17181) from the gene expression omnibus (GEO). We inferred microRNA expression profiles and performed computational analysis to identify microRNAs associated with CRC recurrence using the IMRE method based on the MicroCosm database that includes 568,071 microRNA-target connections between 711 microRNAs and 20,884 gene targets. Two microRNAs, miR-29a and miR-29c, were disclosed and further meta-analysis of the six mRNA expression datasets showed that these two microRNAs were highly significant based on the Fisher p-value combination (p = 9.14 × 10(-9) for miR-29a and p = 1.14 × 10(-6) for miR-29c). Furthermore, these two microRNAs were experimentally tested in 78 human CRC samples to validate their effect on early recurrence. Our empirical results showed that the two microRNAs were significantly down-regulated (p = 0.007 for miR-29a and p = 0.007 for miR-29c) in the early-recurrence patients. This study shows the feasibility of using mRNA profiles to indicate microRNAs. We also shows miR-29a/c could be potential biomarkers for CRC early recurrence.  相似文献   

12.
Non-small-cell lung cancer (NSCLC) is one of the main causes of death induced by cancer globally. However, the molecular aberrations in NSCLC patients remain unclearly. In the present study, four messenger RNA microarray datasets (GSE18842, GSE40275, GSE43458, and GSE102287) were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between NSCLC tissues and adjacent lung tissues were obtained from GEO2R and the overlapping DEGs were identified. Moreover, functional and pathway enrichment were performed by Funrich, while the protein–protein interaction (PPI) network construction were obtained from STRING and hub genes were visualized and identified by Cytoscape software. Furthermore, validation, overall survival (OS) and tumor staging analysis of selected hub genes were performed by GEPIA. A total of 367 DEGs (95 upregulated and 272 downregulated) were obtained through gene integration analysis. The PPI network consisted of 94 nodes and 1036 edges in the upregulated DEGs and 272 nodes and 464 edges in the downregulated DEGs, respectively. The PPI network identified 46 upregulated and 27 downregulated hub genes among the DEGs, and six (such as CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M) of that have not been identified to be associated with NSCLC so far. Moreover, the expression differences of the mentioned hub genes were consistent with that in lung adenocarcinoma and lung squamous cell carcinoma in the TCGA database. Further analysis showed that all the six hub genes were associated with tumor staging except MYH11, while only the upregulated DEG CENPE was associated with the worse OS of patients with NSCLC. In conclusion, the current study showed that CENPE, NCAPH, MYH11, LRRK2, HSD17B6, and A2M might be the key genes contributed to tumorigenesis or tumor progression in NSCLC, further functional study is needed to explore the involved mechanisms.  相似文献   

13.
Breast cancer as a molecularly heterogeneous malignancy is associated with dysregulation of several signaling pathways, including transforming growth factor-β (TGF-β) signaling. On the other hand, several recent studies have demonstrated the role of microRNAs (miRNAs) in breast cancer pathogenesis. In the current study, we performed a computerized search to find miR-206 target genes that are functionally linked to the TGF-β signaling pathway. We selected LEF1, Smad2, and Snail2 genes to assess their expression in 65 breast cancer samples and their adjacent noncancerous tissues (ANCTs) in correlation with expression levels of miR-206 as well as clinicopathological characteristics of patients. miR-206 was significantly downregulated in (Estrogen receptor) ER-positive breast cancer samples compared with their corresponding ANCTs. Association analysis between expression levels of genes and demographic features of patients showed significant association between expressions of SMAD2 and LEF1 genes and body mass index ( P values of 0.03 and 0.02, respectively). miR-206 low-expression levels were associated with TNM stage, mitotic rate, and lymph node involvement ( P values of 0.02, 0.01, and 0.01 respectively). In addition, SMAD2 high-expression levels were associated with HER2 status ( P = 0.02). Consequently, our data highlight the role of TGF-β signaling dysregulation in the pathogenesis of breast cancer and warrant further evaluation of miRNAs and messenger RNA coding genes in this pathway to facilitate detection of cancer biomarkers and therapeutic targets.  相似文献   

