首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complete activation of T cells requires two signals: an Ag-specific signal delivered via the TCR by the peptide-MHC complex and a second costimulatory signal largely provided by B7:CD28/CTLA-4 interactions. Previous studies have shown that B7 blockade can either ameliorate experimental autoimmune encephalomyelitis by interfering with CD28 signaling or exacerbate the disease by concomitant blockade of CTLA-4 interaction. Therefore, we developed a functional CD28 mimic to selectively block B7:CD28 interactions. The design, synthesis, and structural and functional properties of the CD28 free peptide, the end group-blocked CD28 peptide, and its retro-inverso isomer are shown. The synthetic T cell-costimulatory receptor peptides fold into a polyproline type II helical structure commonly seen in regions of globular proteins involved in transient protein-protein interactions. The binding determinants of CD28 can be transferred onto a short peptide mimic of its ligand-binding region. The CD28 peptide mimics effectively block the expansion of encephalitogenic T cells in vitro suggesting the potential usefulness of the peptides for the treatment of autoimmune disease conditions requiring down-regulation of T cell responses.  相似文献   

2.
《Seminars in Virology》1996,7(2):103-111
Costimulation plays a pivotal role in T-cell activation, since engagement of the T-cell receptor in the absence of costimulatory signals can lead to T-cell anergy. The B7-CD28/CTLA4 costimulatory pathway can provide a potent costimulatory signal. This article focuses on the B7-CD28/CTLA4 pathway, reviewing aspects of costimulation relevant to the development of anti-viral immune responses and summarizing vaccination strategies employing costimulatory molecules. In addition, this article discusses the importance of regulated expression of costimulatory molecules and describes how viruses can modulate the expression of costimulatory molecules, which may contribute to immune dysfunction.  相似文献   

3.
The synovial tissue in rheumatoid arthritis (RA) patients is enriched with mature antigen presenting cells (APCs) and many T lymphocytes. Interactions between APCs and T cells are essential for the initiation and amplification of T-cell-dependent immune responses, and may therefore play an important role in the chronic inflammatory processes in the synovium. The nature of the antigen(s) involved in RA still remains elusive. However, interactions and signaling through the costimulatory molecules CD28-CD80/86 and CD40-CD40L are critical during APC-T cell interaction for optimal cell activation. This review discusses how such costimulatory signals can be involved in the initiation and amplification of the inflammatory reactions in the synovium. Blocking of the signaling pathways involved in APC-T cell interactions might provide a specific immuno-therapeutic approach for the treatment of RA.  相似文献   

4.
The synovial tissue in rheumatoid arthritis (RA) patients is enriched with mature antigen presenting cells (APCs) and many T lymphocytes. Interactions between APCs and T cells are essential for the initiation and amplification of T-cell-dependent immune responses, and may therefore play an important role in the chronic inflammatory processes in the synovium. The nature of the antigen(s) involved in RA still remains elusive. However, interactions and signaling through the costimulatory molecules CD28-CD80/86 and CD40-CD40L are critical during APC–T cell interaction for optimal cell activation. This review discusses how such costimulatory signals can be involved in the initiation and amplification of the inflammatory reactions in the synovium. Blocking of the signaling pathways involved in APC–T cell interactions might provide a specific immuno-therapeutic approach for the treatment of RA.  相似文献   

5.
The B7:CD28/CTLA-4 costimulatory pathway plays a critical role in regulating the immune response and thus provides an ideal target for therapeutic manipulation of autoimmune disease. Previous studies have shown that blockade of CD28 signaling by mAbs can both prevent and exacerbate experimental autoimmune encephalomyelitis (EAE). In this study, we have designed two CD28 peptide mimics that selectively block B7:CD28 interactions. By surface plasmon resonance, both the end group-blocked CD28 peptide (EL-CD28) and its retro-inverso isomer (RI-CD28) compete effectively with the extracellular domain of CD28 for binding to B7-1. Both the CD28 peptide mimics inhibited expansion of encephalitogenic T cells in vitro. A single administration of EL-CD28 or RI-CD28 peptide significantly reduced disease severity in EAE. Importantly, we show that either CD28 peptide mimic administered during acute disease dramatically improved clinical signs of EAE, suppressing ongoing disease. The ratio of CD80:CD86 expression was significantly lower on CD4(+) and F4/80(+) spleen cells in CD28 peptide-treated mice. Peripheral deletion of Ag-specific CD4(+) T cells occurs following in vivo blockade of CD28 with synthetic CD28 peptides.  相似文献   

