首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Zhou Y  Jiang D  Thomason DB  Jarrett HW 《Biochemistry》2007,46(51):14907-14916
Binding of laminin to dystroglycan in the dystrophin glycoprotein complex causes signaling through dystroglycan-syntrophin-grb2-SOS1-Rac1-PAK1-JNK. Laminin binding also causes syntrophin tyrosine phosphorylation to initiate signaling. The kinase responsible was investigated here. PP2 and SU6656, specific inhibitors of Src family kinases, decreased the amount of phosphotyrosine syntrophin and decreased the level of active Rac1 in laminin-treated myoblasts, myotubes, or skeletal muscle microsomes. c-Src and c-Fyn both phosphorylate syntrophin, and inhibition of either with specific siRNAs diminishes the level of syntrophin phosphorylation. When the rat gastrocnemius was contracted, the level of Rac1 activation increased compared to that of the relaxed control muscle and Rac1 colocalized with beta-dystroglycan. Similar results were obtained when the muscle was stretched. Contracted muscle also contained more activated c-Jun N-terminal kinase, JNKp46. E3, an expressed protein containing only laminin domains LG4 and LG5, increased the rate of proliferation of myoblasts, and PP2 prevented cell proliferation. In addition, Src family kinases colocalized with activated Rac1 and with laminin-Sepharose in solid-phase binding assays. Thus, contraction, stretching, or laminin binding causes recruitment of Src family kinase to the dystrophin glycoprotein complex, activating Rac1 and inducing downstream signaling. The DGC likely represents a mechanoreceptor in skeletal muscle-regulating muscle growth in response to muscle activity. Src family kinases play an initiating and critical role.  相似文献   

2.
Previously, a signaling pathway was described [Oak, Zhou, and Jarrett (2003) J. Biol. Chem. 278, 39287-39295] that links matrix laminin binding on the outside of the sarcolemma to Grb2 binding to syntrophin on the inside surface of the sarcolemma and by way of Grb2-Sos1-Rac1-PAK1-JNK ultimately results in the phosphorylation of c-jun on Ser(65). How this signaling is initiated was investigated. Grb2-binding to syntrophin is increased by the addition of either laminin-1 or the isolated laminin alpha1 globular domain modules LG4-5, a protein referred to as E3. This identifies the LG4-5 sequences as the region of laminin responsible for signaling. Since laminin alpha1 LG4 is known to bind alpha-dystroglycan, this directly implicates alpha-dystroglycan as the laminin-signaling receptor. E3 or laminin-1 increase Grb2-binding and Rac1 activation. In the presence of E3 or laminin-1, syntrophin is phosphorylated on a tyrosine residue, and this increases and alters Grb2 binding. The alpha-dystroglycan antibody, IIH6, which blocks binding of laminins to alpha-dystroglycan, blocks both the laminin-induced Sos1/2 recruitment and syntrophin phosphorylation, showing that it is alpha-dystroglycan binding the LG4-5 region of laminin that is responsible. The C-terminal SH3 domain of Grb2 (C-SH3) binds only to nonphosphorylated syntrophin, and phosphorylation causes the Grb2 SH2 domain to bind and prevents SH3 binding. Syntrophin, tyrosine phosphate, beta-dystroglycan, and Rac1 all co-localize to the sarcolemma of rat muscle sections. A model for how this phosphorylation may initiate downstream events in laminin signaling is presented.  相似文献   

3.
4.
A Ca(2+)-calmodulin dependent protein kinase activity (DGC-PK) was previously shown to associate with skeletal muscle dystrophin glycoprotein complex (DGC) preparations, and phosphorylate dystrophin and a protein with the same electrophoretic mobility as alpha-syntrophin (R. Madhavan, H.W. Jarrett, Biochemistry 33 (1994) 5797-5804). Here, we show that DGC-PK and Ca(2+)-calmodulin dependent protein kinase II (CaM kinase II) phosphorylate a common site (RSDS(3616)) within the dystrophin C terminal domain that fits the consensus CaM kinase II phosphorylation motif (R/KXXS/T). Furthermore, both kinase activities phosphorylate exactly the same three fusion proteins (dystrophin fusions DysS7 and DysS9, and the syntrophin fusion) out of a panel of eight fusion proteins (representing nearly 100% of syntrophin and 80% of dystrophin protein sequences), demonstrating that DGC-PK and CaM kinase II have the same substrate specificity. Complementing these results, anti-CaM kinase II antibodies specifically stained purified DGC immobilized on nitrocellulose membranes. Renaturation of electrophoretically resolved DGC proteins revealed a single protein kinase band (M(r) approximately 60,000) that, like CaM kinase II, underwent Ca(2+)-calmodulin dependent autophosphorylation. Based on these observations, we conclude DGC-PK represents a dystrophin-/syntrophin-phosphorylating skeletal muscle isoform of CaM kinase II. We also show that phosphorylation of the dystrophin C terminal domain sequences inhibits their syntrophin binding in vitro, suggesting a regulatory role for phosphorylation.  相似文献   