14.
Lung cancer represents the leading cause of cancer-related deaths in men and women worldwide. Targeted therapeutics, including the epidermal growth factor receptor (EGFR) inhibitor erlotinib, have recently emerged as clinical alternatives for the treatment of non-small cell lung cancer (NSCLC). However, the development of therapeutic resistance is a major challenge, resulting in low 5-year survival rates. Due to their ability to act as tumor suppressors, microRNAs (miRNAs) are attractive candidates as adjuvant therapeutics for the treatment of NSCLC. In this study, we examine the ability of 2 tumor suppressor miRNAs, let-7b and miR-34a to sensitize KRAS;TP53 mutant non-small cell lung cancer cells to the action of erlotinib. Treatment with these miRNAs, individually or in combination, resulted in synergistic potentiation of the anti-proliferative effects of erlotinib. This effect was observed over a wide range of miRNA and erlotinib interactions, suggesting that let-7b and miR-34a target oncogenic pathways beyond those inhibited by EGFR. Combinatorial treatment with let-7b and miR-34a resulted in the strongest synergy with erlotinib, indicating that these miRNAs can effectively target multiple cellular pathways involved in cancer cell proliferation and resistance to erlotinib. Together, our findings indicate that NSCLC cells can be effectively sensitized to erlotinib by supplementation with tumor suppressor miRNAs, and suggest that the use of combinations of miRNAs as adjuvant therapeutics for the treatment of lung cancer is a viable clinical strategy.  相似文献   

15.

Background

Rapidly growing evidence suggests that microRNAs (miRNAs) are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC.

Methods

The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models.

Results

50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501), 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323) and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1) and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1).

Conclusions

Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.  相似文献   

16.
Background: Circular RNAs (circRNAs), which generally act as microRNA (miRNA) sponges to competitively regulate the downstream target genes of miRNA, play an essential role in cancer biology. However, few studies have been reported on the role of circRNA based competitive endogenous RNA (ceRNA) network in hepatocellular carcinoma (HCC). Herein, we aimed to screen and establish the circRNA/miRNA/mRNA networks related to the prognosis and progression of HCC and further explore the underlying mechanisms of tumorigenesis.Methods: GEO datasets GSE97332, GSE108724, and GSE101728 were utilized to screen the differentially expressed circRNAs (DE-circRNAs), DE-miRNAs, and DEmRNAs between HCC and matched para-carcinoma tissues. After six RNA-RNA predictions and five intersections between DE-RNAs and predicted RNAs, the survival-related RNAs were screened by the ENCORI analysis tool. The ceRNA networks were constructed using Cytoscape software, based on two models of up-regulated circRNA/down-regulated miRNA/up-regulated mRNA and down-regulated circRNA/up-regulated miRNA/down-regulated mRNA. The qRT-PCR assay was utilized for detecting the RNA expression levels in HCC cells and tissues. The apoptosis, Edu, wound healing, and transwell assays were performed to evaluate the effect of miR-106b-5p productions on the proliferation, invasion, and metastasis of HCC cells. In addition, the clone formation, cell cycle, and nude mice xenograft tumor assays were used to investigate the influence of hsa_circ_0001495 (circCCNB1) silencing and overexpression on the proliferation of HCC cells in vitro and in vivo. Furthermore, the mechanism of downstream gene DYNC1I1 and AKT/ERK signaling pathway via the circCCNB1/miR-106b-5p/GPM6A network in regulating the cell cycle was also explored.Results: Twenty DE-circRNAs with a genomic length less than 2000bp, 11 survival-related DE-miRNAs, and 61 survival-related DE-mRNAs were screened out and used to construct five HCC related ceRNA networks. Then, the circCCNB1/miR-106b-5p/GPM6A network was randomly selected for subsequent experimental verification and mechanism exploration at in vitro and in vivo levels. The expression of circCCNB1 and GPM6A were significantly down-regulated in HCC cells and cancer tissues, while miR-106b-5p expression was up-regulated. After transfections, miR-106b-5p mimics notably enhanced the proliferation, invasion, and metastasis of HCC cells, while the opposite was seen with miR-105b-5p inhibitor. In addition, circCCNB1 silencing promoted the clone formation ability, the cell cycle G1-S transition, and the growth of xenograft tumors of HCC cells via GPM6A downregulation. Subsequently, under-expression of GPM6A increased DYNC1I1 expression and activated the phosphorylation of the AKT/ERK pathway to regulate the HCC cell cycle.Conclusions: We demonstrated that circCCNB1 silencing promoted cell proliferation and metastasis of HCC cells by weakening sponging of oncogenic miR-106b-5p to induce GPM6A underexpression. DYNC1I1 gene expression was up-regulated and further led to activation of the AKT/ERK signaling pathway.  相似文献   

