首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver cells (HepG2 and primary hepatocytes) overexpressing CYP2E1 and exposed to arachidonic acid (AA) were previously shown to lose viability together with enhanced lipid peroxidation. These events were blocked in cells pre-incubated with antioxidants (alpha-tocopherol, glutathione ethyl ester), or in HepG2 cells not expressing CYP2E1. The goal of the current study was to evaluate the role of calcium and calcium-activated hydrolases in these CYP2E1-AA interactions. CYP2E1-expressing HepG2 cells treated with AA showed an early increase in cytosolic calcium and partial depletion of ionomycin-sensitive calcium stores. These changes in calcium were blocked by alpha-tocopherol. AA activated phospholipase A2 (PLA2) in CYP2E1-expressing liver cells, and this was inhibited by PLA2 inhibitors or alpha-tocopherol. PLA2 inhibitors prevented the cell death caused by AA, without affecting CYP2E1 activity or lipid peroxidation. AA toxicity and PLA2 activation were inhibited in calcium-depleted cells, but not by removal of extracellular calcium alone. Removal of extracellular calcium inhibited the early increase in cytosolic calcium caused by AA. CYP2E1 overexpressing HepG2 cells exposed to AA showed a decrease in mitochondrial membrane potential, which was prevented by the PLA2 inhibitors. These results suggest that AA-induced toxicity to CYPE1-expressing cells: (i) is associated with release of Ca2+ from intracellular stores that depends mainly on oxidative membrane damage; (ii) is associated with activation of PLA2 that depends on intracellular calcium and lipid peroxidation; (iii) does not depend on increased influx of extracellular calcium, and (iv) depends on the effect of converging events (lipid peroxidation, intracellular calcium, activation of PLA2) on mitochondria to induce bioenergetic failure and necrosis. These interactions may play a role in alcohol liver toxicity, which requires polyunsaturated fatty acids, and involves induction of CYP2E1.  相似文献   

2.
The objective of this work was to investigate whether CYP2E1- and oxidative stress-dependent toxicity in HepG2 cells is mediated by an increase of cytosolic Ca2+ and activation of Ca2+-modulated processes. HepG2 cells expressing CYP2E1 (E47 cells) or control cells not expressing CYP2E1 (C34 cells) were preloaded with arachidonic acid (AA, up to 10 microm) and, after washing, incubated with iron-nitrilotriacetic acid (up to 100 microm) for variable periods (up to 12 h). Toxicity was greater in E47 cells than in C34 cells at all times and combinations of iron/AA tested. Cytosolic calcium increased with incubation time in both cell lines, but the increase was higher in E47 cells than in C34 cells. The rise in calcium was an early event and preceded the developing toxicity. Toxicity in E47 cells and the increase in Ca2+ were inhibited by omission of Ca2+ from the extracellular medium, and toxicity was restored by reincorporation of Ca2+. An inhibitor of Ca2+ release from intracellular stores did not prevent the toxicity or the increase in Ca2+, reflecting a role for the influx of extracellular Ca2+ in the toxicity. Reactive oxygen production was similar in media with or without calcium, indicating that calcium was not modulating CYP2E1-dependent oxidative stress. Toxicity, lipid peroxidation, and the increase of Ca2+ in E47 cells exposed to iron-AA were inhibited by alpha-tocopherol. E47 cells (but not C34 cells) exposed to iron-AA showed increased calpain activity in situ (40-fold). The toxicity in E47 cells mirrored calpain activation and was inhibited by calpeptin, suggesting that calpain activation plays a causal role in toxicity. These results suggest that CYP2E1-dependent toxicity in this model depends on the activation of lipid peroxidation, followed by an increased influx of extracellular Ca2+ and activation of Ca2+-dependent proteases.  相似文献   

