首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The interferon-inducible protein kinase PKR interacts with a number of small viral RNA species, including adenovirus VAI RNA and the Epstein-Barr virus-encoded RNA EBER-1. These RNAs bind to PKR and protect protein synthesis from inhibition by double-stranded RNA in the reticulocyte lysate system. Using a peptide phosphorylation assay we show here that EBER-1, like VAI, directly inhibits the activation of purified PKR. A second Epstein-Barr virus RNA, EBER-2, also regulates PKR. EBER-1, EBER-2 and VAI RNA exhibit mutually competitive binding to the native or recombinant enzyme, as assessed by U.V. crosslinking experiments and filter binding assays. The affinities of all three RNAs for PKR in vitro are similar (Kd = ca. 0.3 nM). Since this protein kinase has been proposed to exert a tumour suppressor function in vivo, the ability of EBER-1 to inhibit its activation suggests a role for this small RNA in cell transformation by Epstein-Barr virus.  相似文献   

2.
The VAI RNA of adenovirus is a small, RNA polymerase III-transcribed species required for the efficient translation of host cell and viral mRNAs late after infection. VAI RNA prevented activation of the interferon-induced P1/eIF-2 alpha kinase. In its absence the kinase was activated, eIF-2 alpha was phosphorylated, and translational initiation was inhibited. H5dl331 (dl331), a mutant which cannot express VAI RNA, grew poorly in 293 cells but generated wild-type yields in KB cells. The growth phenotype of the mutant appeared to correlate with the kinetics of kinase induction and activation. Active kinase appeared more rapidly in cell extracts prepared from infected 293 cells, in which dl331 grew poorly, than in extracts of KB cells, in which the mutant grew well. However, when kinase was induced in KB cells by interferon treatment and then activated subsequent to dl331 infection, viral protein synthesis was less severely inhibited than in interferon-treated 293 cells. Thus, activated kinase per se is insufficient to severely inhibit dl331 protein synthesis in KB cells.  相似文献   

3.
Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).  相似文献   

4.
The protein kinase from human cells dependent on double-stranded (ds) RNA is a 68-kDa protein (p68 kinase), the level of which is enhanced significantly in cells treated with interferon. When activated by low concentrations of dsRNA, the p68 kinase becomes phosphorylated and thereby catalyzes the phosphorylation of the protein-synthesis initiation factor, eIF2. Here, we have purified the p68 kinase to homogeneity using a specific monoclonal antibody to investigate its capacity to bind dsRNA, poly(I).poly(C). Our study suggest that p68 kinase has high- and low-affinity binding sites: the high-affinity binding site is responsible for the activation and the low-affinity binding site for the inhibition of kinase activity. This is in accord with the fact that autophosphorylation of p68 kinase occurs at low concentrations of dsRNA whereas high concentrations of dsRNA inhibit its autophosphorylation. We have also investigated the binding of adenoviral VAI RNA to the purified p68 kinase and have found that the affinity of this binding is lower than that of poly(I).poly(C). We show that VAI RNA can activate or inhibit autophosphorylation of p68 kinase in a dose-dependent manner, i.e. activation at less than or equal to 1 microgram/ml or inhibition at greater than 1 microgram/ml of VAI RNA. In spite of its lower affinity of binding, VAI RNA cannot be displaced by poly(I).poly(C) or reovirus dsRNA. These data confirm our previous results to illustrate that VAI RNA can bind p68 kinase and cause its inactivation irreversably.  相似文献   

