首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Much research has been conducted to discover novel techniques to reverse the process of tumorigenesis and, cure already stablished malignancies. One well-stablished approach has been the use of organic compounds and naturally found agents such as melatonin whose anticancer effects have been shown in multiple studies, signaling a unique opportunity regarding cancer prevention and treatment. Various agents use a variety of methods to exert their anticancer effects. Two of the most important of these methods are interfering with cell signaling pathways and changing cellular functions, such as autophagy, which is essential in maintaining cellular stability against multiple exogenous and endogenous sources of stress, and is a major tool to evade early cell death. In this study, the importance of melatonin and autophagy are discussed, and the effects of melatonin on autophagy, and its contribution in the process of tumorigenesis are then noted.  相似文献   

2.
In recent decades, cancer has been one of the most important concerns of the human community, which affects human life from many different ways, such as breast, lung, colorectal, prostate, and other cancers. Colorectal cancer is one of the most commonly diagnosed cancers in the world that has recently been introduced as the third leading cause of cancer deaths in the world. microRNAs have a very crucial role in tumorgenesis and prevention of cancer, which plays a significant role with influencing various factors through different signaling pathways. Phosphoinositide 3 (PI3)-kinase/AKT is one of the most important signaling pathways involved in the control and growth of tumor in colorectal cancer, through important proteins of this pathway, such as PTEN and AKT, that they can perform specific influence on this process. Our effort in this study is to collect microRNAs that act as tumor suppressors and oncomirs in this cancer through PI3-kinase/AKT signaling pathway.  相似文献   

3.
The epidermal growth factor receptor is a 170,000-kd transmembrane glycoprotein involved in signaling pathways affecting cellular growth, differentiation, and proliferation. An abnormal expression of the epidermal growth factor receptor (EGFR) has been described in many human tumors and implicated in the development and prognosis of malignancies, thus representing not only a possible prognostic marker, but primarily a rational molecular target for a new class of anticancer agents. The aim of this analysis is to review the available data about the biology of the EGFR and its use as a target for a new class of anticancer agents for colorectal cancer. Several clinical trials have been reported with the use of EGFR-targeted monoclonal antibodies and tyrosine kinase inhibitors, mainly in combination with chemotherapy for advanced colorectal cancer patients. Results available so far demonstrated a manageable and acceptable toxicity profile and a promising level of activity. Many critical issues are yet unresolved, such as the optimal chemotherapy regimen to combine with anti-EGFR treatment and the most adequate patient setting. Moreover, the biological selection of colorectal tumors more likely to benefit from this treatment approach is still to be defined.  相似文献   

4.
5.
Cancer is one of main health public problems worldwide. Several factors are involved in beginning and development of cancer. Genetic and internal/external environmental factors can be as important agents that effect on emerging and development of several cancers. Diet and nutrition may be as one of important factors in prevention or treatment of various cancers. A large number studies indicated that suitable dietary patterns may help to cancer prevention or could inhibit development of tumor in cancer patients. Moreover, a large numbers studies indicated that a variety of dietary compounds such as curcumin, green tea, folat, selenium, and soy isoflavones show a wide range anti‐cancer properties. It has been showed that these compounds via targeting a sequence of cellular and molecular pathways could be used as suitable options for cancer chemoprevention and cancer therapy. Recently, dietary microRNAs and exosomes have been emerged as attractive players in cancer prevention and cancer therapy. These molecules could change behavior of cancer cells via targeting various cellular and molecular pathways involved in cancer pathogenesis. Hence, the utilization of dietary compounds which are associated with powerful molecules such as microRNAs and exosomes and put them in dietary patterns could contribute to prevention or treatment of various cancers. Here, we summarized various studies that assessed effect of dietary patterns on cancer prevention shortly. Moreover, we highlighted the utilization of dietary compounds, dietary microRNAs, and dietary exosomes and their cellular and molecular pathways in cancer chemoprevention.  相似文献   

6.
Breast cancer (BC) is the most frequently diagnosed cancer among women in all the populations of the world. Although the BC mortality rate has declined, resistance to treatment is still a significant challenge for patient survival. Various cellular signaling pathways, such as Wnt and Rho/GTPase have been linked to the development, migration, and metastasis of BC, and also in treatment resistance mechanisms. Some studies have shown an association between two important cellular pathways, Wnt and Rho/GTPase, in cytoskeleton activation and cancer invasion. However, their involvement in BC has received little attention. This review summarizes the Wnt and Rho/GTPases signaling pathway functions, and also the crosstalk between these pathways in the progression, metastasis, and drug resistance mechanisms in BC. Considering the signaling pathways involved in BC tumorigenesis, future studies will need to investigate possible molecular interventions and new opportunities for the development of personalized strategies for BC treatment in order to improve overall outcomes.  相似文献   

7.
Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also interfere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, probiotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.  相似文献   

