首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
A calcium-dependent transient outward current in Xenopus laevis oocytes   总被引:40,自引:0,他引:40  
Membrane currents were investigated in Xenopus laevis oocytes under voltage clamp. Depolarizing pulses, given from a holding potential of about-100 mV, elicited a transient outward current when the membrane potential was made more positive than about-20 mV. As the potential was made increasingly positive the transient outward current first increased and then decreased. The amplitude of the transient current increased when the external Ca2+ concentration was raised; and the current was abolished by Mn2+. It appears that when the membrane is depolarized Ca2+ ions enter the oocyte and trigger an outward current, possibly by opening C1- channels.  相似文献   

2.
The effects of MnCl2 on outward currents in frog atrial muscle were investigated under voltage-clamp conditions. MnCl2 (3 mmol/L), which completely abolished the slow inward current, produced a decrease in the outward background current (Ib) at potentials positive to -50 mV. The delayed outward current (Ix, time dependent) was not altered by Mn. "Isochronic activation curves" for Ix and decay of current tails at -40 mV remained unaffected after Mn. Effects on Ib probably reflect a decrease in IK1 related to the decrease in Ca influx as well as a reduction in the Na-Ca exchange current.  相似文献   

3.
Block by calcium of ATP-activated channels in pheochromocytoma cells   总被引:12,自引:0,他引:12  
We have investigated the effects of Ca2+ on Na+ influx through ATP- activated channels in pheochromocytoma PC12 cells using single channel current recordings. Under cell-attached patch-clamp conditions with 150 mM Na+ and 2 mM Ca2+ in the pipette, the unitary current activity showed an open level of about -4.3 pA at -150 mV. The channel opening was interrupted by flickery noise as well as occasional transition to a subconducting state of about -1.7 pA at -150 mV. The open level was decreased with increased external Ca2+, suggesting that external Ca2+ blocks Na+ permeation. We assessed the block by Ca2+ as the mean amplitude obtained with heavy filtration according to Pietrobon et al. (Pietrobon, D., B. Prod'hom, and P. Hess, 1989. J. Gen. Physiol. 94:1- 21). The block was concentration dependent with a Hill coefficient of 1 and a half-maximal concentration of approximately 6 mM. A similar block was observed with other divalent cations, and the order of potency was Cd2+ > Mn2+ > Mg2+ not equal to Ca2+ > Ba2+. High Ca2+, Mg2+ and Ba2+ did not block completely, probably because they can carry current in the channel. The block by external Ca2+ did not exhibit voltage dependence between -100 and -210 mV. In the inside-out patch-clamp configuration, the amplitude of inward channel current obtained with 150 mM external Na+ was reduced by increased internal Ca2+. The reduction was observed at lower concentrations than that by external Ca2+. Internal Ba2+ and Cd2+ induced similar reduction in current amplitude. This inhibitory effect of internal Ca2+ was voltage dependent; the inhibition was relieved with hyperpolarization. The results suggest that both external and internal Ca2+ can block Na+ influx through the ATP-activated channel. A simple one-binding site model with symmetric energy barriers is not sufficient to explain the Ca2+ block from both sides.  相似文献   

4.
5.
Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin   总被引:7,自引:0,他引:7  
Human neutrophils, preloaded with the fluorescent probe, Fura-2, were exposed to Ca2+-releasing agents. The monitored traces of fluorescence were transformed by computer to cytosolic Ca2+ concentration ([ Ca2+]i). Due to quenching of Fura-2, the addition of Mn2+ enabled us to compute the cytosolic concentration of total manganese ([Mn]i). The agents used were the novel Ca2+-mobilizing agent, thapsigargin (Tg), the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP), and the divalent cation ionophore, A23187. The agents caused transient rises of [Ca2+]i and monotonous rises of [Mn]i, suggesting influx but no efflux of Mn2+. The rise time of [Ca2+]i and the time constants and magnitude of the apparent Mn2+ influx were strongly dependent on the sequence of addition of the agonist and Ca2+. Contrary to FMLP, Tg needed several minutes to exert its full effect on the rise of [Ca2+]i and on the influx of Mn2+, the latter being dependent on two phases, activation and partial inactivation. Pretreatment with phorbol 12-myristate 13-acetate (PMA) inhibited the responses of Tg, FMLP and A23187. For comparison, human red blood cells were tested. Contrary to A23187, Tg did not induce Ca2+ uptake in ATP-depleted red cells but increased the Ca2+ pump flux in intact red cells by 10%. The experimental data and computer simulations of the granulocyte data suggest that time-dependent changes of both passive Ca2+ flux into the cytosol and Ca2+ flux of the plasma membrane pump are involved in the transient [Ca2+]i response.  相似文献   