3.
Chronic ethanol consumption causes oxidative damage in the liver, and induction of cytochrome P450 2E1 (CYP2E1) is one pathway involved in oxidative stress produced by ethanol. The hepatic accumulation of iron and polyunsaturated fatty acids significantly contributes to ethanol hepatotoxicity in the intragastric infusion model of ethanol treatment. The objective of this study was to analyze the effect of the green tea flavanol epigallocatechin-3-gallate (EGCG), which has been shown to prevent alcohol-induced liver damage, on CYP2E1-mediated toxicity in HepG2 cells overexpressing CYP2E1 (E47 cells). Treatment of E47 cells with arachidonic acid plus iron (AA + Fe) was previously reported to produce synergistic toxicity in E47 cells by a mechanism dependent on CYP2E1 activity and involving oxidative stress and lipid peroxidation. EGCG protected E47 cells against toxicity and loss of viability induced by AA+Fe; EGCG had no effect on CYP2E1 activity. Prevention of this toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species, a decrease in lipid peroxidation, and maintenance of intracellular glutathione in cells challenged by AA+Fe in the presence of EGCG. AA+Fe treatment caused a decline in the mitochondrial membrane potential, which was also blocked by EGCG. In conclusion, EGCG exerts a protective action on CYP2E1-dependent oxidative stress and toxicity that may contribute to preventing alcohol-induced liver injury, and may be useful in preventing toxicity by various hepatotoxins activated by CYP2E1 to reactive intermediates.  相似文献   

4.
5.
The present study was conducted on human Jurkat T-cell lines in order to elucidate the role of phospholipase A2 in capacitative calcium entry. We have employed thapsigargin (TG) that induces increases in [Ca2+]i by emptying the calcium pool of endoplasmic reticulum, followed by capacitative calcium entry. We designed a Ca2+ free/Ca2+ reintroduction (CFCR) protocol for the experiments, conducted in Ca2+-free medium. By employing CFCR protocol, we observed that addition of exogenous arachidonic acid (AA) stimulated TG-induced capacitative calcium influx. The liberation of endogenous AA and its autocrine action seems to be implicated during TG-induced capacitative calcium influx: TG potentiates the induction of constitutively expressed mRNA of four PLA2 isoforms (type 1B, IV, V, VI), the inhibitors of the three PLA2 isotypes (type 1B, V, VI) inhibit TG-induced release of [3H]AA into the extracellular medium, and finally, these PLA2 inhibitors do curtail TG-stimulated capacitative calcium entry in these cells. These results suggest that stimulation of three isoforms of PLA2 by thapsigargin liberates free AA that, in turn, induces capacitative calcium influx in human T-cells.  相似文献   

6.
The inducible form of heme oxygenase (HO-1) is increased during oxidative injury and HO-1 is believed to be an important defense mechanism against such injury. Arachidonic acid (AA) and l-buthionine-(S,R)-sulfoximine (BSO), which lowers GSH levels, cause cytochrome P450 2E1 (CYP2E1)-dependent oxidative injuries in HepG2 cells (E47 cells). Treatment of E47 cells with 50 microM AA or 100 microM BSO for 48 h was recently shown to increase HO-1 mRNA, protein, and activity. The possible functional significance of this increase in protecting against CYP2E1-dependent toxicity was evaluated in the current study. The treatment with AA and BSO caused loss of cell viability (40 and 50%, respectively) in E47 cells. Chromium mesoporphyrin (CrMP), an inhibitor of HO activity, significantly potentiated this cytotoxicity. ROS production, lipid peroxidation, and the decline in mitochondrial membrane potential produced by AA and BSO were also enhanced in the presence of CrMP in E47 cells. Infection with an adenovirus expressing rat HO-1 protected E47 cells from AA toxicity, increasing cell viability and reducing LDH release. HO catalyzes formation of CO, bilirubin, and iron from the oxidation of heme. Bilirubin was not protective whereas iron catalyzed the AA toxicity. The carbon monoxide (CO) scavenger hemoglobin enhanced AA toxicity in E47 cells analogous to CrMP, whereas exposure to exogenous CO partially reduced AA toxicity and the enhanced AA toxicity by CrMP. Addition of exogenous CO to the cells inhibited CYP2E1 catalytic activity, as did overexpression of the rat HO-1 adenovirus. These results suggest that induction of HO-1 protects against CYP2E1-dependent toxicity and this protection may be mediated in part via production of CO and CO inhibition of CYP2E1 activity.  相似文献   

