首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In an effort to identify the deoxyribonucleic acid (DNA) polymerase activities responsible for mammalian viral and cellular DNA replication, the effect of DNA synthesis inhibitors on isolated DNA polymerases was compared with their effects on viral and cellular DNA replication in vitro. DNA polymerase alpha, simian virus 40 (SV40) DNA replication in nuclear extracts, and CV-1 cell (the host for SV40) DNA replication in isolated nuclei all responded to DNA synthesis inhibitors in a quantitatively similar manner: they were relatively insensitive to 2',3'-dideoxythymidine 5'-triphosphate (d2TTP), but completely inhibited by aphidicolin, 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (araCTP), and N-ethylmaleimide. In comparison, DNA polymerases beta and gamma were inhibited by d2TTP but insensitive to aphidicolin and 20--30 times less sensitive to araCTP than DNA polymerase alpha. Herpes simplex virus type 1 (HSV-1) DNA polymerase and DNA polymerase alpha were the only enzymes tested that were relatively insensitive to d2TTP; DNA polymerases beta and gamma, phage T4 and T7 DNA polymerases, and Escherichia coli DNA polymerase I were 100--250 times more sensitive. The results with d2TTP were independent of enzyme concentration, primer-template concentration, primer-template choice, and the labeled dNTP. A specific requirement for DNA polymerase alpha in the replication of SV40 DNA was demonstrated by the fact that DNA polymerase alpha was required, in addition to other cytosol proteins, to reconstitute SV40 DNA replication activity in N-ethylmaleimide-inactivated nuclear extracts containing replicating SV40 chromosomes. DNA polymerases beta and gamma did not substitute for DNA polymerase alpha. In contrast to SV40 and CV-1 DNA replication, adenovirus type 2 (Ad-2) DNA replication in isolated nuclei was inhibited by d2TTP to the same extent as gamma-polymerase. Ad-2 DNA replication was also inhibited by aphidicolin to the same extent as alpha-polymerase. Synthesis of CV-1 DNA, SV40 DNA, and HSV-1 DNA in intact CV-1 cells was inhibited by aphidicolin. Ad-2 DNA replication was also inhibited, but only at a 100-fold higher concentration. We found no effect of 2'-3'-dideoxythymidine (d2Thd) on cellular or viral DNA replication in spite of the fact that Ad-2 DNA replication in isolated nuclei was inhibited 50% by a ratio of d2TTP/dTTP of 0.02. This was due to the inability of CV-1 and Hela cells to phosphorylate d2Thd to d2TTP. These data are consistent with the hypothesis that DNA polymerase alpha is the only DNA polymerase involved in replicating SV40 DNA and CV-1 DNA and that Ad-2 DNA replication involves both DNA polymerases gamma and alpha.  相似文献   

2.
We succeeded in reconstituting the endogenous nuclear DNA synthesis of the sea urchin. Endogenous DNA synthesis of isolated nuclei was reconstituted by mixing the salt-treated nuclei (chromatin exhibiting essentially no endogenous DNA synthesis) and the salt extract containing DNA polymerase-alpha. DNA synthesis in this reconstitution system showed a level of activity and a mode of inhibition by aphidicolin similar to those of the original isolated nuclei (noncompetitive with respect to dCTP). On the other hand, the inhibitory mode was competitive with respect to dCTP in DNA synthesis in the reconstituted system obtained from the chromatin and purified DNA polymerase-alpha, indicating that some other factor(s) in addition to DNA polymerase-alpha is necessary for the reconstitution with reference to the inhibitory mode of aphidicolin. We also studied the template activity of the chromatin. When chromatin was used as a template, inhibition by aphidicolin of DNA polymerase-alpha was noncompetitive and uncompetitive with respect to the template at high and low concentrations, respectively. Treatment of chromatin with 5 M urea gave urea-treated chromatin (nonhistone protein-deprived chromatin) and the extract (mainly nonhistone protein fraction). Inhibition by aphidicolin of DNA polymerase-alpha was uncompetitive with respect to the urea-treated chromatin. However, when chromatin reconstituted from the urea-treated chromatin and the extract was used as a template, the inhibitory mode by aphidicolin was similar to that with original chromatin, indicating that the nonhistone protein fraction contained factor(s) which modified the inhibitory mode of aphidicolin. Thus, the inhibitory mode of aphidicolin is a useful parameter for monitoring the resolution and reconstitution of endogenous DNA synthesis of isolated nuclei.  相似文献   