6.
Dependence of the primary antiviral immune response on costimulatory interactions between CD28/CD80-86 and between CD40/CD154 (CD40 ligand) has been correlated with the extent of viral replication in two models of systemic infection, lymphocytic choriomeningitis virus and vesicular stomatitis virus. To determine the role of these costimulatory interactions in the context of an acute cytolytic, but locally replicating viral infection, herpes simplex virus (HSV) infection was assessed in mice that had the CD28/CD80-86 or CD40/CD154 interactions disrupted either genetically or with blocking reagents (CTLA4Ig and MR1, respectively). CTLA4Ig treatment greatly reduced paralysis-free survival during primary acute HSV infection. This reflected an almost total ablation of the anti-HSV CD4(+) and CD8(+) T-cell responses due to anergy and reduced cell numbers, respectively. Disruption of CD40/CD154 interactions impaired survival, but the effect was less severe than that observed in CTLA4Ig-treated mice, with reductions observed in the CD4(+) T-cell but not CD8(+) T-cell responses. These two costimulatory pathways functioned in part independently, since disruption of both further impaired survival. The dependence on these costimulatory interactions for the control of primary HSV infection may represent a more widespread paradigm for nonsystemic viruses, which have restricted sites of replication and which employ immunoevasive measures.  相似文献   

7.
Pertussis toxin (PTX) has potent immunologic adjuvant activity in vivo and concomitantly enhances both T helper type (Th1) and Th2 cytokine responses. The PTX-induced enhancement of Th1 and Th2 immunity is mediated via the activation of antigen presenting cells (APCs), but the underlying mechanism is not known. Here we asked whether the adjuvant activity of PTX on T cell immunity was mediated by cytokines and/or costimulatory signals. The results show that in vivo blockade of CD28-CD80/86 costimulation essentially abrogated PTX-mediated enhancement of antigen-specific Th1 and Th2 responses. Blockade of CD40L-CD40 interactions was less efficient in inhibiting PTX-mediated enhancement of Th1 and Th2 responses. In contrast, the adjuvant activity of PTX was not mediated via cytokines, because neither Th1 nor Th2 responses were substantially impaired in mice deficient for IL-12, IFN-gamma, IL-4, IL-5, or IL-6. Collectively, the data suggest that PTX mediates its adjuvant effects on T cell cytokine differentiation and clonal expansion via the modulation of costimulatory molecules on APCs. Understanding the costimulatory pathways targeted by PTX could lead to the design of novel adjuvants that selectively induce Th1 or Th2 immunity.  相似文献   

8.
Theiler's murine encephalomyelitis virus (TMEV) is a natural mouse pathogen which causes a lifelong persistent infection of the central nervous system (CNS) accompanied by T-cell-mediated myelin destruction leading to chronic, progressive hind limb paralysis. TMEV-induced demyelinating disease (TMEV-IDD) is considered to be a highly relevant animal model for the human autoimmune disease multiple sclerosis (MS), which is thought to be initiated as a secondary consequence of a virus infection. Although TMEV-IDD is initiated by virus-specific CD4(+) T cells targeting CNS-persistent virus, CD4(+) T-cell responses against self myelin protein epitopes activated via epitope spreading contribute to chronic disease pathogenesis. We thus examined the ability of antibodies directed against B7 costimulatory molecules to regulate this chronic virus-induced immunopathologic process. Contrary to previous studies showing that blockade of B7-CD28 costimulatory interactions inhibit the initiation of experimental autoimmune encephalomyelitis, treatment of SJL mice at the time of TMEV infection with murine CTLA-4 immunoglobulin or a combination of anti-B7-1 and anti-B7-2 antibodies significantly enhanced clinical disease severity. Costimulatory blockade inhibited early TMEV-specific T-cell and antibody responses critical in clearing peripheral virus infection. The inhibition of virus-specific immune responses led to significantly increased CNS viral titers resulting in increased damage to myelin-producing oligodendrocytes. Following clearance of the costimulatory antagonists, epitope spreading to myelin epitopes was accelerated as a result of the increased availability of myelin epitopes leading to a more severe chronic disease course. Our results raise concern about the potential use of B7-CD28 costimulatory blockade to treat human autoimmune diseases potentially associated with acute or persistent virus infections.  相似文献   