7.
8.
To study the biochemical and toxicological properties of cytochrome P450 2E1 (CYP2E1), an adenovirus containing human CYP2E1 cDNA (Ad-CYP2E1) was constructed and was shown to successfully mediate the overexpression of CYP2E1 in HepG2 cells. Acetaminophen (APAP) toxicity to HepG2 cells infected with Ad-CYP2E1 was characterized as a preliminary proof of principle experiment to validate the functionality of the CYP2E1 adenovirus. Compared with cells infected with Ad-LacZ, HepG2 cells infected with Ad-CYP2E1 were more sensitive to APAP induced necrosis and apoptosis when the cells were depleted of intracellular reduced glutathione (GSH). The APAP cytotoxicity was dependent on both the concentration of APAP and the multiplicity of infection of the Ad-CYP2E1 virus. Apoptosis induced by APAP in HepG2 cells overexpressing CYP2E1 was caspase dependent and could be inhibited by the pan-caspase inhibitor Z-VAD-fmk. After treatment with APAP, mitochondrial membrane potential was dramatically decreased in the CYP2E1-expressing cells. APAP protein adducts were elevated in HepG2 cells infected with Ad-CYP2E1 compared with that in cells infected with Ad-LacZ; two bands around 90 KD were found only in the CYP2E1-expressing cells. These results demonstrate that adenovirus-mediated overexpression of human CYP2E1 activates APAP to reactive metabolites which damage mitochondria, form protein adducts, and result in toxicity to HepG2 cells. The Ad-CYP2E1 may be useful for studies designed to investigate the role of CYP2E1 in APAP and alcoholic liver injury and to further characterize the actions and effects of CYP2E1.  相似文献   

9.
The main objectives of this work were to evaluate the effects of hydrogen sulfide on oxidative stress and cytotoxicity parameters in HepG2 cells and to assess the extent to which cytochrome P450 2E1 (CYP2E1) activity modulates the effects of hydrogen sulfide on oxidative stress and cytotoxicity. Sodium hydrosulfide (NaHS) caused time- and concentration-dependent cytotoxicity in both non-P450-expressing HepG2 cells (C34 cells) and CYP2E1-overexpressing HepG2 cells (E47 cells); however, NaHS-dependent cytotoxicity was higher in E47 than C34 cells. Cytotoxicity by NaHS in C34 and E47 cells was mainly necrotic in nature and associated with an early decrease in mitochondrial membrane potential. NaHS caused increased oxidation of lipophilic (C11-BODIPY581/591) and hydrophilic (DCFH-DA) probes only in E47 cells, at a time point prior to overt cytotoxicity. Trolox, an amphipathic antioxidant, partially inhibited both the cytotoxicity and the increased oxidative stress detected in E47 cells exposed to NaHS. Cell-permeable iron chelators and CYP2E1 inhibitors significantly inhibited the oxidation of C11-BODIPY581/591 in E47 cells in the presence of NaHS. NaHS produced lipid peroxidation and cytotoxicity in E47 cells supplemented with a representative polyunsaturated fatty acid (docosahexaenoic acid) but not in C34 cells; these effects were inhibited by α-tocopherol, a lipophilic antioxidant. These data suggest that CYP2E1 enhances H2S-dependent cytotoxicity in HepG2 cells through the generation of iron-dependent oxidative stress and lipid peroxidation.  相似文献   

10.
Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+]i, which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by arachidonic acid (AA) partly mediates histamine H1-receptor-evoked increases in [Ca2+]i in DDT1 MF-2 cells. In the current study, both Ca2+ entry mechanisms and a possible link between MAP kinase activation and increasing [Ca2+]i were investigated. In the whole-cell patch clamp configuration, the CB-receptor agonist CP 55, 940 evoked a transient, Ca2+-dependent K+ current, which was not blocked by the inhibitors of CCE, 2-APB, and SKF 96365. AA, but not its metabolites, evoked a transient outward current and inhibited the response to CP 55,940 in a concentration-dependent manner. CP 55,940 induced a concentration-dependent release of AA, which was inhibited by the CB1 antagonist SR 141716. The non-selective Ca2+ channel blockers La3+ and Gd3+ inhibited the CP 55,940-induced current at concentrations that had no effect on thapsigargin-evoked CCE. La3+ also inhibited the AA-induced current. CP 55,940-induced AA release was abolished by Gd3+ and by phospholipase A2 inhibition using quinacrine; this compound also inhibited the outward current. The CP 55,940-induced AA release was strongly reduced by the MAP kinase inhibitor PD 98059. The data suggest that in DDT1 MF-2 cells, AA is an integral component of the CB1 receptor signaling pathway, upstream of NCCE and, via PLA2, downstream of MAP kinase.  相似文献   