3.
The effects on DNA synthesis in vitro in mouse L929-cell nuclei of differential extraction of DNA polymerases alpha and beta were studied. Removal of all measurable DNA polymerase alpha and 20% of DNA polymerase beta leads to a 40% fall in the replicative DNA synthesis. Removal of 70% of DNA polymerase beta inhibits replicative synthesis by 80%. In all cases the nuclear DNA synthesis is sensitive to N-ethylmaleimide and aCTP (arabinosylcytosine triphosphate), though less so than DNA polymerase alpha. Addition of deoxyribonuclease I to the nuclear incubation leads to synthesis of high-molecular-weight DNA in a repair reaction. This occurs equally in nuclei from non-growing or S-phase cells. The former nuclei lack DNA polymerase alpha and the reaction reflects the sensitivity of DNA polymerase beta to inhibiton by N-ethylmaleimide and aCTP.  相似文献   

4.
A comparative study of some commonly employed laboratory procedures for studying DNA synthesis in isolated nuclei was carried out. Nuclei isolated from baby-hamster kidney (BHK-21/C13) cells synthesize DNA for 30-60min at 37 degrees C in a reaction requiring uni- and bi-valent cations, ATP and all four deoxyribonucleoside 5'-triphosphates. The addition of either ribonucleotides or cytosol from S-phase cells had no effect, but DNA synthesis was stimulated by some dextrans (mol.wt. 5x10(6)). The extent of synthesis was influenced by apparently minor variations in experimental conditions. For example, DNA synthesis by nuclei in Tris/HCl, pH7.5, was only 50% of that observed in Hepes/NaOH, pH7.5; the presence of detergents Triton X-100, Triton N-101, Nonidet P-40, Brij 58 and Tween 80 in the incubation medium altered the amount of synthesis to different extents. Although most detergents inhibited synthesis, a stimulation occurred with Tween 80 (150% of controls). These effects were reversed on washing the nuclei, except that of Brij 58, which inhibited DNA synthesis by 90-95% irreversibly. Anomalous sucrose-density-gradient sedimentation behaviour of the DNA, and of precursor [(3)H]-dTTP, was observed when nuclei were lysed with solutions of sodium dodecyl sulphate/Mg(2+) or with Sarkosyl/Mg(2+), but consistent results, showing that the DNA synthesized in vitro sedimented exclusively at about 4S, were obtained when nuclei were lysed with sodium dodecyl sulphate (without Mg(2+))/EDTA, digested with proteinase K and heated at 100 degrees C with 11% (v/v) formaldehyde to prevent macromolecular association. These results, coupled with density-labelling studies with bromodeoxyuridine and CsCl-density-gradient analysis, showed that DNA synthesis in these nuclei was replicative and was restricted to a covalent extension of Okazaki pieces previously initiated in vivo. No new initiations were observed, and the DNA was not ligated into larger molecules. The cessation of DNA synthesis after about 60 min was due to the complete utilization of available primer/template DNA.  相似文献   

5.
Methyl methanesulfonate (MMS) inhibits both thymidine incorporation into DNA in mitogen-activated human lymphocytes and deoxythymidine triphosphate incorporation into template DNA by DNA polymerase-alpha in a cell-free system. When MMS-modified DNA was used as the template for DNA synthesis utilizing unmodified DNA polymerase-alpha, nucleotide incorporation into template DNA was not inhibited. When unmodified DNA was used as the template for DNA synthesis utilizing MMS-modified DNA polymerase-alpha, nucleotide incorporation was differentially inhibited dependent on the MMS concentration. An analysis of the kinetics of DNA polymerase-alpha inhibition showed that incorporation of all 4 deoxynucleoside triphosphates into DNA template was noncompetitively inhibited by MMS, which is consistent with nonspecific MMS modification of the enzyme. These data indicate that MMS modification of DNA polymerase-alpha alone is sufficient to inhibit the incorporation of deoxynucleoside triphosphates into template DNA in vitro. The data further indicate that alkylation of both DNA polymerase-alpha and DNA template synergistically increases inhibition of DNA synthesis.  相似文献   