5.
Adenoviruses use the virus-encoded virus-associated RNA (VAI RNA) as a defense against cellular antiviral response by blocking the activation of the interferon-induced, double-stranded RNA-activated protein kinase PKR. The structure of VAI RNA consists of two long, imperfectly base-paired duplex regions connected by a complex short stem-loop at the center, referred to as the central domain. By using a series of adenovirus mutants with linker-scan mutations in the VAI RNA gene, we recently showed that the critical elements required for function in the VAI RNA molecule are in the central domain and that these same elements of the central domain are also involved in binding to PKR. In virus-infected cells, VAI RNA interacts with latent kinase, which is bound to ribosomes; this interaction takes place in a complex milieu. To more fully understand the relationship between structure and function and to determine whether the in vivo phenotype of these mutants can be reproduced in vitro, we have now analyzed these mutant VAI alleles for their ability to block the activation of a partially purified PKR from HeLa cells. We have also derived the structure of these mutants experimentally and correlated the structure with function. Without exception, when the structure of the short stem-loop of the central domain was perturbed, the mutants failed to inhibit PKR. Structural disruptions elsewhere in the central domain or in the long duplex regions of the molecule were not deleterious for in vitro function. Thus, these results support our previous findings and underscore the importance of the elements present in the central domain of the VAI RNA for its function. Our results also suggest that the interaction between PKR and VAI RNA involves a precise secondary (and tertiary) structure in the central domain. It has been suggested that VAI RNA does not activate PKR in virus-infected cells because of mismatches in the imperfectly base-paired long duplex regions. We constructed mutant VAI genes in which the imperfectly base-paired duplex regions were converted to perfectly base-paired regions and assayed in vitro for the activation of PKR. As with the wild-type VAI RNA, these mutants failed to activate PKR in vitro, while they were able to block the activation of PKR better than did the wild type. These results suggest that the failure of VAI RNA to activate PKR is not the result of mismatches in the long duplex regions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We have investigated the interaction of VAI RNA with the interferon-induced, double-stranded (ds) RNA-activated protein kinase, P68, both of which regulate protein synthesis in adenovirus-infected cells. Previous work has shown that during infection by the VAI RNA-negative mutant, dl331, both viral and cellular protein synthesis are inhibited due to phosphorylation of the alpha-subunit of the eukaryotic initiation factor, eIF-2, by the P68 protein kinase. Utilizing monoclonal antibodies specific for P68, we demonstrated that the physical levels of P68 in dl331-infected, wild-type Ad2-infected and uninfected cells were all comparable suggesting that the elevated kinase activity detected during mutant infection was not due to increased P68 synthesis. To examine the basis of the increased activity of P68, the protein kinase was purified from infected-cell extracts using the monoclonal antibody. We found that P68 was heavily autophosphorylated during dl331 infection but not during wild-type or mock infection. The extent of autophosphorylation correlated with elevated P68 activity and the loss of the dsRNA requirements to phosphorylate the exogenous substrates, eIF-1 alpha and histones. We also analyzed VAI RNA function in vitro and present evidence that purified VAI RNA can block the autophosphorylation of P68 in the ribosomal salt wash fraction of interferon-treated cells. Finally we suggest VAI RNA functions through a direct interaction with the P68 protein kinase, since we demonstrated that VAI RNA forms a complex with P68 both in vitro and in vivo.  相似文献   

7.
8.
Protein kinase R (PKR) is an interferon-induced kinase that plays a pivotal role in the innate immunity pathway for defense against viral infection. PKR is activated to undergo autophosphorylation upon binding to RNAs that contain duplex regions. Activated PKR phosphorylates the α-subunit of eukaryotic initiation factor 2, thereby inhibiting protein synthesis in virus-infected cells. Viruses have evolved diverse PKR-inhibitory strategies to evade the antiviral response. Adenovirus encodes virus-associated RNA I (VAI), a highly structured RNA inhibitor that binds PKR but fails to activate. We have characterized the stoichiometry and affinity of PKR binding to define the mechanism of PKR inhibition by VAI. Sedimentation velocity and isothermal titration calorimetry measurements indicate that PKR interactions with VAI are modulated by Mg2+. Two PKR monomers bind in the absence of Mg2+, but a single monomer binds in the presence of divalent ion. Known RNA activators of PKR are capable of binding multiple PKR monomers to allow the kinase domains to come into close proximity and thus enhance dimerization. We propose that VAI acts as an inhibitor of PKR because it binds and sequesters a single PKR in the presence of divalent cation.  相似文献   