9.
The role of CD40-CD154 interaction in cell immunoregulation   总被引:8,自引:0,他引:8  
CD40, a member of the nerve growth factor/tumor necrosis factor receptor superfamily, and its ligand, CD154, play essential roles in cell immune responses. The results of many studies have indicated that CD40-CD154 interaction can upregulate costimulatory molecules, activate antigen-presenting cells (APCs), influence T-cell priming and T-cell-mediated effector functions as well as participate in the pathogenic processing of chronic inflammatory diseases, such as autoimmune diabetes, graft rejection, atherosclerosis, and cancer. Ligation of CD40 on cancer cells was also found to produce a direct growth-inhibitory effect through cell cycle blockage and/or apoptosis with no overt side effects on normal cells and treatment with CD154 can heighten tumor rejection immune response as well. However, systemic treatment with CD154 has some potential risks. Therefore, searching for efficient and safe strategies of CD154-based cancer therapy has been a hot topic in human cancer research. This review focuses on the latest discovered functions of CD40-CD154 interaction in cell immune responses and on the new findings of CD154-based human cancer therapy.  相似文献   

10.
Control of NKT cell differentiation by tissue-specific microenvironments   总被引:4,自引:0,他引:4  
CD1d-restricted Valpha14 NKT cells play an important role in both Th1- and Th2-type immune responses. To determine whether NKT cells develop two functionally distinct subsets that provoke different types of responses, we examined the phenotypes and cellular functions of NK1.1(+) and DX5(+) T cells. We found that both NK1.1(+) and DX5(+) T cells are CD1d-restricted Valpha14 T cells with identical Ag specificities, phenotypes, tissue locations, and functions. Similar to the NK1.1 marker, the DX5 marker (CD49b) is expressed on mature NKT cells in both NK1.1 allele-positive and allele-negative strains. However, when NK1.1(+) and DX5(+) NKT cells isolated from different tissues were compared, we found that thymic and splenic NKT cells differed not only in their cytokine profiles, but also in their phenotype and requirements for costimulatory signals. Thymic NKT cells displayed the phenotype of activated T cells and could be fully activated by TCR ligation. In contrast, splenic NKT cells displayed the phenotype of memory T cells and required a costimulatory signal for activation. Furthermore, the function and phenotype of thymic and splenic NKT cells were modulated by APCs from various tissues that expressed different levels of costimulatory molecules. Modulation of NKT cell function and differentiation may be mediated by synergic effects of costimulatory molecules on the surface of APCs. The results of the present study suggest that the costimulatory signals of tissue-specific APCs are key factors for NKT cell differentiation, and these signals cannot be replaced by anti-CD28 or anti-CD40 ligand Abs.  相似文献   

11.
Functional activation of T cells requires ligation of Ag receptors with specific peptides presented by MHC molecules on APCs concurrent with appropriate contacts of cell surface accessory molecules. Among these accessory molecules, interactions between CD28/CTLA-4 with B7 family members (CD80 and CD86) and CD40 with CD40 ligand (CD40L) play a decisive role in regulating the progression of balanced immune responses. However, most information regarding the role of accessory molecules in immune responses has been derived in the context of signals from the TCRs. Little understanding has been achieved regarding the consequence of ligation of costimulation molecules in absence of signals from the TCR. By employing an in vivo murine system, we show, herein, that ligation of CD28 alone with anti-CD28 Abs leads to a dramatic enlargement of the peripheral lymphoid organs characterized primarily by the expansion of B cells. B cells from anti-CD28-treated mice are resistant to spontaneous and anti-IgM-induced apoptosis. These cells are also unsusceptible to FasL-mediated apoptosis. Interestingly, this in vivo effect of CD28 on B cells is largely mediated by inducing the expression of CD40L, since coadministration of a blocking Ab against CD40L inhibited CD28-mediated B cell survival and expansion. Therefore, CD28-mediated expression of CD40L may play an important role in the regulation of lymphocyte homeostasis.  相似文献   

12.
CD28, CTLA-4 and PD-L1, the three identified ligands for CD80/86, are pivotal positive and negative costimulatory molecules that, among other functions, control T cell motility and formation of immune synapse between T cells and antigen-presenting cells (APCs). What remains incompletely understood is how CD28 leads to the activation of effector T cells (Teff) but inhibition of suppression by regulatory T cells (Tregs), while CTLA-4 and PD-L1 inhibit Teff function but are crucial for the suppressive function of Tregs. Using alloreactive human T cells and blocking antibodies, we show here by live cell dynamic microscopy that CD28, CTLA-4, and PD-L1 differentially control velocity, motility and immune synapse formation in activated Teff versus Tregs. Selectively antagonizing CD28 costimulation increased Treg dwell time with APCs and induced calcium mobilization which translated in increased Treg suppressive activity, in contrast with the dampening effect on Teff responses. The increase in Treg suppressive activity after CD28 blockade was also confirmed with polyclonal Tregs. Whereas CTLA-4 played a critical role in Teff by reversing TCR-induced STOP signals, it failed to affect motility in Tregs but was essential for formation of the Treg immune synapse. Furthermore, we identified a novel role for PD-L1-CD80 interactions in suppressing motility specifically in Tregs. Thus, our findings reveal that the three identified ligands of CD80/86, CD28, CTLA-4 and PD-L1, differentially control immune synapse formation and function of the human Teff and Treg cells analyzed here. Individually targeting CD28, CTLA-4 and PD-L1 might therefore represent a valuable therapeutic strategy to treat immune disorders where effector and regulatory T cell functions need to be differentially targeted.  相似文献   