11.
Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 (CYP2E1) and in HepG2 E47 cells, which express CYP2E1. The possible role of mitogen-activated protein kinase (MAPK) members in this process was evaluated. SB203580, a p38 MAPK inhibitor, and PD98059, an ERK inhibitor, but not wortmannin a phosphatidylinositol 3-kinase (PI3K) inhibitor, prevented AA toxicity in pyrazole hepatocytes and E47 cells. SB203580 prevented the enhancement of AA toxicity by salicylate. SB203580 neither lowered the levels of CYP2E1 nor affected CYP2E1-dependent oxidative stress. The decrease in mitochondrial membrane potential produced by AA was prevented by SB203580. Treating CYP2E1-induced cells with AA activated p38 MAPK but not ERK or AKT. This activation was blocked by antioxidants. AA increased the translocation of NF-kappaB to the nucleus. Salicylate blocked this translocation, which may contribute to the enhancement of AA toxicity by salicylate. SB203580 restored AA-induced NF-kappaB translocation, which may contribute to protection against toxicity. In conclusion, AA toxicity was related to lipid peroxidation and oxidative stress, and to the activation of p38 MAPK, as a consequence of CYP2E1-dependent production of reactive oxygen species. Activation of p38 MAPK by AA coupled to AA-induced oxidative stress may synergize to cause cell toxicity by affecting mitochondrial membrane potential and by modulation of NF-kappaB activation.  相似文献   

12.
13.
Immortalized rat Schwann cells (iSC) express endothelin (ET) receptors coupled to inhibition of adenylyl cyclase and stimulation of phospholipase C (PLC). These effects precede phenotypic changes and increased DNA synthesis. We have investigated the role of ETs in the regulation of arachidonic acid (AA) release and mitogen-activated protein kinases (MAPKs). Both ET-1 and ET-3 increased AA release in iSC. This effect was sensitive to the phospholipase A(2) (PLA(2)) inhibitors E:-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)-2H:-pyran-2-one and arachidonyl-trifluoromethyl ketone but was insensitive to inhibitors of PLC or phospholipase D-dependent diacylglycerol generation. ET-1-dependent AA release was also unaffected by removal of extracellular Ca(2+) and blocking the concomitant elevation in [Ca(2+)](i), consistent with participation of a Ca(2+)-independent PLA(2). Treatment of iSC with ETs also resulted in activation of extracellular signal-regulated kinase, c-Jun-NH(2)-terminal kinase (JNK), and p38 MAPK. A cause-effect relationship between agonist-dependent AA release and stimulation of MAPKs, but not the opposite, was suggested by activation of JNK by exogenous AA and by the observation that inhibition of MAPK kinase or p38 MAPK was inconsequential to ET-1-induced AA release. Similar effects of ETs on AA release and MAPK activity were observed in cultures expanded from primary SC and in iSC. Regulation of these effectors may mediate the control of proliferation and differentiation of SC by ETs during peripheral nerve development and regeneration.  相似文献   

14.
In order to ascertain the role of phospholipase A2 (PLA2) in the release of arachidonic acid for eicosanoid biosynthesis, we have characterized a Ca2+-dependent PLA2 from P388D1 cells, evaluated inhibitors of its activity, and correlated the effects of these inhibitors on prostaglandin (PG) E2 production in the intact cell. The Ca2+-dependent PLA2 has little preference for the polar head group or sn-2 fatty acid of phospholipids, and we have now found that it will hydrolyze 1-alkyl,2-acyl phospholipids, but it does not show a preference for this substrate over other phospholipids. Inhibitor studies with the Ca2+-dependent PLA2 have shown that arachidonic acid is an effective inhibitor. The analogs of natural fatty acids, eicosatetraynoic acid and octadecyleicosaynoic acid, were ineffective as inhibitors of the P388D1 PLA2. However, 7,7-dimethyl-5,8-eicosadienoic acid was as effective an inhibitor (IC50 = 16 microM) as arachidonic acid. Manoalide and its analog, manoalogue, were found to be good inhibitors of the P388D1 PLA2 (IC50 = 16 and 26 microM, respectively). The irreversible inhibitor of the extracellular PLA2, p-bromophenacyl bromide, was a very poor inhibitor of the P388D1 PLA2, apparent IC50 = 500-600 microM. Quinacrine was also ineffective as an inhibitor as was the cyclooxygenase inhibitor indomethacin. On the cellular level, the P388D1 cells respond to various stimuli to produce PGD2 and PGE2 as the major cyclooxygenase products with minor production of PGI2 and thromboxane A2. Similar arachidonic acid metabolite profiles were seen for calcium ionophore A23187, melittin, and platelet-activating factor. Manoalide, manoalogue, and 7,7-dimethyl-5,8-eicosadienoic acid, effective inhibitors of the isolated PLA2, inhibited PGE2 production in intact P388D1 cells 40-85% in the concentration range studied. In contrast, p-bromophenacyl bromide, which is ineffective as an inhibitor of the P388D1 PLA2, did not significantly effect PGE2 production in the concentration ranges used. These results demonstrate that there may be important differences between the intracellular P388D1 PLA2 and the more commonly studied extracellular forms of PLA2. These differences are also observed in the intact cell studies and emphasize the need for the evaluation of inhibitors both in vitro and in vivo using the isolated enzyme and intact cell. This is the first example of studies aimed at correlating the inhibition of a purified intracellular PLA2 with inhibition of prostaglandin production in the intact cell from which it is derived.  相似文献   

