首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of nitrogen form (NH4-N, NH4-N + NO3, NO3) on nitrate reductase activity in roots and shoots of maize (Zea mays L. cv INRA 508) seedlings was studied. Nitrate reductase activity in leaves was consistent with the well known fact that NO3 increases, and NH4+ and amide-N decrease, nitrate reductase activity. Nitrate reductase activity in the roots, however, could not be explained by the root content of NO3, NH4-N, and amide-N. In roots, nitrate reductase activity in vitro was correlated with the rate of nitrate reduction in vivo. Inasmuch as nitrate reduction results in the production of OH and stimulates the synthesis of organic anions, it was postulated that nitrate reductase activity of roots is stimulated by the released OH or by the synthesized organic anions rather than by nitrate itself. Addition of HCO3 to nutrient solution of maize seedlings resulted in a significant increase of the nitrate reductase activity in the roots. As HCO3, like OH, increases pH and promotes the synthesis of organic anions, this provides circumstantial evidence that alkaline conditions and/or organic anions have a more direct impact on nitrate reductase activity than do NO3, NH4-N, and amide-N.  相似文献   

2.
A nitrate uptake system is induced (along with nitrate reductase) when NH4+-grown Penicillium chrysogenum is incubated with inorganic nitrate in synthetic medium in the absence of NH4+. Nitrate uptake and nitrate reduction are probably in steady state in fully induced mycelium, but the ratios of the two activities are not constant during the induction period. Substrate concentrations of ammonium cause a rapid decay of nitrate uptake and nitrate reductase activity. The two activities are differentially inactivated (the uptake activity being more sensitive). Glutamine and asparagine are as effective as NH4+ in suppressing nitrate uptake activity. Glutamate and alanine were about half as effective as NH4+. Cycloheximide interferes with the NH4+-induced decay of nitrate uptake activity. The ammonium transport system is almost maximally deinhibited (or derepressed) in nitrate-grown mycelium.  相似文献   

3.
NADP-isocitrate dehydrogenase (NADP-ICDH) activity of radish (Raphanus sativus L.) seedlings pretreated with various plant growth regulators: KiN, GA, and ABA and different nitrogen sources viz. KNO3, NH4Cl and NH4NO3 in light and dark was investigated. ICDH activity was significantly higher in light than in dark; addition of different nitrogen sources reduced it to a greater extent in NO3 supplementation. Among hormonal treatment only KiN showed slight promotion with KNO3 and NH4NO3. On the other hand in light KNO3 and/or NH4NO3 promoted ICDH activity and among hormones, KiN significantly promoted the activity in KNO3 and NH4NO3 supplemented seedlings while ABA was effective in NH4CL. It is suggested that in non-photosynthetic tissues, NADP-ICDH provides both reductant and carbon skeleton for glutamate synthesis.  相似文献   

4.
Wheat seedlings (Triticum vulgare) treated with 1 mm KNO3 or NaNO3, in the presence of 0.2 mm CaSO4, were compared during a 48-hour period with respect to nitrate uptake, translocation, accumulation and reduction; cation uptake and accumulation; and malate accumulation. Seedlings treated with KNO3 absorbed and accumulated more nitrate, had higher nitrate reductase levels in leaves but less in roots, accumulated 17 times more malate in leaves, and accumulated more of the accompanying cation than seedlings treated with NaNO3. Within seedlings of each treatment, changes in nitrate reductase activity and malate accumulation were parallel in leaves and in roots. Despite the great difference in malate accumulation, leaves of the KNO3-treated seedlings had only slightly greater levels of phosphoenolpyruvate carboxylase than leaves of NaNO3-treated seedlings. NADP-malic enzyme levels increased only slightly in leaves and roots of both KNO3- and NaNO3-treated seedlings. The effects of K+ and Na+ on all of these parameters can best be explained by their effects on nitrate translocation, which in turn affects the other parameters. In a separate experiment, we confirmed that phosphoenolpyruvate carboxylase activity increased about 2-fold during 36 hours of KNO3 treatment, and increased only slightly in the KCl control.  相似文献   