13.
Costimulation of CD8 T cell responses by OX40   总被引:4,自引:0,他引:4  
The persistence of functional CD8 T cell responses is dependent on checkpoints established during priming. Although naive CD8 cells can proliferate with a short period of stimulation, CD4 help, inflammation, and/or high peptide affinity are necessary for the survival of CTL and for effective priming. Using OX40-deficient CD8 cells specific for a defined Ag, and agonist and antagonist OX40 reagents, we show that OX40/OX40 ligand interactions can determine the extent of expansion of CD8 T cells during responses to conventional protein Ag and can provide sufficient signals to confer CTL-mediated protection against tumor growth. OX40 signaling primarily functions to maintain CTL survival during the initial rounds of cell division after Ag encounter. Thus, OX40 is one of the costimulatory molecules that can contribute signals to regulate the accumulation of Ag-reactive CD8 cells during immune responses.  相似文献   

14.
The roles of CD28 and CD40 ligand in T cell activation and tolerance   总被引:16,自引:0,他引:16  
Costimulation of T cell activation involves both the B7:CD28 as well as the CD40 ligand (CD40L):CD40 pathway. To determine the importance of these pathways to in vitro and in vivo T cell activation, a direct comparison was made of the responses of TCR transgenic T cells lacking either CD28 or CD40L. In vitro, CD28-/- T cells showed a greater reduction in proliferative responses to Ag than did CD40L-/- T cells. The absence of CD28 resulted in defective Th2 responses, whereas CD40L-/- T cells were defective in Th1 development. In vivo, CD28-/- T cells failed to expand upon immunization, whereas CD40L-/- T cells could not sustain a response. These results suggest that CD28 is critical for initiating T cell responses, whereas CD40L is required for sustained Th1 responses. The different functional roles of these costimulatory pathways may explain why blocking B7:CD28 and CD40L:CD40 interactions has an additive effect in inhibiting T cell responses.  相似文献   

15.
4-1BB (CD137) is a costimulatory molecule expressed on activated T cells and interacts with 4-1BB ligand (4-1BBL) on APCs. To investigate the role of 4-1BB costimulation for the development of primary immune responses, 4-1BBL-deficient (4-1BBL-/-) mice were infected with lymphocytic choriomeningitis virus (LCMV). 4-1BBL-/- mice were able to generate CTL and eliminate acute LCMV infection with normal kinetics, but CD8 T cell expansion was 2- to 3-fold lower than in wild-type (+/+) mice. In the same mice, virus-specific CD4 Th and B cell responses were minimally affected, indicating that 4-1BB costimulation preferentially affects CD8 T cell responses. This result contrasts with our earlier work with CD40L-deficient (CD40L-/-) mice, in which the CD8 T cell response was unaffected and the CD4 T cell response was markedly impaired. When both 4-1BBL- and B7-dependent signals were absent, CD8 T cell expansion was further reduced, resulting in lower CTL activity and impairing their ability to clear LCMV. Altogether, these results indicate that T cells have distinct costimulatory requirements: optimal CD8 responses require 4-1BBL-dependent interactions, whereas CD4 responses are minimally affected by 4-1BB costimulation, but require CD40-CD40L and B7-dependent interactions.  相似文献   