6.
We investigated membrane currents activated by intracellular divalent cations in two types of molluscan pacemaker neurons. A fast and quantitative pressure injection technique was used to apply Ca2+ and other divalent cations. Ca2+ was most effective in activating a nonspecific cation current and two types of K+ currents found in these cells. One type of outward current was quickly activated following injections with increasing effectiveness for divalent cations of ionic radii that were closer to the radius of Ca2+ (Ca2+ greater than Cd2+ greater than Hg2+ greater than Mn2+ greater than Zn2+ greater than Co2+ greater than Ni2+ greater than Pb2+ greater than Sr2+ greater than Mg2+ greater than Ba2+). The other type of outward current was activated with a delay by Ca2+ greater than Sr2+ greater than Hg2+ greater than Pb2+. Mg2+, Ba2+, Zn2+, Cd2+, Mn2+, Co2+, and Ni2+ were ineffective in concentrations up to 5 mM. Comparison with properties of Ca2(+)-sensitive proteins related to the binding of divalent cations suggests that a Ca2(+)-binding protein of the calmodulin/troponin C type is involved in Ca2(+)-dependent activation of the fast-activated type of K+ current. Th sequence obtained for the slowly activated type is compatible with the effectiveness of different divalent cations in activating protein kinase C. The nonspecific cation current was activated by Ca2+ greater than Hg2+ greater than Ba2+ greater than Pb2+ greater than Sr2+, a sequence unlike sequences for known Ca2(+)-binding proteins.  相似文献   

7.
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.  相似文献   

8.
We have investigated the sub-second kinetics of changes in cytosolic free calcium, [Ca2+]i, in fura-2-loaded human platelets by stopped-flow fluorimetry. Thrombin, vasopressin, platelet-activating factor, and the thromboxane A2 analogue U46619 all evoked a rise in [Ca2+]i which was delayed in onset by 200-400 ms in the presence of 1 mM external Ca2+. The responses to these agonists in media containing 1 mM EGTA or 1 mM Ni2+, to prevent Ca2+ influx, were delayed by an additional 60-100 ms. These results indicate that agonist-evoked Ca2+ influx precedes the release of Ca2+ from internal stores. The delays in onset of both responses are sufficient for one or more biochemical steps to lie between ligand-receptor binding and Ca2+ flux generation. ADP responses in media containing EGTA or Ni2+ were similar to those evoked by other agonists, but the response in the presence of external Ca2+ was markedly shorter, occurring without measurable delay at optimal ligand concentration. Analysis of this response showed some delay in ADP-evoked influx at lower concentrations, but this delay was markedly less than that observed with thrombin at doses giving the same elevation in [Ca2+]i. These results suggest that ADP evokes influx using a different transduction system, more closely coupled to the Ca2+ entry system than that used by other agonists. Differences between thrombin- and ADP-evoked influx were further demonstrated by the inhibitory actions of cAMP, which reduced and substantially increased the delay in onset of thrombin-evoked influx but did not measurably delay the influx evoked by an optimal concentration of ADP.  相似文献   