5.
Effects of sodium on mineral nutrition in rose plants   总被引:2,自引:0,他引:2  
The effects of sodium (Na+) ion concentration on shoot elongation, uptake of ammonium (NH4+) and nitrate (NO3?) and the activities of nitrate reductase (NR) and glutamine synthetase (GS) were studied in rose plants (Rosa hybrida cv. “Lambada”). The results showed that shoot elongation was negatively correlated with sodium concentration, although no external symptoms of toxicity were observed. Nitrate uptake decreased at high sodium levels, specifically at 30 meq litre4 of sodium. As flower development was normal under high saline conditions, this could suggest that nitrogen was being mobilised from shoot and leaf reserves. Ammonium uptake was not affected by any of the salt treatments applied probably because it diffuses through the cell membrane at low concentrations. Nitrate reductase activity was reduced by 50% at 30 meq litre 1 compared with control treatment, probably due to a decrease in the free nitrate related to nitrate uptake pattern. None of the salt treatments used affected total leaf GS activity (both chloroplastic and cytosolic isoforms) or leaf NPK mineral contents. Nitrate reductase activity in leaves increased at 10 meq litre?1 of sodium and GS activity in roots (cytosolic isoform only) followed the same pattern as NR. It is suggested that the activation of both enzymes at low salt level could be attributed to the beneficial effect of increased sulphur in the nutrient solutions.  相似文献   

6.
When grown in vitro in a medium containing NH4NO3 as the sole source of nitrogen, seeds ro the orchid, Cattleya (C. labiata ‘Wonder’ X C. labiata ‘Treasure'), germinated readily and proceeded to form small plantlets. Development of the embryos was accompanied by an increase in their total nitrogen and a decline in the percent dry weight. Growth responses of the seedlings in other ammonium salts like (NH4)2SO4, (NH4)2HPO4, NH4Cl, ammonium acetate and ammonium oxalate were similar to that in NH4NO3. However, when grown in a medium containing NaNO3, development of the seedlings was drastically inhibited; KNO3, Ca(NO3)2, KNO2 and NaNO2 also were poor nitrogen sources. Attempts to grow the seedlings in NaNO3 by changing the pH or by addition of kinetin, molybdenum or ascorbic acid as supplements were completely unsuccessful. When seedlings growing in NH4NO3 for varying periods were transferred to NaNO3, it was found that those plants allowed to grow for 60 or more days in NH4NO3 could resume normal growth thereafter in NaNO3. Determination of the nitrate reductase activity in seedlings of different ages grown in NaNO3, after NH4NO3, showed that the ability of the seedlings to assimilate inorganic nitrogen was paralleled by the appearance of the enzyme.  相似文献   

7.
The activity of extracted NADH-NO3? reductase was measured in the marine dinoflagellates Amphidinium carteri Hulburt and Cachonina niei Loeblich. Its activity showed a diel periodicity and was ca. twice as great at midday as at midnight. The enzyme activity was unstable, with an in vitro half-life of 2–3 h. Values of enzyme activity were low or undetectable during lag phase but paralleled the instantaneous growth rate value during log phase. Nitrate reductase activity was not found in the stationary phase of growth, but additions of NO3? resulted in enzyme activity after 24h. When A. carteri was exposed to a series of light intensities for several weeks, the division rate and enzyme activity increased with increasing light intensity up to saturating intensities. In 6 h exposures, enzyme activity decreased with decreasing light intensities below light intensities saturating division rate. Additions of NH4+ (0.5–50 μm) to A. carteri cultures decreased the amount of extractable enzyme. The in vitro activity was not inhibited by similar NH+4 concentrations.  相似文献   