15.
Zinc has been shown to have antioxidant actions, which may be due, in part, to induction of metallothionein (MT). Such induction can protect tissues against various forms of oxidative injury because MT can function as an antioxidant. The objective of this study was to investigate if zinc or MT induction by zinc could afford protection against CYP2E1-dependent toxicity. HepG2 cells overexpressing CYP2E1 (E47cells) were treated with 60 microM arachidonic acid (AA), which is known to be toxic to these cells by a mechanism dependent on CYP2E1, oxidative stress, and lipid peroxidation. E47 cells were preincubated overnight in the absence or presence of metals such as zinc or cadmium that can induce MT. The culture medium containing the metals was removed, AA was added, and cell viability determined after 24 h incubation. Preincubation overnight with 150 microM zinc sulfate or 5 microM cadmium chloride induced a 20- to 30-fold increase of MT2A mRNA; high levels of MT2A mRNA were maintained during the subsequent challenge period with AA, even after the zinc was removed. MT protein levels were increased about 4- to 5-fold during the overnight preincubation with zinc and a 20- to 30-fold increase was observed 24 h after zinc removal during the AA challenge. The treatment with zinc was associated with significant protection against the loss of cell viability caused by AA in E47 cells. The zinc pretreatment protected about 50% against the DNA fragmentation, cell necrosis, the enhanced lipid peroxidation and increased generation of reactive oxygen species, and the loss of mitochondrial membrane potential induced by AA treatment in E47 cells. CYP2E1 catalytic activity and components of the cell antioxidant defense system such as glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPX), catalase, Cu,Zn superoxide dismutase (SOD), and MnSOD were not altered under these conditions. Zinc preincubation also protected the E47 cells against BSO-dependent toxicity. When E47 cells were coincubated with zinc plus AA for 24 h (i.e., zinc was not removed, nor was there a preincubation period prior to challenge with AA), AA toxicity was increased. Thus, zinc had a direct pro-oxidant effect in this model and an indirect antioxidant effect, perhaps via induction of MT. MT may have potential clinical utility for the prevention or improvement of liver injury produced by agents known to be metabolized by CYP2E1 to reactive intermediates and to cause oxidative stress.  相似文献   

16.
17.
Physiological concentrations of [Arg(8)]vasopressin (AVP; 10-500 pM) stimulate oscillations of cytosolic free Ca2+ concentration (Ca2+ spikes) in A7r5 vascular smooth muscle cells. We previously reported that this effect of AVP was blocked by a putative phospholipase A2 (PLA2) inhibitor, ONO-RS-082 (5 microM). In the present study, the products of PLA2, arachidonic acid (AA), and lysophospholipids were found to be ineffective in stimulating Ca2+ spiking, and inhibitors of AA metabolism did not prevent AVP-stimulated Ca2+ spiking. Thin layer chromatography was used to monitor the release of AA and phosphatidic acid (PA), which are the products of PLA2 and phospholipase D (PLD), respectively. AVP (100 pM) stimulated both AA and PA formation, but only PA formation was inhibited by ONO-RS-082 (5 microM). Exogenous PLD (type VII; 2.5 U/ml) stimulated Ca2+ spiking equivalent to the effect of 100 pM AVP. AVP stimulated transphosphatidylation of 1-butanol (a PLD-catalyzed reaction) but not 2-butanol, and 1-butanol (but not 2-butanol) completely prevented AVP-stimulated Ca2+ spiking. Protein kinase C (PKC) inhibition, which completely prevents AVP-stimulated Ca2+ spiking, did not inhibit AVP-stimulated phosphatidylbutanol formation. These results suggest that AVP-stimulated Ca2+ spiking depends on activation of PLD rather than PLA2 and that PKC activation may be downstream of PLD in the signaling cascade.  相似文献   