16.
T-cell co-stimulation delivered by the molecules B7-1 or B7-2 through CD28 has a positive effect on T-cell activation, whereas engagement of cytotoxic T-lymphocyte antigen 4 (CTLA-4) by these molecules inhibits activation. In vivo administration to mice of blocking monoclonal antibodies or Fab fragments against CTLA-4 can augment antigen-specific T-cell responses and, thus, therapy with monoclonal antibody against CTLA-4 has potential applications for tumor therapy and enhancement of vaccine immunization. The effects of B7-1 and B7-2 co-stimulation through CD28 depend on the strength of the signal delivered through the T-cell receptor (TCR) and the activation state of T cells during activation. Thus, we sought to determine whether these factors similarly influence the effect of B7-mediated signals delivered through CTLA-4 during T-cell activation. Using freshly isolated human T cells and Fab fragments of a monoclonal antibody against CTLA-4, we demonstrate here that CTLA-4 blockade can enhance or inhibit the clonal expansion of different T cells that respond to the same antigen, depending on both the T-cell activation state and the strength of the T-cell receptor signal delivered during T-cell stimulation. Thus, for whole T-cell populations, blocking a negative signal may paradoxically inhibit immune responses. These results provide a theoretical framework for clinical trials in which co-stimulatory signals are manipulated in an attempt to modulate the immune response in human disease.  相似文献   

17.
18.
Effective activation of T cells requires engagement of two separate T-cell receptors. The antigen-specific T-cell receptor (TCR) binds foreign peptide antigen-MHC complexes, and the CD28 receptor binds to the B7 (CD80/CD86) costimulatory molecules expressed on the surface of antigen-presenting cells (APC). The simultaneous triggering of these T-cell surface receptors with their specific ligands results in an activation of this cell. In contrast, CTLA-4 (CD152) is a distinct T-cell receptor that, upon binding to B7 molecules, sends an inhibitory signal to T cell activation. Many in vitro and in vivo studies demonstrated that both CD80 and CD86 ligands have an identical role in the activation of T cells. Recently, functions of B7 costimulatory molecules in vivo have been investigated in B7-1 and/or B7-2 knockout mice, and the authors concluded that CD86 could be more important for initiating T-cell responses, while CD80 could be more significant for maintaining these immune responses. In this study, we directly compared the role of CD80 and CD86 in initiating and maintaining proliferation of resting CD4(+) T cells in an in vitro mode system that allowed to provide the first signal-to-effector cells through the use of suboptimal doses of PHA and the second costimulatory signal through cells expressing CD80 or CD86, but not any other costimulatory molecules. Using this experimental system we demonstrate that the CD80 and CD86 molecules can substitute for each other in the initial activation of resting CD4(+) T cells and in the maintenance of their proliferative response.  相似文献   

19.
Pulmonary interstitial fibrosis (PIF), associated with persistent inflammation and increased collagen deposition in the interstitium, is often considered an autoimmune disease. Hapten immune PIF (HIPIF), a model for PIF, is elicited in the lung by a single intratracheal (i.t.) challenge in mice sensitized with hapten (2,4,6-trinitrobenzene sulfonic acid, TNBS). In this study, we characterized the role of CD40/CD40 ligand (CD40L) interactions in the elicitation of secondary cell-mediated immune responses that lead to development of fibrosis in the lung using an adoptive transfer model of HIPIF. The expression of CD40 was detected on bronchoalveolar lavage (BAL) cells 1-3 days after i.t. challenge with hapten in the HIPIF lung, but not lungs from the control mice. The CD40(bright) BAL cells morphologically resembled infiltrating monocytes. Furthermore, blocking CD40/CD40L interactions with blocking Ab decreased BAL production of Th1-mediators (IL-12 and TNF-alpha). Moreover, either blocking CD40/CD40L interactions with the Ab or using IL-12 knockout recipient mice prevented the increased collagen deposition (accumulation of hydroxyproline) in the lungs during HIPIF induction. We conclude that second signals (CD40/CD40L interactions) are required for elicitation of secondary immune responses that lead to PIF in vivo. The results support the notion that CD40/CD40L interactions are involved in the pathogenesis of an ongoing autoimmune disease.  相似文献   

20.
Experimental autoimmune encephalomyelitis (EAE) is the most extensively studied animal model of the human disease multiple sclerosis (MS). In EAE, CNS demyelination is induced by immunization with myelin proteins or adoptive transfer of myelin-reactive CD4+ T cells. Since the antigen specificity of the immune response believed to be responsible for the pathology of MS is not well defined, therapies that target aspects of T cell activation that are not antigen specific may be more applicable to the treatment of MS. As a result, understanding the role of costimulatory molecules in the activation of na?ve and memory T cells has become an area of extensive investigation. Na?ve T cells require two signals for activation. Signal one is provided by engagement of the T cell receptor (TCR) with MHC/peptide complexes and provides antigen specificity to the immune response. The second signal, termed costimulation, is usually provided by B7 molecules on APC to CD28 molecules expressed on T cells and is antigen-independent. This review will discuss our current understanding of costimulation in the induction and perpetuation of EAE, as well as the potential of costimulation blockade in the treatment of MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号