9.
An increase in concentration of cytosolic Ca2+ ([Ca2+]i) is associated with an accelerated influx of 45Ca2+ when cultured RBL-2H3 cells are stimulated with either antigen or analogs of adenosine although these agents act via different receptors and coupling proteins (Ali, H., Cunha-Melo, J.R., Saul, W.F., and Beaven, M.A. (1990) J. Biol. Chem. 265, 745-753). The same mechanism probably operates for basal Ca2+ influx in unstimulated cells and for the accelerated influx in stimulated cells. This influx had the following characteristics. 1) It was decreased when cells were depolarized with high external K+; 2) it was blocked by other cations (La3+ greater than Zn2+ greater than Cd2+ greater than Mn2 = Co2+ greater than Ba2+ greater than Ni2+ greater than Sr2+) either by competing with Ca2+ at external sites (e.g. La3+ or Zn2+) or by co-passage into the cell (e.g. Mn2+ or Sr2+); and 3) the inhibition of influx by K+ and the metal ions had exactly the same characteristics whether cells were stimulated or unstimulated even though influx rates were different. The dependence of various cellular responses on influx of Ca2+ was demonstrated as follows. The stimulated influx of Ca2+, rise in [Ca2+]i, and secretion, could be blocked in a concentration-dependent manner by increasing the concentration of La3+, but concentrations of La3+ (greater than 20 microM) that suppressed influx to below basal rates of influx markedly suppressed the hydrolysis of inositol phospholipids (levels of inositol 1,4,5-trisphosphate were unaffected). Some metal ions, e.g. Mn2+ and Sr2+, however, supported the stimulated hydrolysis of inositol phospholipid and some secretion in the absence of Ca2+. Thus a basal rate of influx of Ca2+ was required for the full activation of inositol phospholipid hydrolysis, but in addition an accelerated influx was necessary for exocytosis.  相似文献   

10.
The effects of serotonin (5-HT) on membrane potential, membrane resistance, and select ionic currents were examined in large pedal neurons (LP1, LP3) of the mollusk Hermissenda. Calcium (Ca) action potentials were evoked in sodium-free artificial seawater containing tetramethylammonium, tetraethylammonium, and 4-aminopyridine (0-Na, 4-AP, TEA ASW). They failed at stimulation rates greater than 0.5/sec and were blocked by cadmium (Cd). Under voltage clamp the calcium current (ICa) responsible for them also failed with repeated stimulation. Thus, ICa inactivation accounts for refractoriness of the Ca action potential. The addition of 10 microM 5-HT to 0-Na, 4-AP, TEA ASW produced a slight depolarization and increased excitability and input resistance. Under voltage clamp the background current decreased. The voltage-dependent inward, late outward, and outward tail currents, sensitive to Cd, increased. ICa inactivation persisted. Under voltage clamp with Ca influx blocked by Cd, the addition of 10 microM 5-HT decreased the remaining current uniformly over membrane potentials of -10 to -100 mV. Thus, 5-HT reduces a background current that is active within the physiological range of the membrane potential, voltage insensitive, independent of Ca influx, noninactivating, and not blocked by 4-AP or TEA.  相似文献   

11.
Two recent studies reported that Na-Ca exchange in the outer segments of tiger salamander rod photoreceptors (Cervetto, L., Lagnado, L., Perry, R. J., Robinson, D. W., and McNaughton, P. A. (1989) Nature 337, 740-743) and of bovine rod photoreceptors (Schnetkamp, P. P. M., Basu, D. K., and Szerencsei, R. T. (1989) Am. J. Physiol. 257, C153-157) requires and transports K+ in a 4Na/(1Ca+1K) stoichiometry. In this study, we have examined the effects of K+ ions and membrane potential on the kinetics of Na-Ca and Ca-Ca exchange in rod outer segments isolated from bovine retinas. The objective was to establish the ion selectivity and voltage dependence of the different cation binding sites on the Na-Ca-K exchange protein. Potassium ions activated Na-Ca exchange when present on the Ca2+ side, although the extent of activation decreased with decreasing Na+ concentration. Potassium ions inhibited Na-Ca exchange when present on the Na+ side; inhibition arose from competition between Na+ and K+ for a common single cation-binding site. Activation of Na-Ca exchange by K+ displayed a different ion selectivity than that observed for inhibition of Na-Ca exchange by K+. The results are interpreted in terms of a three-site model for the rod Na-Ca-K exchanger. The rate of forward Na-Ca exchange decreased by 1.75-fold for a 60 mV depolarization of the plasma membrane but only at lower Na+ concentrations. The rate of Ca-Ca exchange was not affected by changes in membrane potential.  相似文献   