18.
G-proteins, calcium, and phospholipase A2 (PLA2) have all been implicated in the cascade of signaling events leading to the acrosome reaction in human spermatozoa. In order to study the role of Ca+2 and PLA2 during the acrosome reaction triggered by G-proteins, we treated human spermatozoa incubated for 3 hr under capacitating conditions with several reagents (GTPgammaS, A23187, ONO-RS-082, arachidonic acid, BAPTA-AM, and TPEN), alone or in different combinations. Our results suggest that GTP-binding proteins require Ca+2 and PLA2 to accomplish their stimulatory effect, and that Ca+2 is also required when the acrosome reaction--bypassing the action of PLA2--is stimulated by AA. Accordingly, when treated with GTPgammaS or AA, the cells loaded with Fura 2-AM showed a steady increase of [Ca+2]i. On the other hand, a massive influx of Ca+2 was completely unable to induce the acrosome reaction if PLA2 was inhibited, suggesting that both an increase of [Ca+2]i and PLA2 activation are required for the acrosome reaction to occur.  相似文献   

19.
We have investigated the signaling pathways underlying muscarinic receptor-induced calcium oscillations in human embryonic kidney (HEK293) cells. Activation of muscarinic receptors with a maximal concentration of carbachol (100 microm) induced a biphasic rise in cytoplasmic calcium ([Ca2+]i) comprised of release of Ca2+ from intracellular stores and influx of Ca2+ from the extracellular space. A lower concentration of carbachol (5 microm) induced repetitive [Ca2+]i spikes or oscillations, the continuation of which was dependent on extracellular Ca2+. The entry of Ca2+ with 100 microm carbachol and with the sarcoplasmic-endoplasmic reticulum calcium ATPase inhibitor, thapsigargin, was completely blocked by 1 microm Gd3+, as well as 30-100 microm concentrations of the membrane-permeant inositol 1,4,5-trisphosphate receptor inhibitor, 2-aminoethyoxydiphenyl borane (2-APB). Sensitivity to these inhibitors is indicative of capacitative calcium entry. Arachidonic acid, a candidate signal for Ca2+ entry associated with [Ca2+]i oscillations in HEK293 cells, induced entry that was inhibited only by much higher concentrations of Gd3+ and was unaffected by 100 microm 2-APB. Like arachidonic acid-induced entry, the entry associated with [Ca2)]i oscillations was insensitive to inhibition by Gd3+ but was completely blocked by 100 microm 2-APB. These findings indicate that the signaling pathway responsible for the Ca2+) entry driving [Ca2+]i oscillations in HEK293 cells is more complex than originally thought, and may involve neither capacitative calcium entry nor a role for PLA2 and arachidonic acid.  相似文献   

20.
Phospholipases A2 (PLA2) comprise a set of extracellular and intracellular enzymes that catalyze the hydrolysis of the sn-2 fatty acyl bond of phospholipids to yield fatty acids and lysophospholipids. The PLA2 reaction is the primary pathway through which arachidonic acid (AA) is released from phospholipids. PLA2s have an important role in cellular death that occurs via necrosis or apoptosis. Several reports support the hypothesis that unesterified arachidonic acid in cells is a signal for the induction of apoptosis. However, most of the biological effects of arachidonic acid are attributable to its metabolism by mainly three different groups of enzymes: cytochromes P450, cyclooxygenases, and lipoxygenases. In this review we will focus on the role of cytochrome P450 in AA metabolism and toxicity. The major pathways of arachidonic acid metabolism catalyzed by cytochrome P450 generate metabolites that are subdivided into two groups: the epoxyeicosatrienoic acids, formed by CYP epoxygenases, and the arachidonic acid derivatives that are hydroxylated at or near the omega-terminus by CYP omega-oxidases. In addition, autoxidation of AA by cytochrome P450-derived reactive oxygen species produces lipid hydroperoxides as primary oxidation products. In some cellular models of toxicity, cytochrome P450 activity exacerbates PLA2- and AA-dependent injury, mainly through the production of oxygen radicals that promote lipid peroxidation or production of metabolites that alter Ca2+ homeostasis. In contrast, in other situations, cytochrome P450 metabolism of AA is protective, mainly by lowering levels of unesterified AA and by production of metabolites that activate antiapoptotic pathways. Several lines of evidence point to the combined action of phospholipase A2 and cytochrome P450 as central in the mechanism of cellular injury in several human diseases, such as alcoholic liver disease and myocardial reperfusion injury. Inhibition of specific PLA2 and cytochrome P450 isoforms may represent novel therapeutic strategies against these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号