17.
18.
Serum microRNAs (miRNAs) have become a highlighted research hotspot, especially for their great potential as a novel promising non-invasive biomarker in cancer diagnosis. The most frequently used approach for serum miRNAs detection is quantitative real time polymerase chain reaction (qPCR). In order to obtain reliable qPCR data of miRNAs expression, the use of reference genes as endogenous control is undoubtly necessary. However, no systematic evaluation and validation of reference genes for normalizing qPCR analysis of serum miRNAs has been reported in colorectal adenocarcinoma. We firstly profiled pooled serum of colorectal adenocarcinoma, colorectal adenoma and healthy controls and selected a list of 13 miRNAs as candidate reference genes. U6 snRNA (U6) and above-mentioned 13 miRNAs were included in further confirmation by qPCR. As a result, 5 miRNAs (miR-151a-3p, miR-4446-3p, miR-221-3p, miR-93-5p and miR-3184-3p) were not detected in all samples and 2 miRNAs (miR-197-3p and miR-26a-5p) were relatively low with median Cq more than 35, and were excluded from further stability analysis. Then variable stability of other 6 miRNAs (miR-103b, miR-484, miR-16-5p, miR-3615, miR-18a-3p and miR-191-5p) and U6 were evaluated using two algorithms: geNorm and NormFinder which both identified miR-191-5p as the most stably expressed reference gene and selected miR-191-5p and U6 as the most stable pair of reference genes. After validating in an independent large cohorts and selecting miR-92a-3p as target miRNA to evaluate the effect of reference gene, we propose that combination of miR-191-5p and U6 could be used as reference genes for serum microRNAs qPCR data in colorectal adenocarcinoma, colorectal adenoma and healthy controls.  相似文献   

19.
Hao J  Zhang S  Zhou Y  Hu X  Shao C 《FEBS letters》2011,(1):207-213
Both deregulation of tumor-suppressor genes and misexpression of microRNAs (miRNAs) have been implicated in the development of pancreatic cancer, but their relationship during this process remains less clear. Here, we report that the expression of miR-483-3p is strongly enhanced in pancreatic cancer tissues compared to side normal tissues using a miRNA-array differential analysis. Furthermore, DPC4/Smad4 is identified as a target of miR-483-3p and their expression levels are inversely correlated in human clinical specimens. Ectopic expression of miR-483-3p significantly represses DPC4/Smad4 protein levels in pancreatic cancer cell lines, and simultaneously promotes cell proliferation and colony formation in vitro. Our findings identify miR-483-3p as a potent regulator of DPC4/Smad4, which may provide a novel therapeutic strategy for the treatment of DPC4/Smad4-driven pancreatic cancer.  相似文献   

20.

The microRNAs having a length of?~?19–22 nucleotides are the small, non-coding RNAs. The evolution of microRNAs in many disorders may hold the key to tackle complex challenges. Oral cancer belongs to the group of head and neck cancer. It occurs in the mouth region that appears as an ulcer. In this study, we collected information on the overexpressed genes of oral cancer. The coding sequences of the genes were derived from NCBI and the entire set of human microRNAs present in miRBASE 21 was retrieved. The human microRNAs that can target the overexpressed genes of oral cancer were determined with the aid of our in-house software. The interaction between microRNAs and the overexpressed genes was evaluated with 7mer-m8 model of microRNA targeting. The genes DKK1 and APLN paired with only one miRNA i.e., miR-447 and miR-6087, respectively. But the genes INHBA and MMP1 were found to be targeted by 2 miRNAs, while the genes FN1, FAP, TGFPI, COL4A1, COL4A2, and LOXL2 were found to be targeted by 16, 5, 9, 18, 29, and 11 miRNAs. Subsequently, several measures such as free energy, translation efficiency, and cosine similarity metric were used to estimate the binding process. It was found that the target region’s stability was higher than the upstream and downstream zones. The overexpressed genes’ GC contents were calculated, revealing that the codons in target miRNA region were overall GC rich as well as GC3 rich. Lastly, gene ontology was performed to better understand each gene’s involvement in biological processes, molecular function, and cellular component. Our study showed the role of microRNAs in gene repression, which could possibly aid in the prognosis and diagnosis of oral cancer.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号