8.
Cell signaling pathways altered by natural chemopreventive agents   总被引:6,自引:0,他引:6  
Sarkar FH  Li Y 《Mutation research》2004,555(1-2):53-64
Epidemiological studies have indicated a significant difference in the incidence of cancers among ethnic groups, who have different lifestyles and have been exposed to different environmental factors. It has been estimated that more than two-thirds of human cancers, which are contributed by mutations in multiple genes, could be prevented by modification of lifestyle including dietary modification. The consumption of fruits, soybean and vegetables has been associated with reduced risk of several types of cancers. The in vitro and in vivo studies have demonstrated that some dietary components such as isoflavones, indole-3-carbinol (I3C), 3,3'-diindolylmethane (DIM), curcumin, (-)-epigallocatechin-3-gallate (EGCG), apigenin, etc., have shown inhibitory effects on human and animal cancers, suggesting that they may serve as chemopreventive agents. Experimental studies have also revealed that these components regulate the molecules in the cell signal transduction pathways including NF-kappaB, Akt, MAPK, p53, AR, and ER pathways. By modulating cell signaling pathways, these components, among other mechanisms, activate cell death signals and induce apoptosis in precancerous or cancer cells, resulting in the inhibition of cancer development and/or progression. This article reviews current studies regarding the effects of natural chemopreventive agents on cancer-related cell signaling pathways and provides comprehensive knowledge of the biological and molecular roles of chemopreventive agents in cancer cells.  相似文献   

9.
New DC  Tsim ST  Wong YH 《Neuro-Signals》2003,12(2):59-70
The isolation and characterization of multiple melatonin receptors in a wide range of tissues and cells signifies the functional diversity of melatonin. In different cellular environments, melatonin can regulate distinct second messengers or even positively or negatively regulate the same signal transduction pathway. The capacity by which melatonin receptors modulate the activities of various effector molecules is determined by the complement of signaling components present in any particular cell type. The specific interactions between many signaling molecules have been discerned in an increasing number of cellular systems and this information is being used to explain the physiological actions of melatonin. This review will attempt to summarize recent research by many groups that has revealed numerous subtleties of the melatonin-coupled signaling pathways.  相似文献   

10.
Autophagy is well-known as an internal catabolic process that is evolutionarily conserved and performs the key biological function in maintaining cellular homeostasis. It is tightly controlled by several autophagy-related (ATG) proteins, which are closely associated with many types of human cancers. However, what has remained controversial is the janus roles of autophagy in cancer progression. Interestingly, the biological function of long non-coding RNAs (lncRNAs) in autophagy has been gradually understood in different types of human cancers. More recently, numerous studies have demonstrated that several lncRNAs may regulate some ATG proteins and autophagy-related signaling pathways to either activate or inhibit the autophagic process in cancer. Thus, in this review, we summarize the latest advance in the knowledge of the complicated relationships between lncRNAs and autophagy in cancer. Also, the in-depth dissection of the lncRNAs-autophagy-cancers axis involved in this review would shed new light on discovery of more potential cancer biomarkers and therapeutic targets in the future.  相似文献   

11.
12.
Heart failure (HF) is one of the prominent health concerns and its morbidity is comparable to many malignancies. Cardiac cachexia (CC), characterized by significant weight loss and muscle wasting, frequently occurs in progressive stage of HF. The pathophysiology of CC is multifactorial including nutritional and gastrointestinal alterations, immunological and neurohormonal activation, and anabolic/catabolic imbalance. Neurohormones are critically involved in the development of both HF and CC. Melatonin is known as an anti-inflammatory and antioxidant hormone. It seems that melatonin possibly regulates the neurohormonal signaling pathway related to muscle wasting in CC, but limited comprehensive data is available on the mechanistic aspects of its activity. In this, we reviewed the reports regarding the role of neurohormones in CC occurrence and possible activity of melatonin in modulation of HF and subsequently CC via neurohormonal regulation. In addition, we have discussed proposed mechanisms of action for melatonin considering its possible interactions with neurohormones. In conclusion, melatonin likely regulates the signaling pathways related to muscle wasting in CC by reducing tumor necrosis factor α levels and activating the gene expression of insulin-like growth factor-1. Also, this hormone inhibits the proteolytic pathway by inhibiting nuclear factor-κB (NF-κB), renin-angiotensin system and forkhead box protein O1 pathways and could increase protein synthesis by activating Akt and mammalian target of rapamycin. To elucidate the positive role of melatonin in CC and exact mechanisms related to muscle wasting more cellular and clinical trial studies are needed.  相似文献   

13.
PDGF receptor kinase inhibitors for the treatment of PDGF driven diseases   总被引:2,自引:0,他引:2  
PDGF and its receptors are involved in a variety of diseases: cancers, atherosclerosis, balloon injury induced restenosis, pulmonary fibrosis and more. In all cases enhanced signaling of the receptor is the hallmark. In some cases, like chronic monomyelocytic leukemia (CMML), the persistent PDGFR signaling is essential for the survival of the cancer cell. These findings induced the research community as well as the pharmaceutical industry to develop agents that block PDGFR signaling. The possible utilization of PDGFR kinase inhibitors as anti-restenosis agents is likely to move ahead of the utilization of these agents to treat human malignancies.  相似文献   

