首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand why the RecA proteins of the protease-constitutive recA1202 and recA1211 mutants show very high protease activities in vivo without the usual need for DNA damage (E. S. Tessman and P. Peterson, J. Bacteriol. 163:677-687, 1985), we examined the activation of the mutant proteins by nucleoside triphosphates (NTPs) in vitro. In vivo, the mutant protease activities are resistant to inhibition by cytidine plus guanosine (C + G) in the growth medium, in contrast to the activities of weaker mutants, such as recA441, which are sensitive to C + G inhibition. We found that RecA1202 and RecA1211 proteins, in contrast to RecA+, can use natural NTPs other than ATP and dATP as cofactors in the cleavage of LexA repressor. The effectiveness of NTPs in promoting LexA cleavage by RecA1202 and RecA1211 proteins decreased in roughly the following order: dATP greater than ATP greater than UTP greater than ATP-gamma S greater than dCTP greater than CTP greater than dGTP greater than GTP greater than TTP. These mutant proteins showed higher affinities for ATP and single-stranded DNA and higher repressor cleavage activities than RecA+ protein. With the various effectors (single-stranded DNA or NTPs), the RecA1202 protein always showed more activity than RecA1211 in the cleavage of LexA repressor in vitro, which is consistent with the greater activity of the recA1202 mutant in vivo. The results explain, in part, why some recA mutants have unusually high constitutive RecA protease activity and why that activity is more or less resistant to C + G inhibition.  相似文献   

2.
We isolated recA mutants with altered protease activity and then examined recombinase activity to determine whether the protease and recombinase functions of the RecA protein of Escherichia coli are separable. We found five mutants that had moderately strong constitutive RecA protease activity but no recombinase activity above the delta recA strain background, the first clear-cut examples of mutants of this class, designated Prtc Rec-. We also isolated 65 mutants that were protease-defective toward the LexA repressor and found that all of them were also recombinase deficient. Four of these mutants retained both partial recombinase activity and partial inducible protease activity. The recombinase-defective mutants were much more sensitive than the recA+ strain to crystal violet, kanamycin, and chloramphenicol, indicating altered membrane permeability. The recA (Prtc Rec-) mutants had a subtle alteration in protease specificity, all being defective in spontaneous induction of phages lambda imm434 and 21. They differed from Prtc Rec+ mutants of comparable or even weaker constitutive protease strength, all of which showed dramatic spontaneous induction of these prophages. However, treating a Prtc Rec- mutant with mitomycin C resulted in significant prophage induction. Thus, the RecA proteins of the Prtc Rec- mutants have constitutive protease activity toward the LexA repressor, but have only DNA damage-activable protease activity toward phage repressors. UV-induced mutagenesis from his to his+ was studied for one Prtc Rec- mutant, and induced mutation frequencies as high as those for the recA+ strain were found despite the absence of recombinase activity.  相似文献   

3.
The LexA repressor of Escherichia coli represses a set of genes that are expressed in the response to DNA damage. After inducing treatments, the repressor is inactivated in vivo by a specific cleavage reaction which requires an activated form of RecA protein. In vitro, specific cleavage requires activated RecA at neutral pH and proceeds spontaneously at alkaline pH. We have isolated and characterized a set of lexA mutants that are deficient in in vivo RecA-mediated cleavage but retain significant repressor function. Forty-six independent mutants, generated by hydroxylamine and formic acid mutagenesis, were isolated by a screen involving the use of operon fusions. DNA sequence analysis identified 20 different mutations. In a recA mutant, all but four of the mutant proteins functioned as repressor as well as wild-type LexA. In a strain carrying a constitutively active recA allele, recA730, all the mutant proteins repressed a sulA::lacZ fusion more efficiently than the wild-type repressor, presumably because they were cleaved poorly or not at all by the activated RecA protein. These 20 mutations resulted in amino acid substitutions in 12 positions, most of which are conserved between LexA and four other cleavable proteins. All the mutations were located in the hinge region or C-terminal domain of the protein, portions of LexA previously implicated in the specific cleavage reactions. Furthermore, these mutations were clustered in three regions, around the cleavage site (Ala-84-Gly-85) and in blocks of conserved amino acids around two residues, Ser-119 and Lys-156, which are believed essential for the cleavage reactions. These three regions of the protein thus appear to play important roles in the cleavage reaction.  相似文献   