12.
Ion fluxes associated with translocation of diphtheria toxin across the surface membrane of Vero cells were studied. When cells with surface-bound toxin were exposed to low pH to induce toxin entry, the cells became permeable to Na+, K+, H+, choline+, and glucosamine+. There was no increased permeability to Cl-, SO4(-2), glucose, or sucrose, whereas the uptake of 45Ca2+ was slightly increased. The influx of Ca2+, which appears to be different from that of monovalent cations, was reduced by several inhibitors of anion transport and by verapamil, Mn2+, Co2+, and Ca2+, but not by Mg2+. The toxin-induced fluxes of N+, K+, and protons were inhibited by Cd2+. Cd2+ also protected the cells against intoxication by diphtheria toxin, suggesting that the open cation-selective channel is required for toxin translocation. The involvement of the toxin receptor is discussed.  相似文献   

13.
The effect of membrane potential on the passive 45Ca2+ uptake by cardial sarcolemmal vesicles was investigated. Membrane potentials were generated by the K+ gradient in the presence of valinomycin and were measured using fluorescent dye diS-C3-(5). It was shown that the 45Ca2+ influx into vesicles increased twice after membrane depolarization. Evaluation of the 45Ca2+ influx over a wide range of membrane potentials produced a profile similar to that of current-voltage relationships for single calcium channels in isolated cardiomyocytes. Passive 45Ca2+ transport was inhibited by 1 mM Cd2+ and Co2+. It is suggested that the voltage-dependent Ca2+ influx into vesicles occurs through Ca2+-channels.  相似文献   

14.
The neuropeptide somatostatin causes membrane hyperpolarization and reduces the intracellular free calcium ion concentration ([Ca2+]i) in GH pituitary cells. In this study, we have used the fluorescent dyes bisoxonol (bis,-(1,3-diethylthiobarbiturate)-trimethineoxonol) and quin2 to elucidate the mechanisms by which these ionic effects are triggered. Addition of 100 nM somatostatin to GH4C1 cells caused a 3.4 mV hyperpolarization and a 26% decrease in [Ca2+]i within 30 s. These effects were not accompanied by changes in intracellular cAMP concentrations and occurred in cells containing either basal or maximally elevated cAMP levels. To determine which of the major permeant ions were involved in these actions of somatostatin, we examined its ability to elicit changes in the membrane potential and the [Ca2+]i when the transmembrane concentration gradients for Na+, Cl-, Ca2+, and K+ were individually altered. Substitution of impermeant organic ions for Na+ or Cl- did not block either the hyperpolarization or the decrease in [Ca2+]i induced by somatostatin. Decreasing extracellular Ca2+ from 1 mM to 250 nM abolished the reduction in [Ca2+]i but did not prevent the hyperpolarization response. These results show that hyperpolarization was not primarily due to changes in the conductances of Na+, Cl-, or Ca2+. Although the somatostatin-induced decrease in [Ca2+]i did require Ca2+ influx, it was independent of changes in Na+ or Cl- conductance. In contrast, elevating the extracellular [K+] from 4.6 to 50 mM completely blocked both the somatostatin-induced hyperpolarization and the reduction in [Ca2+]i. Furthermore, hyperpolarization of the cells with gramicidin mimicked the effect of somatostatin to decrease the [Ca2+]i and prevented any additional effect by the hormone. These results indicate that somatostatin increases a K+ conductance, which hyperpolarizes GH4C1 cells, and thereby secondarily decreases Ca2+ influx. Since the somatostatin-induced decrease in [Ca2+]i is independent of changes in intracellular cAMP levels, it may be responsible for somatostatin inhibition of hormone secretion by its cAMP-independent mechanism.  相似文献   

15.
It was found that the initial rate of passive KC1-stimulated Ca2+ influx into sarcoplasmic reticulum (SR) vesicles follows the saturation kinetics at Ca2+ concentrations of 8-10 mM. The inhibitory effect of Ca2+ channel blockers (La3+, Mn2+, Co2+, Cd2+, Mg2+) on passive Ca2+ influx into SR vesicles is competitive with respect to Ca2+. These blockers also inhibit the initial fast phase of Ca2+ efflux from Ca2+-loaded SR vesicles. Verapamil (0.1-0.5 mM) added to the incubation mixture has no effect on passive Ca2+ fluxes across the SR vesicle membrane or on Ca2+ binding and ATP-dependent Ca2+ accumulation. However, preincubation of SR vesicles with verapamil (18 hours, 4 degrees C) or its introduction into the medium for SR vesicle isolation leads to the inhibition of passive Ca2+ fluxes.  相似文献   