8.
Summary We investigated the inducibility of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), and glutamine synthetase (GS; EC 6.3.1.2) isoforms in cotyledons of 7-day-old seedlings of sunflower (Helianthus annuus L.) in relation to light, nitrogen source (NO 3 , NO 2 or NH 4 + ), and the involvement of plastids. Nitrate was absolutely (and specifically) required for NR induction, and stimulated more effectively than NO 2 or NH 4 + the synthesis of NiR and chloroplastic GS (GS2) over the constitutive levels present in N-free-grown seedlings. In vivo inhibition of NR activity by tungsten application to seedlings and measurements of tissue NO 3 concentration indicate that NO 3 -dependent enzyme induction is elicited by NO 3 per se and not by a product of its assimilatory reduction, e.g., NO 2 or NH 4 + . In the presence of NO 3 , light remarkably enhanced the appearance of NR, NiR, and GS2, while the activity of the cytosolic GS isoform (GS1) was adversely affected. Cycloheximide suppressed much more efficiently than chloramphenicol the light- and NO 3 -dependent increase of GS2 activity, indicating that sunflower chloroplastic GS is synthesized on cytoplasmic 80S ribosomes. When the plastids were damaged by photooxidation in cotyledons made carotenoid-free by application of norflurazon, the positive action of light and NO 3 on the appearance of NR, NiR, and GS2 isoform was greatly abolished. Therefore, it is suggested that intact chloroplasts are required for the inductive effect of light and NO 3 and/or for the accumulation of newly formed enzymes in the organelle.Abbreviations CAP chloramphenicol - CHX cycloheximide - GS glutamine synthetase - GS1 cytosolic GS - GS2 plastidic (chloroplastic) GS - NF norflurazon - NiR nitrite reductase - NR nitrate reductase  相似文献   

9.
The effect of nitrate and ammonium on the extractable activity of two enzymes of assimilatory sulfate reduction, ATP sulfurylase (EC 2.7.7.4) and adenosine 5′-phosphosulfate sulfotransferase (APSSTase), was examined in Lemna minor L. cultivated under steady state conditions. Nitrate reductase (EC 1.6.6.1) was measured for comparison. Low nitrate concentrations (0.2 and 0.04 millimolar) caused a decrease in the specific activity of all three enzymes measured. Twenty-four hours after transfer to medium without a nitrogen source, the specific activity of APSSTase and nitrate reductase was at less than 30% of the original level, whereas ATP sulfurylase was still at about 80%. NH4+ added to the nutrient solution caused a 50 to 100% increase in the specific activity of APSSTase within 24 hours, followed by a slow decrease. After 72 hours with NH4+, the specific activity was still 25% higher than originally. During the same period, the extractable protein increased by 30% on a fresh weight basis, and total protein by 55 to 60%. Nitrate reductase activity decreased to less than 5%. After omission of NH4+ from the nutrient solution extractable APSSTase activity rapidly decreased to the level of cultures with NO3 as a nitrogen source. Using [35S]SO42− as a sulfur source, an increased incorporation of label into the protein fraction could be detected when NH4+ was added to the nutrient solution. This indicated that more sulfate was assimilated and used for protein synthesis. The higher extractable activity of APSSTase with NH4+ may be a regulatory mechanism involved in the formation of sufficient sulfur amino acids during a period of increased protein synthesis.  相似文献   

10.
A nitrate reductase inactivating enzyme from the maize root   总被引:12,自引:12,他引:0       下载免费PDF全文
Wallace W 《Plant physiology》1973,52(3):197-201
The nitrate reductase in the mature root extract of 3-day maize (Zea mays) seedlings was relatively labile in vitro. Insoluble polyvinylpyrrolidone used in the extraction medium produced only a slight increase in the stability of the enzyme. Mixing the mature root extract with that of the root tip promoted the inactivation of nitrate reductase in the latter. The inactivating factor in the mature root was separated from nitrate reductase by (NH4)2SO4 precipitation. Nitrate reductase was found in the 40% (NH4)2SO4 precipitate, while the inactivating factor was largely precipitated by 40 to 55% (NH4)2SO4. The latter fraction of the mature root inactivated the nitrate reductase isolated from the root tip, mature root, and scutellum. The inactivating factor, which has a Q10 15 to 25 C of 2.2, was heat labile, and hence has been designated as a nitrate reductase inactivating enzyme. The reduced flavin mononucleotide nitrate reductase was also inactivated, while an NADH cytochrome c reductase in nitrate-grown seedlings was inactivated but at a slower rate. The inactivating enzyme had no influence on the activity of nitrite reductase, glutamate dehydrogenase, xanthine oxidase, and isocitrate lyase. The activity of the nitrate reductase inactivating enzyme was not influenced by nitrate and was also found in the mature root of minus nitrate-grown seedlings.  相似文献   