4.
The recF143 mutant of Escherichia coli is deficient in certain functions that also require the RecA protein: cell survival after DNA damage, some pathways of genetic recombination, and induction of SOS genes and temperate bacteriophage through cleavage of the LexA and phage repressors. To characterize the role of RecF in SOS induction and RecA activation, we determined the effects of the recF143 mutation on the rate of RecA-promoted cleavage of LexA, the repressor of the SOS genes. We show that RecA activation following UV irradiation is delayed by recF143 and that RecF is specifically involved in the SOS induction pathway that requires DNA replication. At 32 degrees C, the recA441 mutation partially suppresses the defect of recF mutants in inducing the SOS system in response to UV irradiation (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. R. Volkert, L. J. Margossian, and A. J. Clark, J. Bacteriol. 160:702-705, 1984); we find that this suppression occurs at the earliest detectable phase of LexA cleavage and does not require protein synthesis. Our results support the idea that following UV irradiation, RecF enhances the activation of RecA into a form that promotes LexA cleavage (A. Thomas and R. G. Lloyd, J. Gen. Microbiol. 129:681-686, 1983; M. V. V. S. Madiraju, A. Templin, and A. J. Clark, Proc. Natl. Acad. Sci. USA 85:6592-6596, 1988). In contrast to the constitutive activation phenotype of the recA441 mutant, the recA441-mediated suppression of recF is not affected by adenine and nucleosides. We also find that wild-type RecA protein is somewhat activated by adenine in the absence of DNA damage.  相似文献   

5.
Summary The phenotype of the recA1730 mutant is highly dependent on the level of expression of the RecA1730 protein. If the recA1730 gene was expressed from its own promoter, the cells were deficient in recombination and SOS induction. In contrast, when the recA1730 gene was expressed under the control of recAo98, a constitutive operator that increased the RecA1730 concentration 20-fold, cells became proficient in recombination and SOS induction. Likewise, in crude extracts, fivefold more RecA1730 than RecAwt was required to produce full cleavage of LexA protein. The requirement for a high RecA1730 concentration for recombination and LexA cleavage suggests that the recA1730 defect alters a common reaction step. In fact, in vitro data show that the impaired assembly of RecA1730 protein on single-stranded DNA (ssDNA) can account for the mutant phenotype. Purified RecA1730 protein was assayed in vitro for ssDNA binding and ATPase activities. RecA1730, like RecAwt, retained ssDNA equally well on nitrocellulose filters; this activity was specifically inhibited by a monoclonal anti-RecA antibody. However, RecA1730 protein did not form complete filaments on ssDNA, as shown by two observations: (i) most of the protein did not elute with ssDNA during gel filtration; and (ii) binding of RecA1730 to ssDNA did not protect it from being digested by DNaseI. RecA1730 hydrolysed ATP in high salt but was defective in ssDNA-dependent ATP hydrolysis. These results strongly suggest that RecA1730 binds to ATP and ssDNA but does not form normal nucleoprotein filaments.Abbreviations RecAwt RecA wind-type protein - ssDNA singlestranded DNA - dsDNA dmble-stranded DNA  相似文献   

6.
The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5′–3′ exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a β-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5′–3′ exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.  相似文献   

7.
ATP hydrolysis during SOS induction in Escherichia coli.   总被引:2,自引:1,他引:1  
Changes in cellular ATP concentration during SOS induction in strains of Escherichia coli with different levels of RecA and LexA proteins were studied. UV irradiation of RecA+ strains induced a twofold increase in the ATP concentration around the first 20 min, followed by a decrease to the values of nonirradiated cells. On the other hand, mutants defective in RecA protein or with either deficient RecA protease activity or cleavage-resistant LexA repressor did not show any decrease, suggesting that ATP consumption is related to LexA repressor hydrolysis. Furthermore, strains presenting a constitutive synthesis of RecA protein showed the same changes in ATP concentration as the wild-type strain. Likewise, the presence in a RecA+ strain of a LexA(Def) protein, which is defective in its capacity for binding specifically to SOS operators, did not disturb the changes in ATP when compared with the LexA+ RecA+ strain. Moreover, after UV irradiation, a LexA(Def) RecA- double mutant showed an important increase in ATP concentration, which remained elevated for at least 120 min after UV treatment.  相似文献   