6.
In vitro initiation of DNA replication in simian virus 40 chromosomes   总被引:15,自引:0,他引:15  
A soluble system has been developed that can initiate DNA replication de novo in simian virus 40 (SV40) chromatin isolated from virus-infected monkey cells as well as in circular plasmid DNA containing a functional SV40 origin of replication (ori). Initiation of DNA replication in SV40 chromatin required the soluble fraction from a high-salt nuclear extract of SV40-infected cells, a low-salt cytosol fraction, polyethylene glycol, and a buffered salts solution containing all four standard deoxyribonucleoside triphosphates. Purified SV40 large tumor antigen (T-ag) partially substituted for the high-salt nucleosol, and monoclonal antibodies directed against SV40 T-ag inhibited DNA replication. Replication began at ori and proceeded bidirectionally to generate replicating DNA intermediates in which the parental strands remained covalently closed, as observed in vivo. Partial inhibition of DNA synthesis by aphidicolin resulted in accumulation of newly initiated replicating intermediates in this system, a phenomenon not observed under conditions that supported completion of replication only. However, conditions that were optimal for initiation of replication repressed conversion of late-replicating intermediates into circular DNA monomers. Most surprising was the observation that p-n-butylphenyl-dGTP, a potent and specific inhibitor of DNA polymerase-alpha, failed to inhibit replication of SV40 chromatin under conditions that completely inhibited replication of plasmid DNA containing the SV40 ori and either purified or endogenous DNA polymerase-alpha activity. In contrast, all of these DNA synthesis activities were inhibited equally by aphidicolin. Therefore, DNA replication in mammalian cells is carried out either by DNA polymerase-alpha that bears a unique association with chromatin or by a different enzyme such as DNA polymerase-delta.  相似文献   

7.
Summary Partial hepatectomy (PH) of rats (Wistar strain) resulted in acceleration of DNA synthesis in liver which reached a maximum at 36 h after PH. Whole-body radiation exposure (10 Gy) of the rats at 12 h after PH completely arrested this stimulation in DNA synthesis. The elevation of DNA synthetic rate in response to PH and complete obliteration of this stimulation by whole-body radiation exposure were found to be the reflection of levels of DNA polymerase-alpha in nuclei and nuclear matrices isolated from the rat livers. Studies based on assays of DNA polymerase in nuclei and nuclear matrices, with and without exogenous DNA template (activated calf thymus DNA), revealed that whole-body irradiation blocked induction of DNA polymerase-alpha and, in turn, assembling of DNA polymerizing apparatus. Irradiation of nuclei (suspended in buffer) in vitro at doses as high as 500 Gy did not have any inhibitory effect on DNA polymerase-alpha activitiy.  相似文献   

8.
Neuron-rich and glial nuclear preparations and liver nuclei were isolated from adult guinea pigs. These nuclei were incubated to carry out DNA-ligation and -synthesis reactions. Before and after incubation, the sizes of single-standed DNA and DNA-synthesis patterns in single strands were analysed by using alkaline sucrose-density-gradient centrifugation. Isolation of nuclei by cell-fractionation technique shortened chromatin DNA and decreased markedly the number-average molecular weight of DNA strands. Chromatin DNA in neuronal and glial nuclei was ligated at the nicks during incubation in a reaction mixture containing ATP, Mg(2+), dithiothreitol and four deoxyribonucleotides. The number-average molecular weights were estimated to increase 1.1-and 2.1-fold in neuronal and glial nuclei respectively. DNA strands in liver nuclei were shortened during incubation, but elongated under conditions that inhibit deoxyribonuclease. Since the endogenous deoxyribounuclease activity was conspicuously higher in liver nuclei than in neuronal and glial nuclei, the shortening and elongation were thought to depend on the balance between DNA ligase and deoxyribonuclease reactions. DNA synthesis occurred at the gaps in chromatin DNA and about 50% of the total synthesized DNA was found in the shorter strands having 6 to 297 bases in all species of nuclei. Based on these results, it was concluded that in nuclei isolated from non-dividing cells (neurons) and slowly dividing cells (glial and liver cells) DNA-ligation and -synthesis reactions proceeded in parallel at the breaks in single-stranded DNA, which was produced mainly by endogenous deoxyribonuclease during isolation and incubation processes.  相似文献   

9.
10.
The influence of exogenously-added glycosaminoglycans and glycoproteins on DNA synthesis in isolated nuclei, from normal and malignant tissues, was investigated. Heparin stimulated DNA synthesis in normal cell nuclei at concentrations (heparin/DNA (w/w) <0.9) which inhibited DNA synthesis in tumor cell nuclei. At higher concentrations (heparin/DNA (w/w) > 0.9) heparin inhibited DNA synthesis in both normal and tumor cell nuclei. The chondroitin-4 and 6-sulfates, heparan sulfate, cartilage proteoglycan, N-desulfated heparin, and glycophorin caused inhibition of DNA synthesis at all concentrations tested and in all nuclei examined. Hyaluronic acid, dermatan sulfate, keratan sulfate, α1-acid glycoprotein and fetuin had no significant influence on DNA synthesis in isolated nuclei.  相似文献   