11.
Nitrate reductase activity was measured during the stratification cycle of the eutrophic reservoir La Concepción. Nitrate was consumed in the epilimnion mainly through assimilatory reduction, and in the hypolimnion through dissimilatory reduction triggered by anoxic conditions. Nitrate reductase activity (NR) scaled to particulate nitrogen (PN) was positively correlated with the external nitrate concentration and the NO3/NH4+ ratio. Using NR as a tool for the assessment of the N cycle dynamics, it can be suggested that at the beginning of the stratification cycle, the phytoplanktonic community was mainly using NO3 as N source; and since N was not likely the limiting nutrient at that time of the year, NR was close to its maximum possible.  相似文献   

12.
G. Gebauer  A. Melzer  H. Rehder 《Oecologia》1984,63(1):136-142
Summary With Rumex obtusifolius L., the influence of some environmental conditions on nitrate uptake and reduction were investigated. Nitrate concentrations of plant material were determined by HPLC, the activity of nitrate reductase by an in vivo test. As optimal incubation medium, a buffer containing 0.04 M KNO3; 0.25 M KH2PO4; 1.5% propanol (v/v); pH 8.0 was found. Vacuum infiltration caused an increase of enzyme activity of up to 40%.High nitrate concentrations were found in roots and leaf petioles. Nitrate reductase activity of these organs, however, was low. On the other hand, the highest nitrate reductase activity was observed in leaf laminae, which contained lowest nitrate concentrations.In leaves, nitrate content and nitrate reductase activity exhibited inverse diurnal fluctuations. During darkness, decreasing activities of the enzyme were followed by increasing nitrate concentrations, while during light the contrary was true. In petioles diurnal fluctuations in nitrate content were observed, too. No significant correlations with illumination, however, could be found.Our results prove that Rumex obtusifolius is characterized by an intensive nitrate turnover. Theoretically, internal nitrate content of the plant would be exhausted within a few hours, if a supply via the roots would be excluded.  相似文献   

13.
The effects of nitrogen applied at increasing levels of 0, 4, 8, 16 and 32 mM N (KNO3 or NH4Cl) were studied in faba bean (Vicia faba) nodulated byRhizobium leguminosarum bv.viceae RCR lool. Nitrogenase activity was higher at 4 and 8 mM N than the zero N treatment (control), but 16 and 32 mM N significantly reduced the efficiency of nodule functions. Nitrate reductase activities (NRA) of leaves, stems, roots, nodules and nodule fractions (bacteroid and cytosol) were increased with rising the NO3 ? or NH4 + levels. NRA decreased in the order of nodules>leaves>stems>roots. Cytosolic NR was markedly higher than that recorded in the bacteroid fractions. Nitrate levels were linearly correlated to NRA of nodules. Accumulation of NO2 ? within nodules suggests that NO2 ? inhibits nodule’s activity after feeding plants with NO3 ? or NH4 +.  相似文献   