9.
B Thimmappaya  N Jones  T Shenk 《Cell》1979,18(4):947-954
Mutant dl 309 is a viable Ad5 deletion mutant. Whereas wild-type Ad5-infected HeLa cells contain two VAI RNA species [VAI(A) and VAI(G)] which differ by three nucleotides at their 5' ends, dl 309-infected HeLa cells contain VAI(G) but no VAI(A) RNA. Nucleotide sequence analysis indicates that dl 309 lacks two base pairs which precede the 5' end of VAI(A) by 22 nucleotides. Since the 5' ends of VAI RNAs are not processed, the 309 deletion serves to identify a portion of the sequence required for RNA polymerase III initiation. Since dl 309 grows as well as wild-type Ad5 in HeLa cells, the VAI(A) species is not essential for viral growth in these cells.  相似文献   

10.
Sequence-specific interference by small RNAs derived from adenovirus VAI RNA   总被引:11,自引:0,他引:11  
Sano M  Kato Y  Taira K 《FEBS letters》2006,580(6):1553-1564
  相似文献   

11.
Interferon (IFN)-inducible, double-stranded (dsRNA)-activated protein kinase (PKR) is a key mediator of the antiviral and antiproliferative effects of IFN. PKR is present within cells in a latent state. In response to binding dsRNA, the enzyme becomes activated, causing autophosphorylation and an increase in specific kinase activity. In order to study PKR and its inhibitors, a large amount of the enzyme in its latent, unphosphorylated state is required. When PKR is fused to glutathione S-transferase (GST-PKR) and the fusion protein is expressed in Escherichia coli, the PKR obtained is fully activated by autophosphorylation. Therefore, we have developed an expression plasmid in which both GST-PKR and bacteriophage lambda protein phosphatase (lambda-PPase) genes were placed downstream of a T7 promoter. After induction of expression, unphosphorylated GST-PKR was obtained in good yield, and purified to near homogeneity. The purified enzyme has dsRNA-dependent activation and phosphorylates the translation initiation factor eIF2 alpha. Using the recombinant protein, we analyzed the inhibition mechanisms of two viral inhibitors, vaccinia virus K3L protein and adenovirus virus-associated RNA I (VAI RNA). K3L inhibited both autophosphorylation of PKR and phosphorylation of eIF2 alpha, whereas VAI RNA inhibited only autophosphorylation. The separation of autophosphorylation and catalytic activity shows that the recombinant PKR is useful in analyzing the functions of PKR, its inhibitors, and its regulatory molecules. The coexpression system of protein kinase with lambda-PPase described here will be applicable to obtaining unphosphorylated and unactivated forms of other protein kinases.  相似文献   

12.
Recently, by genetic and biochemical approaches, it has been shown that adenovirus VAI RNA is required for efficient translation of viral mRNAs at late times after infection. To understand the nucleotide sequences and the domains of the VAI RNA that are responsible for the role of VAI RNA in enhancement of translation, a mutational analysis of the VAI gene was undertaken. Deletion, substitution, and insertion mutations covering most of the nucleotide sequences of VAI RNA were introduced into the VAI gene at the plasmid level. These mutant genes were then reintroduced into the virus, and growth properties of the mutant viruses were studied. The majority of the mutants retained normal or nearly normal levels of biological function. Mutations in the region between +43 and +53 and between +107 and the 3' end of the gene resulted in a considerable loss of activity. These mutants, however, grew significantly better than did an adenovirus type 5 mutant lacking both functional VAI and VAII genes, indicating that they retain a portion of their activity. Because no one mutation was able to completely abolish the function, we suggest that the VAI RNA may have multiple functional sites for its translation modulation function. These multiple sites may be short oligonucleotide sequences that may interact with cellular or viral components or both during translation.  相似文献   