11.
Sodium butyrate (3 mM) inhibited the entry into the S phase of quiescent 3T3 cells stimulated by serum, but had no effect on the accumulation of cellular ribonucleic acid. Simian virus 40 infection or manual microinjection of cloned fragments from the simian virus 40 A gene caused quiescent 3T3 cells to enter the S phase even in the presence of butyrate. NGI cells, a line of 3T3 cells transformed by simian virus 40, grew vigorously in 3 mM butyrate. Homokaryons were formed between G1 and S-phase 3T3 cells, Butyrate inhibited the induction of deoxyribonucleic acid synthesis that usually occurs in B1 nuclei when G1 cells are fused with S-phase cells. However, when G1 3T3 cells were fused with exponentially growing NGI cells, the 3T3 nuclei were induced to enter deoxyribonucleic acid synthesis. In tsAF8 cells, a ribonucleic acid polymerase II mutant that stops in the G1 phase of the cell cycle, no temporal sequence was demonstrated between the butyrate block and the temperature-sensitive block. These results confirm previous reports that certain virally coded proteins can induce cell deoxyribonucleic acid synthesis in the absence of cellular functions that are required by serum-stimulated cells. Our interpretation of these data is that butyrate inhibited cell growth by inhibiting the expression of genes required for the G0 leads to G1 leads to S transition and that the product of the simian virus 40 A gene overrode this inhibition by providing all of the necessary functions for the entry into the S phase.  相似文献   

12.
Hepatic nuclei that are isolated in aquenous solutions of low ionic strength or glycerol contain all or nearly all the nonmitochondrial DNA polymerase activity of the cell. The presence of polymerase activity in the cytoplasm is due to extraction of nuclear enzymes by buffer and inorganic salts. Even with low ionic strength solutions, some leaching of nuclear enzymes occurs if the concentration of liver in the homogenizing medium is greater than 10%. As defined by sucrose gradient analysis, the normal adult rat liver nucleus contains mainly or entirely a single species of DNA polymerase (3.2 S) whereas the regenerating nucleus after 70% hepatectomy has an additional enzyme (7.1 S). The total activity of regenerating nuclei is about twice the normal value. The increase resides in the 7.1 S activity. The 7.1 S DNA polymerase had been purified partially from regenerating liver nuclei (isolated in low ionic strength solutions) and cytosol (prepared under conditions of nuclear enzyme extraction). The properties of the activity from the two sources are indistinguishable. A mixture of albumin and spermidine enhances by several-fold the activities of the 3.2 S and 7.1 S DNA polymerases. In the presence of spermidine, but not in its absence, the activity of the 7.1 S DNA polymerase is strictly proportional to the amount of the enzyme preparation.  相似文献   

13.
A Bolden  J Aucker    A Weissbach 《Journal of virology》1975,16(6):1584-1592
Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha.  相似文献   

14.
We have examined the effect that microinjection of a monoclonal antibody directed against human DNA polymerase-alpha (SJK-287) has on DNA synthesis in exponentially growing human, mouse, and hamster cell lines. We show that the SJK-287 antibody, when microinjected directly into the nuclei of cells is capable of inhibiting DNA synthesis in all three cell lines tested. Moreover, the effectiveness with which this antibody can inhibit ongoing DNA synthesis by the microinjection assay is closely correlated with the ability of the antibody to neutralize DNA polymerase-alpha activity fractionated from each cell line in vitro. Two other monoclonal antibodies of the same class, one directed against the cellular p53 protein (PAb122), and one directed against the c-myc protein (PM-8) were also tested for their ability to inhibit ongoing DNA synthesis by direct microinjection and in lysolecithin permeabilized cells. Both monoclonal antibodies failed to inhibit ongoing DNA synthesis in exponentially growing cells by these assays.  相似文献   

15.
The effects of various polyanions including synthetic polynucleotides on DNApolymerases-alpha and -beta from blastulae of the sea urchin Hemicentrotus pulcherrimus and HeLa cells were studied. Only DNA polymerase-alpha was inhibited by polyanions, such as polyvinyl sufate, dextran sulfate, heparin, poly(G), poly(I), poly(U) and poly(ADP-Rib). Of the various polynucleotides tested, poly(G) and poly(I) were the strongest inhibitors. Kinetic studies showed that the Ki value for poly(G) was 0.3 microgram/ml and that poly(G) had 20-fold higher affinity than activated DNA for the template-primer site of DNA polymerase-alpha. Poly(U) and poly(ADP-Rib) were also inhibitory, but they were one hundredth as inhibitory as poly(G) or poly(I). Poly(A), poly(C), poly(A).poly(U) AND POLY(I).poly(C) were not inhibitory to DNA polymerase-alpha. In contrast, DNA olymerase-beta was not affected at all by these polyanions under the same conditions.  相似文献   