8.
In recA718 lexA+ strains of Escherichia coli, induction of the SOS response requires DNA damage. This implies that RecA718 protein, like RecA+ protein, must be converted, by a process initiated by the damage, to an activated form (RecA) to promote cleavage of LexA, the cellular repressor of SOS genes. However, when LexA repressor activity was abolished by a lexA-defective mutation [lexA(Def)], strains carrying the recA718 gene (but not recA+) showed strong SOS mutator activity and were able to undergo stable DNA replication in the absence of DNA damage (two SOS functions known to require RecA activity even when cleavage of LexA is not necessary). lambda lysogens of recA718 lexA(Def) strains exhibited mass induction of prophage, indicative of constitutive ability to cleave lambda repressor. When the cloned recA718 allele was present in a lexA+ strain on a plasmid, SOS mutator activity and beta-galactosidase synthesis under LexA control were expressed in proportion to the plasmid copy number. We conclude that RecA718 is capable of becoming activated without DNA damage for cleavage of LexA and lambda repressor, but only if it is amplified above its base-line level in lexA+ strains. At amplified levels, RecA718 was also constitutively activated for its roles in SOS mutagenesis and stable DNA replication. The nucleotide sequence of recA718 reveals two base substitutions relative to the recA+ sequence. We propose that the first allows the protein to become activated constitutively, whereas the second partially suppresses this capability.  相似文献   

9.
The recA432 mutant allele was isolated (T. Kato and Y. Shinoura, Mol. Gen. Genet. 156:121-131, 1977) by virtue of its defect in cellular mutagenesis (Mut-) and its hypersensitivity to damage by UV irradiation (UVs), which were phenotypes expected for a recA mutant. However, we found that in a different genetic background (lexA51 sulA211 uvrB+), recA432 mutants expressed certain mutant phenotypes but not the Mut- and UVs phenotypes (D.G. Ennis, N. Ossanna, and D.W. Mount, J. Bacteriol. 171:2533-2541, 1989). We present several lines of evidence that these differences resulted from the sulA genotype of the cell and that the apparent UVs and Mut- phenotypes of the sulA+ derivatives resulted from lethal filamentation of induced cells because of persistent derepression of sulA. First, transduction of sulA(Def) mutations into the recA432 strains restored cellular mutagenesis and resistance to UV. Second, recA432 sulA+ strains underwent filamentous death following SOS-inducing treatments. Third, cleavage of LexA repressor in a recA432 strain continued at a rapid rate long after UV induction, at a time when cleavage of the repressor in the recA+ parental strain had substantially declined. Fourth, we confirmed that a single mutation (recA432) conferring both the UVs and Mut- phenotypes mapped to the recA gene. These findings indicate that the RecA432 mutant protein is defective in making the transition back to the deactivated state following SOS induction; thus, the SOS-induced state of recA432 mutants is prolonged and can account for an excess of SulA protein, leading to filamentation. These results are discussed in the context of molecular models for RecA activation for LexA and UmuD cleavage and their roles in the control of mutagenesis and cell division in the SOS response.  相似文献   

10.
The recA730 mutation results in constitutive SOS and prophage induction. We examined biochemical properties of recA730 protein in an effort to explain the constitutive activity observed in recA730 strains. We find that recA730 protein is more proficient than the wild-type recA protein in the competition with single-stranded DNA binding protein (SSB protein) for single-stranded DNA (ssDNA) binding sites. Because an increased aptitude in the competition with SSB protein has been previously reported for recA441 protein and recA803 protein, we directly compared their in vitro activities with those of recA730 protein. At low magnesium ion concentration, both ATP hydrolysis and lexA protein cleavage experiments demonstrate that these recA proteins displace SSB protein from ssDNA in a manner consistent with their in vivo repressor cleavage activity, i.e. recA730 protein > recA441 protein > recA803 protein > recAwt protein. Additionally, a correlation exists between the proficiency of the recA proteins in SSB protein displacement and their rate of association with ssDNA. We propose that an increased rate of association with ssDNA allows recA730 protein to displace SSB protein from the ssDNA that occurs naturally in Escherichia coli and thereby to become activated for the repressor cleavage that leads to SOS induction. RecA441 protein is similarly activated for repressor cleavage; however, in this case, significant SSB protein displacement occurs only at elevated temperature. At physiological magnesium ion concentration, we argue that recA803 protein and wild-type recA protein do not displace sufficient SSB protein from ssDNA to constitutively induce the SOS response.  相似文献   

