首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.  相似文献   

2.
Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E2/ERβ-mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERβ with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERα expression/ERα-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC.  相似文献   

3.
Triple-negative breast cancer (TNBC) is an aggressive malignant disease that is responsible for approximately 15% of breast cancers. The standard of care relies on surgery and chemotherapy but the prognosis is poor and there is an urgent need for new therapeutic strategies. Recent in silico studies have revealed an inverse correlation between recurrence-free survival and the level of cyclin-dependent kinase 8 (CDK8) in breast cancer patients. CDK8 is known to have a role in natural killer (NK) cell cytotoxicity, but its function in TNBC progression and immune cell recognition or escape has not been investigated. We have used a murine model of orthotopic breast cancer to study the tumor-intrinsic role of CDK8 in TNBC. Knockdown of CDK8 in TNBC cells impairs tumor regrowth upon surgical removal and prevents metastasis. In the absence of CDK8, the epithelial-to-mesenchymal transition (EMT) is impaired and immune-mediated tumor-cell clearance is facilitated. CDK8 drives EMT in TNBC cells in a kinase-independent manner. In vivo experiments have confirmed that CDK8 is a crucial regulator of NK-cell-mediated immune evasion in TNBC. The studies also show that CDK8 is involved in regulating the checkpoint inhibitor programmed death-ligand 1 (PD-L1). The CDK8–PD-L1 axis is found in mouse and human TNBC cells, underlining the importance of CDK8-driven immune cell evasion in these highly aggressive breast cancer cells. Our data link CDK8 to PD-L1 expression and provide a rationale for investigating the possibility of CDK8-directed therapy for TNBC.Subject terms: Breast cancer, Immune evasion  相似文献   

4.
三阴性乳腺癌(triple negative breast cancer, TNBC)占全部乳腺癌病例的15%~20%,其雌激素受体、孕激素受体和人表皮生长因子受体2均为阴性表达,也是所有乳腺癌亚型中侵袭性和恶性程度较高的一种。TNBC还具有较高的复发风险和较差的预后特性。由于异质性高、临床特征复杂,化疗、放疗和手术切除等手段仍是当前TNBC治疗的主要方法。然而,严重的副作用、高复发风险和健康损伤等问题仍然不容忽视。随着TNBC基础研究的进展,越来越多的TNBC靶向治疗相关信号通路被揭示,而且其中有一部分已进入临床试验,为TNBC的治疗提供了充满希望和前景的分子靶点。此外,其中一些治疗靶点在TNBC精确分型和精准治疗的临床实践中发挥着重要的作用。本文对TNBC靶向治疗中经典的合成致死通路、PI3K/AKT/mTOR通路、PD-1/PD-L1免疫通路等信号通路及其临床试验进行了综述,同时介绍了近几年比较具有潜力的TNBC靶向治疗信号通路,包括肿瘤血管生成通路、多胺合成和分解代谢通路、SLC3A2/LAT1通路以及IGF-1/IGF-1R/FAK/YAP信号转导通路等。  相似文献   

5.
Biological therapies against breast cancer patients with tumors positive for the estrogen and progesterone hormone receptors and Her2 amplification have greatly improved their survival. However, to date, there are no effective biological therapies against breast cancers that lack these three receptors or triple-negative breast cancers (TNBC). TNBC correlates with poor survival, in part because they relapse following chemo- and radio-therapies. TNBC is intrinsically aggressive since they have high mitotic indexes and tend to metastasize to the central nervous system. TNBCs are more likely to display centrosome amplification, an abnormal phenotype that results in defective mitotic spindles and abnormal cytokinesis, which culminate in aneuploidy and chromosome instability (known causes of tumor initiation and chemo-resistance). Besides their known role in cell cycle control, mitotic kinases have been also studied in different types of cancer including breast, especially in the context of epithelial-to-mesenchymal transition (EMT). EMT is a cellular process characterized by the loss of cell polarity, reorganization of the cytoskeleton, and signaling reprogramming (upregulation of mesenchymal genes and downregulation of epithelial genes). Previously, we and others have shown the effects of mitotic kinases like Nek2 and Mps1 (TTK) on EMT. In this review, we focus on Aurora A, Aurora B, Bub1, and highly expressed in cancer (Hec1) as novel targets for therapeutic interventions in breast cancer and their effects on EMT. We highlight the established relationships and interactions of these and other mitotic kinases, clinical trial studies involving mitotic kinases, and the importance that represents to develop drugs against these proteins as potential targets in the primary care therapy for TNBC.  相似文献   

