首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Martin AN  Li Y 《Cell research》2007,17(3):219-226
RNase MRP RNA is the RNA subunit of the RNase mitochondrial RNA processing (MRP) enzyme complex that is involved in multiple cellular RNA processing events. Mutations on RNase MRP RNA gene (RMRP) cause a recessively inherited developmental disorder, cartilage-hair hypoplasia (CHH). The relationship of the genotype (RMRP mutation), RNA processing deficiency of the RNase MRP complex, and the phenotype of CHH and other skeletal dysplasias is yet to be explored.  相似文献   

2.
RNase MRP is a ribonucleoprotein enzyme with a structure similar to RNase P. It is required for normal processing of precursor rRNA, cleaving it in the Internal Transcribed Spacer 1. Abbreviations: RNase MRP RNase for mitochondrial RNA processing; also involved in pre-rRNA processing; RNase P - RNase for pre-tRNA processing; snoRNA - small nucleolar RNA; RNP - RNA-protein particle; snoRNP - small nucleolar RNA-protein particle.  相似文献   

3.
4.
5.
RraA is an evolutionary conserved protein inhibitor of RNase E, which catalyzes the initial step in the decay and processing of numerous RNAs in Escherichia coli and forms the core component of the degradosome, a large protein complex involved in RNA metabolism. Here, we report that co-expression of RraA reduces the ribonucleolytic activity in cells over-producing RNase E and consequently rescues these cells from growth arrest. These findings suggest that inability of cells over-producing RNase E to normally grow results from increased cellular ribonucleolytic activity and RraA is able to effectively modulate the catalytic activity of RNase E in vivo.  相似文献   

6.
The “RNA World” hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA‐protein complex plays diverse roles in processing RNA, but its best‐understood reaction is pre‐tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment. J. Cell. Biochem. 108: 1244–1251, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Group II introns are mobile retroelements that invade their hosts. The Lactococcus lactis group II intron recruits cellular polymerases, nucleases, and DNA ligase to complete the retromobility process in Escherichia coli. Here we describe a genetic screen with a Tn5 transposon library to identify other E. coli functions involved in retromobility of the L. lactis LtrB intron. Thirteen disruptions that reproducibly resulted in increased or decreased retrohoming levels into the E. coli chromosome were isolated. These functions were classified as factors involved in RNA processing, DNA replication, energy metabolism, and global regulation. Here we characterize a novel mutant in the rne promoter region, which regulates RNase E expression. Retrohoming and retrotransposition levels are elevated in the rneTn5 mutant. The stimulatory effect of the mutation on retromobility results from intron RNA accumulation in the RNase E mutant. These results suggest that RNase E, which is the central component of the RNA degradosome, could regulate retrohoming levels in response to cellular physiology.  相似文献   

8.
It has been shown that endoribonuclease activity of alpha-RNP particles and 26S proteasomes are changed under the action of inductors of programmed cell death. Treatment of K562 cells with inductors of apoptosis--doxorubicin (adriamycin) and diethylmaleate--lead to a significant stimulation of RNAse activity of alpha-RNP and to reduction of proteasome RNase activity. The enzymatic activity under study has been shown to be specifically and selectively dependent on phosphorylation of subunits of alpha-RNP particles and 26S proteasomes. The characteristics of RNAse activity of different subpopulations of proteasomes differ. The specificity of a subpopulation of proteasomes exported from the cell has been demonstrated. Proteasome and alpha-RNP involvement in the coordinated control of stability of various specific messenger RNA molecules is suggested, and one of the mechanisms of this control might be the export of specific subpopulation of proteasomes from the cell.  相似文献   

9.
RNase MRP is a ribonucleoprotein endoribonuclease involved in eukaryotic pre-rRNA processing. The enzyme possesses an RNA subunit, structurally related to that of RNase P RNA, that is thought to be catalytic. RNase MRP RNA sequences from Saccharomycetaceae species are structurally well defined through detailed phylogenetic and structural analysis. In contrast, higher eukaryote MRP RNA structure models are based on comparative sequence analysis of only five sequences and limited probing data. Detailed structural analysis of the Homo sapiens MRP RNA, entailing enzymatic and chemical probing, is reported. The data are consistent with the phylogenetic secondary structure model and demonstrate unequivocally that higher eukaryote MRP RNA structure differs significantly from that reported for Saccharomycetaceae species. Neither model can account for all of the known MRP RNAs and we thus propose the evolution of at least two subsets of RNase MRP secondary structure, differing predominantly in the predicted specificity domain.  相似文献   