16.
THE DNA POLYMERASES OF THE FOLLOWING EUKARYOTIC TISSUES WERE STUDIED: regenerating rat liver, normal rat liver, rat thymus, normal mouse liver and Ehrlich ascites-tumour cells. In all cases two main polymerase forms are observed, one of mol.wt. 200000, preferring denatured DNA to native calf thymus DNA primer, designated type I, and the other, designated type II, of mol.wt. 100000, showing a variable and slight preference for native calf thymus DNA primer. Some catalytic properties of these polymerases are described. Nuclei have been isolated from some of these tissues by using two different buffer systems. The ionic composition of the isolation medium is found to affect greatly the amounts and types of polymerase that bind to the nuclei, and also affects the kinetic properties of the polymerases. The way the polymerases and nuclei change properties as the ionic composition of the buffers is changed suggests that ionic effects may be a significant factor in the control of DNA synthesis in vivo. These ionic effects also explain much of the previous confusion over the localization of specific DNA polymerases.  相似文献   

17.
Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.  相似文献   

18.
The activities of DNA polymerase-alpha and -beta isolated from pig spleen were determined at different temperatures and in the presence of different concentrations of inhibitors. The results were compared with parallel estimations of replicative DNA synthesis and UV-induced repair synthesis in spleen cells. In respect to pCMB and aCTP, polymerase-alpha is more sensitive than polymerase-beta and similarly is replication more sensitive than repair. Repair synthesis and the activity of polymerase-beta decreases at temperatures higher than 40 degrees C whereas both replication and the activity of polymerase-alpha are greatly stimulated at elevated temperatures with optima of 45 degrees C (polymerase-alpha) and 41 degrees C (replication). The results favour the hypothesis that polymerase-beta is involved in repair synthesis.  相似文献   

19.
The effect of regucalcin, a Ca2+-binding protein isolated from rat liver cytosol, on deoxyribonucleic acid (DNA) synthesis in the nuclei of regenerating rat liver was investigated. At 1 day after partial hepatectomy, the liver weight was increased about 50% of that of sham-operated rats, and it reached to the same levels as sham operation at 3 days after hepatectomy. Nuclear DNA synthesis was markedly increased at 1 day after hepatectomy, and this increase was also seen at 3 days. Nuclear DNA synthesis was clearly enhanced in the presence of EGTA (0.4 mM) in the incubation mixture. The presence of Ca2+ ( 1.0–25 M) caused a significant decrease in the nuclear DNA synthesis of normal rat liver. Regucalcin (0.25 and 0.5 M) clearly inhibited the nuclear DNA synthesis of normal rat liver. This inhibition was also seen in the presence of Ca2+ (1.0 M). Moreover, in the liver nuclei obtained at 1 day after partial hepatectomy, the presence of regucalcin (0.05–0.5 M) caused a remarkable inhibition of nuclear DNA synthesis. This effect was also revealed in the presence of EGTA (0.4 mM). Thus, the inhibitory effect of regucalcin was remarkable in regenerating rat liver nuclei in comparison with that of normal rat liver. The present results demonstrate that regucalcin can suppress nuclear DNA synthesis in regenerating rat liver. We suppose that regucalcin may have a role in the regulation of nuclear DNA synthesis in liver cell proliferation.  相似文献   

20.
DNA polymerase beta was isolated from rat cortex neurons and characterised. Its properties were strikingly similar to those of other mammalian beta-polymerases. In adult rats, this was the major DNA polymerase occurring in neuronal nuclei, which contained no alpha-polymerase, 99.2% beta-polymerase and only 0.8% gamma-polymerase. Isolated neuronal nuclei of this developmental stage were shown to perform ultraviolet-induced repair DNA synthesis in vitro. Since beta-polymerase was virtually the exclusive DNA polymerase in these nuclei it was concluded that the beta enzyme was responsible for the observed DNA repair. This was further substantiated by demonstrating a virtually complete suppression of DNA repair in irradiated nuclei by 2',3'-dideoxyribosylthymine 5'-triphosphate (d2TTP), a potent beta-polymerase inhibitor. However, the presence of minute amounts of gamma-polymerase in neuronal nuclei and its susceptibility to d2TTP did not allow one to rule out an ancillary role of DNA polymerase gamma in DNA repair. In view of the similarity of the neuronal DNA polymerase beta with all other mammalian beta-polymerases it may be speculated that the ability to perform repair DNA synthesis is not unique to the neuronal enzyme but is a general function of all beta-polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号