6.
African-American women have a higher risk for developing triple-negative breast cancer (TNBC). Lacking the expression of receptors for estrogen and progesterone, and without human epidermal growth factor 2 receptor gene amplification, TNBC is a very aggressive type of breast cancer with a high likelihood of metastasis and recurrence. Specific therapeutic targets for this aggressive disease remain to be identified. Phosphorylation, a post-translational modification that adds one or more phosphate groups to a protein, plays a key role in the activation and deactivation of a protein’s cellular function. Here, we report the first systematic phosphoproteomic analysis of a benign breast tissue, a primary breast cancer tissue, and a metastatic breast cancer tissue from the same African-American woman. Differential phosphoprotein levels were measured with reversed-phase nano-liquid chromatography coupled to a hybrid linear quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometer (LC-LTQ/FT-ICR MS). Five proteins were found to be highly phosphorylated in the metastatic site whereas six proteins were highly phosphorylated in the cancer site of the TNBC patient. Identified phosphoproteins are known to be involved in breast cancer signal transduction pathways and these results may identify new diagnostic and therapeutic targets for TNBC.  相似文献   

7.
Triple negative breast cancer (TNBC) is the most aggressive and challenging form of breast cancers. Tumor microenvironment (TME) of TNBC is associated with induction of metastasis, immune system suppression, escaping immune detection and drug resistance. TME is highly complex and heterogeneous, consists of tumor cells, stromal cells and immune cells. The rapid expansion of tumors induce hypoxia, which concerns the reprogramming of TME components. The reciprocal communication of tumor cells and TME cells predisposes cancer cells to metastasis by modulation of developmental pathways, Wnt, notch, hedgehog and their related mechanisms in TME. Dietary phytochemicals are non-toxic and associated with various human health benefits and remarkable spectrum of biological activities. The phytochemicals serve as vital resources for drug discovery and also as a source for breast cancer therapy. The novel properties of dietary phytochemicals propose platform for modulation of tumor signaling, overcoming drug resistance, and targeting TME. Therefore, TME could serve as promising target for the treatment of TNBC. This review presents current status and implications of experimentally evaluated therapeutic phytochemicals as potential targeting agents of TME, potential nanosystems for targeted delivery of phytochemicals and their current challenges and future implications in TNBC treatment. The dietary phytochemicals especially curcumin with significant delivery system could prevent TNBC development as it is considered safe and well tolerated in phase II clinical trials.  相似文献   

8.
The notion that the immune system regulates cancer development is now well established. An overwhelming amount of data from animal models, together with compelling data from human patients, indicate that the immune system is instrumental in scanning and irradicating tumors. Analysis of individuals with congenital or acquired immunodeficiencies or patients undergoing immunosuppressive therapy has documented a highly elevated incidence of virally induced malignancies and cancers compared with immunocompetent individuals [1-3]. During the last decade, thanks to the breakthoughts in understanding the molecular mechanisms responsible for immune activation, the tumor antigen identification, the dendritic cell biology, the immunogenecity of tumors, the immune escape mechanisms, the host-tumor relationship, we are facing a new area of tumor immunotherapy. The basic advances were translated in therapeutical applications and have changed the view of immunotherapy from "a dream scenario" to a clinical fourth modality to cancer treatments. Multiple cancer trials using active immunization with vaccines or adoptive immunotherapy have been conducted with only very limited success. There are still a number of issues that still need to be resolved including a better understanding of immune escape mechanisms. Cancer vaccines continue to be evaluated and may lead to the emergence of clinically useful new treatments. A comprehensive approach to define the intricate molecular program initiated by tumor cells to resist to escape and the immune system of the host may help in breaking down the barriers to a more adapted cancer immunotherapy.  相似文献   