11.
As a prerequisite to mutational analysis of functional sites on the RecA protein of Escherichia coli, a method was developed for rapid isolation of recA mutants with altered RecA protease function. The method involves plating mutagenized lambda recA+ cI ind on strains deleted for recA and containing, as indicators of RecA protease activity, Mu d(Ap lac) fusions in RecA-inducible genes. The lambda recA phages were recognized by their altered plaque colors, and the RecA protease activity of the lambda recA mutant lysogens was measured by expression of beta-galactosidase from dinD::lac. One class of recA mutants had constitutive protease activity and was designated Prtc; in these cells the RecA protein was always in the protease form without the usual need for DNA damage to activate it. Some Prtc mutants were recombinase negative and were designated Prtc Rec-. Another class of 65 recA mutants isolated as being protease defective were all also recombinase defective. Unlike the original temperature-dependent Prtc Rec+ mutant (recA441), the new Prtc Rec+ mutants showed constitutive protease activity at any growth temperature, with some having considerably greater activity than the recA441 strain. Study of these strong Prtc Rec+ mutants revealed a new SOS phenomenon, increased permeability to drugs. Use of this new SOS phenomenon as an index of protease strength clearly distinguished 5 Prtc mutants as the strongest among 150. These five strongest Prtc mutants showed the greatest increase in spontaneous mutation frequency and were not inhibited by cytidine plus guanosine, which inhibited the constitutive protease activity of the recA441 strain and of all the other new Prtc mutants. Strong Prtc Rec+ mutants were more UV resistant than recA+ strains and showed indications of having RecA proteins whose specific activity of recombinase function was higher than that of wild-type RecA. A Prt+ Rec- mutant with an anomalous response to effectors is described.  相似文献   

12.
To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+. With respect to other RecA functions, recA1730 was recessive to recA+. This demonstrates that RecA protein has an additional role in mutagenesis beside mediating the cleavage of LexA and UmuD proteins.  相似文献   

13.
Evidence is presented that recA functions which promote the SOS functions of mutagenesis, LexA protein proteolysis, and lambda cI repressor proteolysis are each genetically separable from the others. This separation was observed in recombination-proficient recA mutants and rec+ (F' recA56) heterodiploids. recA430, recA433, and recA435 mutants and recA+ (F' recA56) heterodiploids were inducible for only one or two of the three functions and defective for mutagenesis. recA80 and recA432 mutants were constitutively activated for two of the three functions in that these mutants did not have to be induced to express the functions. We propose that binding of RecA protein to damaged DNA and subsequent interaction with small inducer molecules gives rise to conformational changes in RecA protein. These changes promote surface-surface interactions with other target proteins, such as cI and LexA proteins. By this model, the recA mutants are likely to have incorrect amino acids substituted as sites in the RecA protein structure which affect surface regions required for protein-protein interactions. The constitutively activated mutants could likewise insert altered amino acids at sites in RecA which are involved in the activation of RecA protein by binding small molecules or polynucleotides which metabolically regulate RecA protein.  相似文献   

14.
The role of Tyr264 in nucleotide binding and hydrolysis catalyzed by the RecA protein of Escherichia coli was investigated by constructing Gly, Ser, and Phe substitution mutations using oligonucleotide-directed mutagenesis. The corresponding mutant recA genes neither restored resistance to killing by ultraviolet irradiation nor increased homologous recombination in a recA strain. The purified RecA(Gly264) protein was unable to bind nucleotide, hydrolyze ATP, or form stable ternary complexes with adenosine 5'-O-thiotriphosphate and DNA although the mutant protein bound DNA normally in the absence of nucleotide. The RecA (Phe264) and RecA(Ser264) proteins hydrolyzed ATP poorly and the rates were reduced approximately 8- and 18-fold, respectively. Although capable of low levels of ATP hydrolysis, neither the RecA(Phe264) nor the RecA(Ser264) protein promoted DNA pairing or strand exchange reactions in vitro. Furthermore, these mutant RecA proteins were impaired in their ability to form salt-resistant ternary complexes with adenosine 5'-O-thiotriphosphate) and DNA as judged by filter binding. Nevertheless, nucleoprotein complexes formed with either RecA(Phe264) or RecA(Ser264) protein directed efficient cleavage of LexA repressor in vitro. These results demonstrate that Tyr264 is required for efficient ATP hydrolysis and for homologous pairing of DNA but does not participate in activating RecA protein for LexA repressor autodigestion.  相似文献   

15.
Sensing DNA damage and initiation of genetic responses to repair DNA damage are critical to cell survival. In Escherichia coli , RecA polymerizes on ssDNA produced by DNA damage creating a RecA–DNA filament that interacts with the LexA repressor inducing the SOS response. RecA filament stability is negatively modulated by RecX and UvrD. recA730 (E38K) and recA4142 (F217Y) constitutively express the SOS response. recA4162 (I298V) and recA4164 (L126V) are intragenic suppressors of the constitutive SOS phenotype of recA730 . Herein, it is shown that these suppressors are not allele specific and can suppress SOSC expression of recA730 and recA4142 in cis and in trans . recA4162 and recA4164 single mutants (and the recA730 and recA4142 derivatives) are Rec+, UVR and are able to induce the SOS response after UV treatment like wild-type. UvrD and RecX are required for the suppression in two ( recA730,4164 and recA4142,4162 ) of the four double mutants tested. To explain the data, one model suggests that recA C alleles promote SOSC expression by mimicking RecA filament structures that induce SOS and the suppressor alleles mimic RecA filament at end of SOS. UvrD and RecX are attracted to these latter structures to help dismantle or destabilize the RecA filament.  相似文献   