14.
Soybean (Glycine max [L.] Merr.) seeds were imbibed and germinated with or without NO3, tungstate, and norflurazon (San 9789). Norflurazon is a herbicide which causes photobleaching of chlorophyll by inhibiting carotenoid synthesis and which impairs normal chloroplast development. After 3 days in the dark, seedlings were placed in white light to induce extractable nitrate reductase activity. The induction of maximal nitrate reductase activity in greening cotyledons did not require NO3 and was not inhibited by tungstate. Induction of nitrate reductase activity in norflurazon-treated cotyledons had an absolute requirement for NO3 and was completely inhibited by tungstate. Nitrate was not detected in seeds or seedlings which had not been treated with NO3. The optimum pH for cotyledon nitrate reductase activity from norflurazon-treated seedlings was at pH 7.5, and near that for root nitrate reductase activity, whereas the optimum pH for nitrate reductase activity from greening cotyledons was pH 6.5. Induction of root nitrate reductase activity was also inhibited by tungstate and was dependent on the presence of NO3, further indicating that the isoform of nitrate reductase induced in norflurazon-treated cotyledons is the same or similar to that found in roots. Nitrate reductases with and without a NO3 requirement for light induction appear to be present in developing leaves. In vivo kinetics (light induction and dark decay rates) and in vitro kinetics (Arrhenius energies of activation and NADH:NADPH specificities) of nitrate reductases with and without a NO3 requirement for induction were quite different. Km values for NO3 were identical for both nitrate reductases.  相似文献   

15.
The occurrence of nitrate reductase in apple leaves   总被引:2,自引:2,他引:0       下载免费PDF全文
Nitrate reductase utilizing NADH or reduced flavin mononucleotide (FMNH2) as electron donor was extracted from the leaves, stems and petioles, and roots of apple seedlings. Successful extraction was made possible by the use of insoluble polyvinylpyrrolidone (Polyclar AT) which forms insoluble complexes with polyphenols and tannins. The level of nitrate reductase per gram fresh weight was highest in the leaf tissue although the nitrate content of the roots was much higher than that of the leaves. Nitrite reductase activity was detected only in leaf extracts and was 4 times higher than nitrate reductase activity. Nitrate was found in all parts of young apple trees and trace amounts were also detected in mature leaves from mature trees. Nitrate reductase was induced in young leaves of apple seedlings and in mature leaves from 3 fruit-bearing varieties. An inhibitor of polyphenoloxidase, 2-mercaptobenzothiazole was used in both the inducing medium and the extracting medium in concentrations from 10−3 to 10−5m with no effect upon nitrate reductase activity.  相似文献   

16.
Summary There were three kinds of chlorate resistant (Clr-R) mutants: Clr-R1 type did not show nitrate reductase activity, Clr-R2 type was deficient in nitrate uptake activity and Clr-R3 type was defective in both. It is suggested that the genetic determinant of the uptake system is distinct from that of the reductase system.The NH 4 + -repressible uptake system showed a requirement of nitrate as an activator of its activity. In comparison, NH 4 + -repressible reductase enzyme showed requirement of nitrate neither as an inducer of its synthesis nor as an activator of its activity. Thus, the available mutational and physiological evidence suggest no involvement of the nitrate uptake system in control of nitrate reductase activity and vice versa.Abbreviations Tricine (N-tris[Hydroxymethyl] methyl glycine) - Tris Tris (Hydroxymethyl) amino methane - OD Optical Density - Chl. Chlorophyll  相似文献   