14.
PCTAIRE1, also known as CDK16, is a cyclin-dependent kinase that is regulated by cyclin Y. It is a member of the serine-threonine family of kinases and its functions have primarily been implicated in cellular processes like vesicular transport, neuronal growth and development, myogenesis, spermatogenesis and cell proliferation. However, as extensive studies on PCTAIRE1 have not yet been conducted, the signaling pathways for this kinase involved in governing many cellular processes are yet to be elucidated in detail. Here, we report the association of PCTAIRE1 with important cellular proteins involved in major cell signaling pathways, especially cell proliferation. In particular, here we show that PCTAIRE1 interacts with AKT1, a key player of the PI3K signaling pathway that is responsible for promoting cell survival and proliferation. Our studies show that PCTAIRE1 is a substrate of AKT1 that gets stabilized by it. Further, we show that PCTAIRE1 also interacts with and is degraded by LKB1, a kinase that is known to suppress cellular proliferation and also regulate cellular energy metabolism. Moreover, our results show that PCTAIRE1 is also degraded by BRCA1, a well-known tumor suppressor. Together, our studies highlight the regulation of PCTAIRE1 by key players of the major cell signaling pathways involved in regulating cell proliferation, and therefore, provide crucial links that could be explored further to elucidate the mechanistic role of PCTAIRE1 in cell proliferation and tumorigenesis.  相似文献   

15.
Most signal transduction and cell signaling pathways are mediated by protein kinases. Protein kinases have emerged as important cellular regulatory proteins in many aspects of neoplasia. Protein kinase inhibitors offer the opportunity to target diseases such as cancer with chemotherapeutic agents specific for the causative molecular defect. In order to identify possible targets and assess kinase inhibitors, quantitative methods for analyzing protein phosphorylation have been developed. This review examines some of the current formats used for quantifying kinase function for drug development.  相似文献   

16.
Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases.  相似文献   

17.
Most signal transduction and cell signaling pathways are mediated by protein kinases. Protein kinases have emerged as important cellular regulatory proteins in many aspects of neoplasia. Protein kinase inhibitors offer the opportunity to target diseases such as cancer with chemotherapeutic agents specific for the causative molecular defect. In order to identify possible targets and assess kinase inhibitors, quantitative methods for analyzing protein phosphorylation have been developed. This review examines some of the current formats used for quantifying kinase function for drug development.  相似文献   

18.
RAS相关信号通路在结直肠癌的发生、发展中起着重要作用,与该类肿瘤细胞的增殖、转移、凋亡密切相关。目前,包括靶向药物、化疗药物的单药治疗对结直肠癌的临床获益并不理想。近年来,在临床试验和临床前研究中RAS相关信号通路的抑制剂与其他药物的联合应用取得了良好效果,其中EGFR抑制剂、VEGF抑制剂、RAS直接抑制剂、MEK抑制剂和RAF抑制剂的表现尤为突出。本文就RAS相关信号通路与结直肠癌的作用关系、临床试验和临床前研究中的联合用药策略以及组合用药的耐药机制研究进行系统性综述,以期为未来临床多药治疗策略奠定基础。  相似文献   

19.
A common feature of cancer cells is their ability to evade apoptosis as a result of alterations that block cell death signaling pathways. The extensive research efforts that elucidated these signaling pathways over the past decade have set the stage for the development of therapeutic agents that either kill cancer cells selectively or reset their apoptotic threshold. Over the past two years a number of these agents have been evaluated in preclinical and clinical trials. The results of these studies suggest that it might soon be possible to modulate apoptosis in cancer cells for therapeutic benefit.  相似文献   

20.
Previously we detected new signaling pathways, some downregulatory and others upregulatory, from seven known suppressors of cancer progression to the expression of eight cancer‐promoting matrix metalloproteinases (MMPs) in breast cancer cells. The goals of the present study were to test whether the preceding observations occur only in breast cancer cells and, if not, whether the same downregulatory and upregulatory signaling pathways are active in cells of other human cancers, focusing on activator protein‐2α, E‐cadherin, fibulin1D, interleukin 4, p16INK4α, p53, PTEN, and RKIP, and on MMP1, MMP2, MMP7, MMP13, MMP14, MMP16, MMP19, and MMP25. To this end, in the present study we tested the effects of raising the cellular levels of wild‐type copies of these known suppressors of cancer progression on the expression of these MMPs. This study yielded several unexpected results. We have detected 53 new signaling pathways in cells of prostate, brain, lung, ovarian and breast human cancers, with an abundance of signaling pathways as high as ~40% of the cancer progression regulator/MMP pairs tested in cells of prostate and breast cancers. Cells of various cancers differed widely and sequence‐specifically in the identity of their signaling pathways, so that almost 90% of the pathways were different in cells from one cancer to another. In each of 18 out of 51 signaling pathways, a known suppressor of cancer progression stimulated, rather than inhibited, the expression of a cancer‐promoting MMP. Ten signaling pathways were upregulatory in cells of some cancers and downregulatory in cells of other cancers. J. Cell. Physiol. 224: 549–558, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号