13.
14.
COS cells transfected with plasmids that activate DAI depend on expression of virus-associated I (VAI) RNA to prevent the inhibitory effects of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) kinase (DAI) and restore the translation of vector-derived dihydrofolate reductase mRNA. This VAI RNA requirement could be completely replaced by reovirus polypeptide sigma 3, consistent with its double-stranded RNA (dsRNA)-binding activity. S4 gene transfection of 293 cells also partially restored adenovirus protein synthesis after infection with the VAI-negative dl331 mutant. In dl331-infected 293 cells, eIF-2 alpha was present mainly in the acidic, phosphorylated form, and trans complementation with polypeptide sigma 3 or VAI RNA decreased the proportion of eIF-2 alpha (P) from approximately 85 to approximately 30%. Activation of DAI by addition of dsRNA to extracts of S4 DNA-transfected COS cells required 10-fold-higher levels of dsRNA than extracts made from cells that were not producing polypeptide sigma 3. In extracts of reovirus-infected mouse L cells, the concentration of dsRNA needed to activate DAI was dependent on the viral serotype used for the infection. Although the proportion of eIF-2 alpha (P) was greater than that in uninfected cells, most of the factor remained in the unphosphorylated form, even at 16 h after infection, consistent with the partial inhibition of host protein synthesis observed with all three viral serotypes. The results indicate that reovirus polypeptide sigma 3 participates in the regulation of protein synthesis by modulating DAI and eIF-2 alpha phosphorylation.  相似文献   

15.
Adenoviruses use virus-associated RNA I (VAI RNA) to counteract the cellular antiviral response mediated by the interferon-induced, double-stranded-RNA-activated protein kinase PKR. VAI RNA is a highly structured small RNA which consists of two long duplex regions connected at the center by a complex, short stem-loop. This short stem-loop and the adjacent base-paired regions, referred to as the central domain, bind to PKR and inactivate it. Currently it is not known whether binding of VAI RNA to PKR is dependent solely on the secondary (and tertiary) structure of the central domain or whether nucleotide sequences in the central domain are also critical for this interaction. To address this question, 54 VAI mutants with single-base substitution mutations in the central domain of the RNA were constructed, and their capacities to inhibit the autophosphoryation of PKR in vitro were determined. It was found that although about half of the mutants inhibited PKR activity as efficiently as the wild type, a significant number of mutants lost the inhibitory activity substantially, without a perceptible change in their secondary structures. These results indicate that, in addition to secondary structure, at least some nucleotides in the central domain may be critical for the efficient function of VAI RNA.  相似文献   

16.
Poppers J  Mulvey M  Khoo D  Mohr I 《Journal of virology》2000,74(23):11215-11221
Upon activation by double-stranded RNA in virus-infected cells, the cellular PKR kinase phosphorylates the translation initiation factor eukaryotic initiation factor 2 (eIF2) and thereby inhibits protein synthesis. The gamma 34.5 and Us11 gene products encoded by herpes simplex virus type 1 (HSV-1) are dedicated to preventing the accumulation of phosphorylated eIF2. While the gamma 34.5 gene specifies a regulatory subunit for protein phosphatase 1 alpha, the Us11 gene encodes an RNA binding protein that also prevents PKR activation. gamma 34.5 mutants fail to grow on a variety of human cells as phosphorylated eIF2 accumulates and protein synthesis ceases prior to the completion of the viral life cycle. We demonstrate that expression of a 68-amino-acid fragment of Us11 containing a novel proline-rich basic RNA binding domain allows for sustained protein synthesis and enhanced growth of gamma 34.5 mutants. Furthermore, this fragment is sufficient to inhibit activation of the cellular PKR kinase in a cell-free system, suggesting that the intrinsic activities of this small fragment, notably RNA binding and ribosome association, may be required to prevent PKR activation.  相似文献   