17.
Physiology, regulation and biochemical aspects of the nitrogen assimilation are well known in Prokarya or Eukarya but they are poorly described in Archaea domain. The haloarchaeon Haloferax mediterranei can use different nitrogen inorganic sources (NO3, NO2 or NH4+) for growth. Different approaches were considered to study the effect of NH4+ on nitrogen assimilation in Hfx. mediterranei cells grown in KNO3 medium. The NH4+ addition to KNO3 medium caused a decrease of assimilatory nitrate (Nas) and nitrite reductases (NiR) activities. Similar effects were observed when nitrate-growing cells were transferred to NH4+ media. Both activities increased when NH4+ was removed from culture, showing that the negative effect of NH4+ on this pathway is reversible. These results suggest that ammonium causes the inhibition of the assimilatory nitrate pathway, while nitrate exerts a positive effect. This pattern has been confirmed by RT-PCR. In the presence of both NO3 and NH4+, NH4+ was preferentially consumed, but NO3 uptake was not completely inhibited by NH4+ at prolonged time scale. The addition of MSX to NH4+ or NO3 cultures results in an increase of Nas and NiR activities, suggesting that NH4+ assimilation, rather than NH4+ per se, has a negative effect on assimilatory nitrate reduction in Hfx. mediterranei. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The steady-state levels of nitrate, nitrite, and ammonium were estimated in the green alga Ulva rigida C. Agardh in darkness after addition of 0.5 mM KNO3 and irradiation with red (R) and blue (B) light pulses of different duration (5 and 30 min). The net uptake of nitrate was very rapid. Seventy-five percent of the nitrate added was consumed after 60 min in darkness. Although uptake was stable after R or B, efflux of nitrate occurred within 3 h in the dark control and when R or B were followed by far-red (FR) irradiation. The internal nitrate concentration after 3 h in darkness was similar after R and B light pulses; however, the intracellular ammonium was higher after R than after B. The intracellular nitrate and ammonium decreased when FR tight pulses were applied immediately after R or B. Thus, the involvement of phytochrome in the transport of nitrate and ammonium is proposed. Nitrate reductase activity, measured by the in situ method, was increased by both R and B light pulses. The effect was partially reversed by FR light. Nitrate reductase activity was higher after 5 min of R light than after 5 min of B. However, after 30-min light pulses, the relative increase in activity was reversed for R and B. We propose that phytochrome and a blue-light photoreceptor are involved in regulation of nitrogen metabolism. Nitrate uptake and reduction correlates with previously detected light-regulated accumulation of protein in Ulva rigida under the same experimental conditions.  相似文献   

19.
Nitrate reductase activity (NRA) was found in primary roots, but not in foliage of red spruce (Picea rubens Sarg.) seedlings. Nitrate induced NRA:NH4+ did not induce and slightly depressed NRA in older seedlings. Induction required 8 hours and, once induced, NRA decreased slowly in the absence of exogenous NO3. Seedlings were grown in perlite with a complete nutrient solution containing NH4+ to limit NR induction. Established seedlings were stressed with nutrient solutions at pH 3, 4, or 5 supplemented with Cl salts of Al, Cd, Pb, or Zn each at two concentrations. NRA in primary root tips was measured at 2, 14, 28, and 42 days. NRA induction was greatest at pH 3, and remained high during the period of study. NRA induction at pH 4 was lower. Metal ions suppressed NRA at pH 3 and 5, but enhanced NRA at pH 4. It is concluded that acidity and soluble metals in the root environment of red spruce are unlikely to be important factors in nitrogen transformations in red spruce roots.  相似文献   

20.
A. Melzer  G. Gebauer  H. Rehder 《Oecologia》1984,63(3):380-385
Summary The aim of this work was to investigate the effect of nitrogen starvation and subsequent fentilization with nitrate or ammonium on nitrate content and nitrate reductase activity of Rumex obtusifolius L. under natural conditions.When plants were transplanted to nitrate-poor media, endogenous nitrate was reduced within a few days. In parallel, nitrage reductase activities dropped to about 25% of the initial values. As a consequence of nitrate fertilization (1; 10 or 100 mmol KNO3/l substrate), endogenous nitrate content of the plant abruptly increased within one day. In extreme cases, nitrate concentrations of up to 10% of plant dry weight could be observed without being lethal. High external nitrate concentrations caused an inhibition of nitrate reductase within the leaves, while low external concentrations provoked an increase in the enzyme activity of about 450% within one day. Ammonium fertilization (5 mmol (NH4)2SO4/l substrate) also caused an increase in nitrate reductase activity and nitrate content within leaf blades. This observation indicates a rapid nitrification of ammonium in the substrate. When plants were fertilized with ammonium plus nitrate (2.5 mmol (NH4)2SO4+ 5 mmol KNO3/l substrate), an extremely high and long term increase in nitrate reduction could be observed. Due to an intensive enzymatic nitrate turnover, the nitrate content of leaf blades then remained relatively low. Our observations do not point to an inhibition of nitrate reductase activity in leaves of Rumex obtusifolius by ammonium. Despite temporarily high endogenous nitrate concentrations, Rumex obtusifolius may not be termed as a nitrate storage plant, since the accumulation of nitrate is a short term process only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号