9.
BET bromodomain BRD4 and RAC1 oncogenes are considered important therapeutic targets for cancer and play key roles in tumorigenesis, survival and metastasis. However, combined inhibition of BRD4-RAC1 signaling pathways in different molecular subtypes of breast cancer including luminal-A, HER-2 positive and triple-negative breast (TNBC) largely remains unknown. Here, we demonstrated a new co-targeting strategy by combined inhibition of BRD4-RAC1 oncogenic signaling in different molecular subtypes of breast cancer in a context-dependent manner. We show that combined treatment of JQ1 (inhibitor of BRD4) and NSC23766 (inhibitor of RAC1) suppresses cell growth, clonogenic potential, cell migration and mammary stem cells expansion and induces autophagy and cellular senescence in molecular subtypes of breast cancer cells. Mechanistically, JQ1/NSC23766 combined treatment disrupts MYC/G9a axis and subsequently enhances FTH1 to exert antitumor effects. Furthermore, combined treatment targets HDAC1/Ac-H3K9 axis, thus suggesting a role of this combination in histone modification and chromatin modeling. C-MYC depletion and co-treatment with vitamin-C sensitizes different molecular subtypes of breast cancer cells to JQ1/NSC23766 combination and further reduces cell growth, cell migration and mammosphere formation. Importantly, co-targeting RAC1-BRD4 suppresses breast tumor growth in vivo using xenograft mouse model. Clinically, RAC1 and BRD4 expression positively correlates in breast cancer patient''s samples and show high expression patterns across different molecular subtypes of breast cancer. Both RAC1 and BRD4 proteins predict poor survival in breast cancer patients. Taken together, our results suggest that combined inhibition of BRD4-RAC1 pathways represents a novel and potential therapeutic approach in different molecular subtypes of breast cancer and highlights the importance of co-targeting RAC1-BRD4 signaling in breast tumorigenesis via disruption of C-MYC/G9a/FTH1 axis and down regulation of HDAC1.  相似文献   

10.
Triple-negative breast cancer (TNBC) was regarded as the most aggressive and mortal subtype of breast cancer (BC) since the molecular subtype system has been established. Abundant studies have revealed that epithelial-mesenchymal transition (EMT) played a pivotal role during breast cancer metastasis and progression, especially in TNBC. Herein, we showed that inhibition the expression of replication factor C subunit 3 (RFC3) significantly attenuated TNBC metastasis and progression, which was associated with EMT signal pathway. In TNBC cells, knockdown of RFC3 can down-regulate mesenchymal markers and up-regulate epithelial markers, significantly attenuated cell proliferation, migration and invasion. Additionally, silencing RFC3 expression can decrease nude mice tumor volume, weight and relieve lung metastasis in vivo. Furthermore, we also demonstrated that overexpression of RFC3 in TNBC showed increased metastasis, progression and poor prognosis. We confirmed all of these results by immunohistochemistry analysis in 127 human TNBC tissues and found that RFC3 expression was significantly associated with poor prognosis in TNBC. Taken all these findings into consideration, we can conclude that up-regulation of RFC3 promotes TNBC progression through EMT signal pathway. Therefore, RFC3 could be an independent prognostic factor and therapeutic target for TNBC.  相似文献   

11.
Triple-negative breast cancer (TNBC) is a heterogeneous disease that includes Basal-like and Claudin-low tumors. The Claudin-low tumors are enriched for features associated with epithelial-to-mesenchymal transition (EMT) and possibly for tumor initiating cells. Primary TNBCs respond relatively well to conventional chemotherapy; however, metastatic disease is virtually incurable. Thus, there is a great interest in identifying specific therapeutic targets for TNBC. The tumor suppressor RB1 is frequently lost in Basal-like breast cancer. To test for a causative role of RB1 gene loss in BC and for its effect on specific subtypes, we deleted mouse Rb in mammary stem/bipotent progenitor cells. This led to diverse mammary tumors including TNBC, with a subset of the latter containing p53 mutations and exhibiting features of Basal-like BC or EMT. Combined mutation of Rb and p53 in mammary stem/bipotent progenitors induced EMT type tumors. Here, we review our findings and those of others, which connect Rb and p53 to EMT in TNBC. Furthermore, we discuss how by understanding this circuit and its vulnerabilities, we may identify novel therapy for TNBC.  相似文献   

12.
13.

Purpose

Breast cancer is a heterogeneous disease usually including four molecular subtypes such as luminal A, luminal B, HER2-enriched, and triple-negative breast cancer (TNBC). TNBC is more aggressive than other breast cancer subtypes. Despite major advances in ER-positive or HER2-amplified breast cancer, there is no targeted agent currently available for TNBC, so it is urgent to identify new potential therapeutic targets for TNBC.