17.
Functional dissection of adenovirus VAI RNA.   总被引:14,自引:8,他引:6       下载免费PDF全文
During the course of adenovirus infection, the VAI RNA protects the translation apparatus of host cells by preventing the activation of host double-stranded RNA-activated protein kinase, which phosphorylates and thereby inactivates the protein synthesis initiation factor eIF-2. In the absence of VAI RNA, protein synthesis is drastically inhibited at late times in infected cells. The experimentally derived secondary structure of VAI RNA consists of two extended base-paired regions, stems I and III, which are joined by a short base-paired region, stem II, at the center. Stems I and II are joined by a small loop, A, and stem III contains a hairpin loop, B. At the center of the molecule and at the 3' side, stems II and III are connected by a short stem-loop (stem IV and hairpin loop C). A fourth, minor loop, D, exists between stems II and IV. To determine sequences and domains critical for function within this VAI RNA structure, we have constructed adenovirus mutants with linker-scan substitution mutations in defined regions of the molecule. Cells infected with these mutants were analyzed for polypeptide synthesis, virus yield, and eIF-2 alpha kinase activity. Our results showed that disruption of base-paired regions in the distal parts of the longest stems, I and III, did not affect function, whereas mutations causing structural perturbations in the central part of the molecule containing stem II, the proximal part of stem III, and the central short stem-loop led to loss of function. Surprisingly, one substitution mutant, sub742, although dramatically perturbing the integrity of the structure of this central portion, showed a wild-type phenotype, suggesting that an RNA with an alternate secondary structure is functional. On the basis of sensitivity to single-strand-specific RNases, we can derive a novel secondary structure for the mutant RNA in which a portion of the sequences may fold to form a structure that resembles the central part of the wild-type molecule, which suggests that only the short stem-loop located in the center of the molecule and the adjoining base-paired regions may define the functional domain. These results also imply that only a portion of the VAI RNA structure may be recognized by the host factor(s).  相似文献   

18.
19.
In the past, simian virus 40 (SV40) has been used as a cloning vehicle to clone foreign genes by substituting portions of the viral genome vital for viral replication. Propagation of these defective viruses required a helper virus and the recombinant viruses obtained could be grown only as a mixture. In this study, we describe a novel nondefective SV40 vector to clone small RNA polymerase III genes. Two small RNA polymerase III genes, an amber suppressor human serine tRNA gene and the adenovirus (Ad) VAI RNA gene, were cloned in the intron region of the large-T antigen gene of SV40 after deleting DNA sequences coding for the small-t polypeptide. The recombinant viruses grew to wild type levels and showed no growth defects. When CV-1p cells were infected with these viruses, the cloned RNA polymerase III genes were expressed at high levels at late times. Interestingly, large amounts VAI RNA in CV-1p cells infected with SV40-VA recombinant virus, did not enhance translation of viral mRNAs significantly but did lead to a 3 to 4 fold increase in the steady state levels of large-T mRNA suggesting a novel function for VAI RNA in SV40 infected monkey cells. Furthermore, VAI mutants which fail to function in Ad infected human cells also failed to enhance the levels of large-T mRNAs in monkey cells infected with SV40. The simple SV40 vector described here may be useful to study the structure and function of small RNA polymerase III genes in the context of a eucaryotic chromosome. In addition, the nondefective recombinant SV40 which expresses the suppressor tRNA gene at high levels may provide a useful helper system to propagate animal viruses with amber mutations in essential genes.  相似文献   

20.
M B Mathews 《Enzyme》1990,44(1-4):250-264
The initiation of protein synthesis in adenovirus-infected cells is regulated during the late phase in two ways, which may be related. The overall translation rate is maintained by a small viral RNA, VA RNAI, which prevents the phosphorylation of initiation factor eIF-2 by a double-stranded RNA-activated protein kinase, DAI. In addition, the relative efficiency of translation of host cell and viral mRNA populations is regulated in the infected cell during the late phase such that viral mRNAs are selectively utilized. Three viral elements have been implicated in this process: the 5' leader present on most late viral mRNAs; the late protein, 100K; and VA RNA. This article reviews the mechanisms underlying these translational control phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号