16.
The double substitution of Glu156 with Leu and Gly157 with Val in the Escherichia coli RecA protein results in a severely reduced level of recombination and constitutive coprotease behavior. Here we present our examination of the biochemical properties of this mutant protein, RecA N99, in an effort to understand its phenotype and the role of loop 1 (L1) in RecA function. We find that RecA N99 protein has reduced single-stranded DNA (ssDNA)-dependent ATP hydrolysis activity, which is not as sensitive to the presence of SSB protein as wild-type RecA protein. RecA N99 protein is also nearly unable to utilize duplex DNA as a polynucleotide cofactor for ATP hydrolysis, and it shows both a decreased rate of association with ssDNA and a diminished capacity to bind DNA in the secondary binding site. The mutant protein has a corresponding reduction in DNA strand exchange activity, which probably results in the decrease in recombination activity in vivo. The constitutive induction of the SOS response may be a consequence of the impaired ability to repair damaged DNA, resulting in unrepaired ssDNA which can act as a cofactor for the cleavage of LexA repressor. These findings point to an involvement of L1 in both the primary and secondary DNA binding sites of the RecA protein.  相似文献   

17.
The Escherichia coli SOS system is a well-established model for the cellular response to DNA damage. Control of SOS depends largely on the RecA protein. When RecA is activated by single-stranded DNA in the presence of a nucleotide triphosphate cofactor, it mediates cleavage of the LexA repressor, leading to expression of the 30+-member SOS regulon. RecA activation generally requires the introduction of DNA damage. However, certain recA mutants, like recA730, bypass this requirement and display constitutive SOS expression as well as a spontaneous (SOS) mutator effect. Presently, we investigated the possible interaction between SOS and the cellular deoxynucleoside triphosphate (dNTP) pools. We found that dNTP pool changes caused by deficiencies in the ndk or dcd genes, encoding nucleoside diphosphate kinase and dCTP deaminase, respectively, had a strongly suppressive effect on constitutive SOS expression in recA730 strains. The suppression of the recA730 mutator effect was alleviated in a lexA-deficient background. Overall, the findings suggest a model in which the dNTP alterations in the ndk and dcd strains interfere with the activation of RecA, thereby preventing LexA cleavage and SOS induction.  相似文献   

18.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R ( recA2201 ) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induction in vivo . We have combined the K72R variant of RecA with another mutation, RecA E38K ( recA730 ). In vitro , the double mutant RecA E38K/K72R ( recA730,2201 ) mimics the K72R mutant protein in that it has no ATPase activity. The double mutant protein will form long extended filaments on ssDNA and facilitate LexA cleavage almost as well as wild-type, and do so in the presence of ATP. Unlike recA K72R, the recA E38K/K72R double mutant promotes SOS induction in vivo after UV treatment. Thus, SOS induction does not require ATP hydrolysis by the RecA protein, but does require formation of extended RecA filaments. The RecA E38K/K72R protein represents an improved reagent for studies of the function of ATP hydrolysis by RecA in vivo and in vitro .  相似文献   

19.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

20.
Very little is known about the role of DNA repair networks in Brucella abortus and its role in pathogenesis. We investigated the roles of RecA protein, DNA repair, and SOS regulation in B. abortus. While recA mutants in most bacterial species are hypersensitive to UV damage, surprisingly a B. abortus recA null mutant conferred only modest sensitivity. We considered the presence of a second RecA protein to account for this modest UV sensitivity. Analyses of the Brucella spp. genomes and our molecular studies documented the presence of only one recA gene, suggesting a RecA-independent repair process. Searches of the available Brucella genomes revealed some homology between RecA and RadA, a protein implicated in E. coli DNA repair. We considered the possibility that B. abortus RadA might be compensating for the loss of RecA by promoting similar repair activities. We present functional analyses that demonstrated that B. abortus RadA complements a radA defect in E. coli but could not act in place of the B. abortus RecA. We show that RecA but not RadA was required for survival in macrophages. We also discovered that recA was expressed at high constitutive levels, due to constitutive LexA cleavage by RecA, with little induction following DNA damage. Higher basal levels of RecA and its SOS-regulated gene products might protect against DNA damage experienced following the oxidative burst within macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号