Methods

We first used microarray analysis to compare gene expression profiling between TNBC and non-TNBC. Furthermore an integrated analysis was conducted based on our own and published data, leading to more robust, reproducible and accurate predictions. Additionally, we performed qRT-PCR in breast cancer cell lines to verify the findings in integrated analysis.

Results

After searching Gene Expression Omnibus database (GEO), two microarray studies were obtained according to the inclusion criteria. The integrated analysis was conducted, including 30 samples of TNBC and 77 samples of non-TNBC. 556 genes were found to be consistently differentially expressed (344 up-regulated genes and 212 down-regulated genes in TNBC). Functional annotation for these differentially expressed genes (DEGs) showed that the most significantly enriched Gene Ontology (GO) term for molecular functions was protein binding (GO: 0005515, P = 6.09E-21), while that for biological processes was signal transduction (GO: 0007165, P = 9.46E-08), and that for cellular component was cytoplasm (GO: 0005737, P = 2.09E-21). The most significant pathway was Pathways in cancer (P = 6.54E-05) based on Kyoto Encyclopedia of Genes and Genomes (KEGG). DUSP1 (Degree = 21), MYEOV2 (Degree = 15) and UQCRQ (Degree = 14) were identified as the significant hub proteins in the protein-protein interaction (PPI) network. Five genes were selected to perform qRT-PCR in seven breast cancer cell lines, and qRT-PCR results showed that the expression pattern of selected genes in TNBC lines and non-TNBC lines was nearly consistent with that in the integrated analysis.

Conclusion

This study may help to understand the pathogenesis of different breast cancer subtypes, contributing to the successful identification of therapeutic targets for TNBC.  相似文献   

14.
The long-held belief that breast cancer is a weakly immunogenic tumor and a poor candidate for immunotherapy should be reappraised. There is ample evidence for the existence of an immune response, which is, however, attenuated by multiple inhibitory factors. Many tumor-associated antigens (TAA) have been identified in breast cancer, some of which appear to play a critical role in tumorigenesis and may be attractive targets for immunotherapy. There is evidence for DC recruitment and activation within breast cancers, and the presence of intratumoral activated DCs impacts favorably upon survival. Furthermore, there is a striking paucity of activated DCs within the primary draining or sentinel lymph nodes of breast cancers. Tumor infiltrating lymphocytes (TIL) are often documented, however, their function is impaired by inhibitory cytokines, increased regulatory T lymphocyte activity, tumor cell MHC molecule alterations, and aberrant Fas ligand expression, amongst others. DCs are recognized as one of the critical interfaces between a cancer and the immune system, and have emerged as a promising platform for cancer vaccination via ex vivo immunomodulation. Clinical evaluation of DC vaccination in breast cancer is still relatively limited, although evolving. This article details evidence for the immune response in breast cancer and its many failings, and reviews the clinical trials and significant preclinical data which, taken together, validate the concept of DC vaccination in breast cancer.  相似文献   

15.
16.
Tyrosine 211 (Y211) phosphorylation of proliferation cell nuclear antigen (PCNA) coincides with pronounced cancer cell proliferation and correlates with poor survival of breast cancer patients. In epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-resistant cells, both nuclear EGFR (nEGFR) expression and PCNA Y211 phosphorylation are increased. Moreover, the resistance to EGFR TKI is a major clinical problem in treating EGFR-overexpressing triple-negative breast cancer (TNBC). Thus, effective treatment to combat resistance is urgently needed. Here, we show that treatment of cell-penetrating PCNA peptide (CPPP) inhibits growth and induces apoptosis of human TNBC cells. The Y211F CPPP specifically targets EGFR and competes directly for PCNA tyrosine Y211 phosphorylation and prevents nEGFR from binding PCNA in vivo; it also suppresses tumor growth by sensitizing EGFR TKI resistant cells, which have enhanced nEGFR function and abrogated classical EGFR membrane signaling. Furthermore, we identify an active motif of CPPP, RFLNFF (RF6 CPPP), which is necessary and sufficient to inhibit TKI-resistant TNBC cell growth of orthotopic implanted tumor in mice. Finally, the activity of its synthetic retro-inverted derivative, D-RF6 CPPP, on an equimolar basis, is more potent than RF6 CPPP. Our study reveals a drug candidate with translational potential for the future development of safe and effective therapeutic for EGFR TKI resistance in TNBC.  相似文献   