16.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

17.
Using a potential-sensitive fluorescent probe diS-C3-(5), the formation of the membrane (K+-diffusion) potential, delta psi, in the myometrium sarcolemmal vesicular fraction was demonstrated. The magnitude of this potential corresponds to that calculated according to the Nernst equation, is time-stable (characteristic dissociation time--3-5 min) and temperature-dependent and is generated upon the substitution of the anion (Cl- for gluconate-) and the compensating cation (Na+ for Tris+, choline+). The change in delta psi from -61 to 0 mV leads to the activation of passive Ca2+ efflux from the vesicles (with choline+ as the compensating cation in the dilution medium). At the same value of the potential, i. e., -61 mV, the substitution of choline in the dilution medium for Na+ or Li+ stimulates the passive release of Ca2+. Co2+, Mn2+ and D-600 suppress this process by 15-20% in depolarized vesicles which points to the inhibition of Ca2+ release with an alteration of the membrane potential value from 0 to -61 mV (20%). The potential-dependent component of passive Ca2+ transport is characterized by saturation with the substrate (Km = 0.5 mM). The dependence of Ca2+ flux release from the sarcolemmal vesicles on the membrane potential value (-60-+27 mV) is bell-shaped and qualitatively relative to the volt-amper characteristics of the steady state Ca2+ flux in single smooth muscle cells. Analysis of experimental results revealed that the potential-dependent component of passive Ca2+ transport in myometrium sarcolemmal vesicles is determined by the non-activated Ca2+ conductivity of plasma membrane.  相似文献   

18.
Ca2+ entry under resting conditions may be important for contraction of vascular smooth muscle, but little is known about the mechanisms involved. Ca2+ leakage was studied in the A7r5 smooth muscle-derived cell line by patch-clamp techniques. Two channels that could mediate calcium influx at resting membrane potentials were characterized. In 110 mM Ba2+, one channel had a slope conductance of 6.0 +/- 0.6 pS and an extrapolated reversal potential of +41 +/- 13 mV (mean +/- SD, n = 8). The current rectified strongly, with no detectable outward current, even at +90 mV. Channel gating was voltage independent. A second type of channel had a linear current-voltage relationship, a slope conductance of 17.0 +/- 3.2 pS, and a reversal potential of +7 +/- 4 mV (n = 9). The open probability increased e-fold per 44 +/- 10 mV depolarization (n = 5). Both channels were also observed in 110 mM Ca2+. Noise analysis of whole-cell currents indicates that approximately 100 6-pS channels and 30 17-pS channels are open per cell. These 6-pS and 17-pS channels may contribute to resting calcium entry in vascular smooth muscle cells.  相似文献   

19.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

20.
The influx of the toxic cation Cd2+ was studied in fura 2-loaded rat cerebellar granule neurons. In cells depolarized with Ca2(+)-free, high-KCI solutions, the fluorescence emission ratio (R) increased in the presence of 100 microM Cd2(+). This increase was fully reversed by the Cd2+ chelator tetrakis(2-pyridylmethyl)ethylenediamine, indicating a cadmium influx into the cell. The rate of increase, dR/dt, was greatly reduced (67+/-5%) by 1 microM nimodipine and enhanced by 1 microM Bay K 8644. Concurrent application of nimodipine and omega-agatoxin IVA (200 nM) blocked Cd2+ permeation almost completely (88+/-5%), whereas omega-conotoxin MVIIC (2 microM) reduced dR/dt by 24+/-8%. These results indicate a primary role of voltage-dependent calcium channels in Cd2+ permeation. Stimulation with glutamate or NMDA and glycine also caused a rise of R in external Cd2+. Simultaneous application of nimodipine and omega-agatoxin IVA moderately reduced dR/dt (25+/-3%). NMDA-driven Cd2(+) entry was almost completely prevented by 1 mM Mg2+, 50 microM memantine, and 10 microM 5,7-dichlorokynurenic acid, suggesting a major contribution of NMDA-gated channels in glutamate-stimulated Cd2+ influx. Moreover, perfusion with alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate caused a slow increase of R. These results suggest that Cd2+ permeates the cell membrane mainly through the same pathways of Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号