10.
11.
12.
13.
14.
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.  相似文献   

15.
The critical role of the ubiquitin-26S proteasome system in regulation of protein homeostasis in eukaryotes is well established. In contrast, the impact of the ubiquitin-independent proteolytic activity of proteasomes is poorly understood. Through biochemical analysis of mammalian lysates, we find that the 20S proteasome, latent in peptide hydrolysis, specifically cleaves more than 20% of all cellular proteins. Thirty intrinsic proteasome substrates (IPSs) were identified and in vitro studies of their processing revealed that cleavage occurs at disordered regions, generating stable products encompassing structured domains. The mechanism of IPS recognition is remarkably well conserved in the eukaryotic kingdom, as mammalian and yeast 20S proteasomes exhibit the same target specificity. Further, 26S proteasomes specifically recognize and cleave IPSs at similar sites, independent of ubiquitination, suggesting that disordered regions likely constitute the universal structural signal for IPS proteolysis by proteasomes. Finally, we show that proteasomes contribute to physiological regulation of IPS levels in living cells and the inactivation of ubiquitin-activating enzyme E1 does not prevent IPS degradation. Collectively, these findings suggest a significant contribution of the ubiquitin-independent proteasome degradation pathway to the regulation of protein homeostasis in eukaryotes.  相似文献   

16.
RNase P RNA mediated cleavage: substrate recognition and catalysis   总被引:1,自引:0,他引:1  
Kirsebom LA 《Biochimie》2007,89(10):1183-1194
The universally conserved endoribonuclease P consists of one RNA subunit and, depending on its origin, a variable number of protein subunits. RNase P is involved in the processing of a large variety of substrates in the cell, the preferred substrate being tRNA precursors. Cleavage activity does not require the presence of the protein subunit(s) in vitro. This is true for both prokaryotic and eukaryotic RNase P RNA suggesting that the RNA based catalytic activity has been preserved during evolution. Progress has been made in our understanding of the contribution of residues and chemical groups both in the substrate as well as in RNase P RNA to substrate binding and catalysis. Moreover, we have access to two crystal structures of bacterial RNase P RNA but we still lack the structure of RNase P RNA in complex with its substrate and/or the protein subunit. Nevertheless, these recent advancements put us in a new position to study the way and nature of interactions between in particular RNase P RNA and its substrate. In this review I will discuss various aspects of the RNA component of RNase P with an emphasis on our current understanding of the interaction between RNase P RNA and its substrate.  相似文献   

17.
Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.  相似文献   

18.
In this study, we have used various tRNA(Tyr)Su3 precursor (pSu3) derivatives that are processed less efficiently by RNase P to investigate if the 5' leader is a target for RNase E. We present data that suggest that RNase E cleaves the 5' leader of pSu3 both in vivo and in vitro. The site of cleavage in the 5' leader corresponds to the cleavage site for a previously identified endonuclease activity referred to as RNase P2/O. Thus, our findings suggest that RNase P2/O and RNase E activities are of the same origin. These data are in keeping with the suggestion that the structure of the 5' leader influences tRNA expression by affecting tRNA processing and indicate the involvement of RNase E in the regulation of cellular tRNA levels.  相似文献   

19.
Summary Using T7 RNA polymerase and specific constructs derived from 5S rRNA and RNA I genes, we generated substrates for the RNA processing enzyme RNase E. Using these substrates we have shown that a 3.2 kb DNA fragment that complements the rne-3071 mutation can express RNase E activity. We also found that T7 RNA polymerase terminates within the 5S rRNA gene.  相似文献   

20.
26S proteasome is a multi-subunit protein complex that consists of the regulatory 19S and the catalytic 20S subcomplexes. The major cellular function of the proteasome is protein degradation. It has been found recently that the 20S particle, besides its proteolytic activity, also possesses endoribonuclease activity. The latter is mediated by two alpha-type subunits (alpha1 and alpha5). In this report we have analyzed the remaining alpha-type subunits for their ability to hydrolyze RNA. We found that all of the recombinant subunits tested exhibited endoribonuclease activity which depended on the origin of RNA and the presence of bivalent ions in the reaction. These results indicate that the endoribonuclease activity of proteasomes may play an important role in cellular metabolism of RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号