17.
虽然近年来肿瘤的治疗取得较大进展,乳腺癌依旧是威胁女性健康的主要杀手。近年来,乳腺癌相关的免疫治疗取得较大进展,肿瘤浸润淋巴细胞(TILs)、程序性死亡受体 1(PD 1)及其配体PD L1、肿瘤突变负荷等肿瘤标志物对乳腺癌免疫治疗具有预测作用,并与乳腺癌的预后相关。免疫检查点抑制剂,例如PD-1/PD-L1及细胞毒性T淋巴细胞抗原4(CTLA 4)抑制剂在乳腺癌中取得极大进展,各期临床试验结果显示不同的效用。肿瘤疫苗的使用为乳腺癌免疫治疗的另一途径,虽然部分疫苗在临床试验中取得较好成效,但绝大多数仍需深入研究,乳腺癌免疫治疗之途仅为开端,依旧需要大量研究。本文简要介绍了乳腺癌免疫治疗相关的生物标志物、免疫检查点抑制剂以及肿瘤疫苗的研究进展。  相似文献   

18.
Due to the lack of definitive hormone receptors, triple negative breast cancer (TNBC) patients receive little clinical benefit from endocrine or molecular targeted therapies, leading to a highly aggressive disease with a high recurrence rate and poor prognosis. In the past decades, chemotherapy has been the mainstay of treatment for TNBC, with taxane/anthracyclines as the representative regimen. However, increasing irreversible cardiotoxicity of anthracyclines and drug-resistance had to be noticed. Gradually, platinum-based chemotherapy has become a topic of interest for researchers. Based on the accumulating studies on platinum-containing regimens for TNBC patients, we will summarize the progress of relevant clinical trials focusing on platinum monotherapy (e.g., cisplatin, carboplatin and oxaliplatin) or in combination with other therapeutic modalities (e.g., other chemotherapeutic agents, molecular targeted therapies and immunotherapy). To further evaluate patient response to platinum and screen for the optimal population to benefit from platinum, we will also analyze current potential biomarkers, such as breast cancer susceptibility genes (BRCA1/2), homologous recombination repair deficiency (HRD), tumor infiltrating lymphocytes (TILs), TP53 family and other emerging indicators (e.g., intrinsic subtype, cyclin-dependent kinase 2 (CDK2) expression, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9)).  相似文献   

19.
Medullary breast carcinoma (MBC) is a relatively rare malignancy with heavy lymphocytic infiltration that despite cytologically anaplastic features and high mitotic index has more favorable prognosis than other types of breast cancer. Lymphocytic infiltration of tumors reflects ongoing immune response against tumor antigens which could represent a great interest as potential targets for cancer immunotherapy. The search for MBC antigens by SEREX methodology has not been successful due to a very high titer of false positive clones, representing immunoglobulin genes. Here, we describe a novel approach for generating cDNA expression libraries from MBC tumor samples which are depleted of IgG cDNA clones and, therefore, are suitable for the identification of novel tumor-associated antigens (TAA) by SEREX approach. Modified methodology allowed us to isolate a panel of known and novel TAA which are currently under further investigation.  相似文献   

20.
Triple-negative breast cancer (TNBC) is a high-risk malignancy due to its high capacity for invasion and lack of targeted therapy. Immunotherapy continues to demonstrate efficacy in a variety of cancers, and thus may be a promising strategy for TNBC given the limited therapeutic options currently available for TNBC. In this study, we performed an exhaustive analysis of immunogenic signatures in TNBC based on 2 large-scale breast cancer (BC) genomic data. We compared enrichment levels of 26 immune cell activities and pathways among TNBC, non-TNBC, and normal tissue, and within TNBCs of different genotypic or phenotypic features. We found that almost all analyzed immune activities and pathways had significantly higher enrichment levels in TNBC than non-TNBC. Elevated enrichment of these immune activities and pathways was likely to be associated with better survival prognosis in TNBC. This study demonstrated that TNBC likely exhibits the strongest immunogenicity among BC subtypes, and thus warrants the immunotherapeutic option for TNBC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号