5.
Previously, we showed that laminin‐binding to the dystrophin glycoprotein complex (DGC) of skeletal muscle causes a heterotrimeric G‐protein (Gαβγ) to bind, changing the activation state of the Gsα subunit. Others have shown that laminin‐binding to the DGC also leads to Akt activation. Gβγ, released when Gsα is activated, is known to bind phosphatidylinositol‐3‐kinase (PI3K), which activates Akt in other cells. Here, we investigate whether muscle Akt activation results from Gβγ, using immunoprecipitation and immunoblotting, and purified Gβγ. In the presence of laminin, PI3K‐binding to the DGC increases and Akt becomes phosphorylated and activated (pAkt), and glycogen synthase kinase is phosphorylated. Antibodies, which specifically block laminin‐binding to α‐dystroglycan, prevent PI3K‐binding to the DGC. Purified bovine brain Gβγ also caused PI3K and Akt activation. These results show that DGC‐Gβγ is binding PI3K and activating pAkt in a laminin‐dependent manner. Mdx mice, which have greatly diminished amounts of DGC proteins, display elevated pAkt signaling and increased expression of integrin β1 compared to normal muscle. This integrin binds laminin, Gβγ, and PI3K. Collectively, these suggest that PI3K is an important target for the Gβγ, which normally binds to DGC syntrophin, and activates PI3K/Akt signaling. Disruption of the DGC in mdx mouse is causing dis‐regulation of the laminin‐DGC‐Gβγ‐PI3K‐Akt signaling and is likely to be important to the pathogenesis of muscular dystrophy. Upregulating integrin β1 expression and activating the PI3K/Akt pathway in muscular dystrophy may partially compensate for the loss of the DGC. The results suggest new therapeutic approaches to muscle disease. J. Cell. Physiol. 219: 402–414, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
Dystrophin coordinates the assembly of a complex of structural and signalling proteins that is required for normal muscle function. A key component of the dystrophin-associated protein complex (DPC) is alpha-dystrobrevin, a dystrophin-related and -associated protein whose absence results in muscular dystrophy and neuromuscular junction defects [1,2]. The current model of the DPC predicts that dystrophin and dystrobrevin each bind a single syntrophin molecule [3]. The syntrophins are PDZ-domain-containing proteins that facilitate the recruitment of signalling proteins such as nNOS (neuronal nitric oxide synthase) to the DPC [4]. Here we show, using yeast two-hybrid analysis and biochemical binding studies, that alpha-dystrobrevin in fact contains two independent syntrophin-binding sites in tandem. The previously undescribed binding site is situated within an alternatively spliced exon of alpha-dystrobrevin, termed the variable region-3 (vr3) sequence, which is specifically expressed in skeletal and cardiac muscle [5,6]. Analysis of the syntrophin-binding region of dystrobrevin reveals a tandem pair of predicted alpha helices with significant sequence similarity. These alpha helices, each termed a syntrophin-binding motif, are also highly conserved in dystrophin and utrophin. Together these data show that there are four potential syntrophin-binding sites per dystrophin complex in skeletal muscle: two on dystrobrevin and two on dystrophin or utrophin. Furthermore, alternative splicing of dystrobrevin provides a mechanism for regulating the stoichiometry of syntrophin association with the DPC. This is likely to have important consequences for the recruitment of specific signalling molecules to the DPC and ultimately for its function.  相似文献   

7.
Syntrophins are scaffold proteins that regulate the subcellular localization of diacylglycerol kinase zeta (DGK-zeta), an enzyme that phosphorylates the lipid second-messenger diacylglycerol to yield phosphatidic acid. DGK-zeta and syntrophins are abundantly expressed in neurons of the developing and adult brain, but their function is unclear. Here, we show that they are present in cell bodies, neurites, and growth cones of cultured cortical neurons and differentiated N1E-115 neuroblastoma cells. Overexpression of DGK-zeta in N1E-115 cells induced neurite formation in the presence of serum, which normally prevents neurite outgrowth. This effect was independent of DGK-zeta kinase activity but dependent on a functional C-terminal PDZ-binding motif, which specifically interacts with syntrophin PDZ domains. DGK-zeta mutants with a blocked C terminus acted as dominant-negative inhibitors of outgrowth from serum-deprived N1E-115 cells and cortical neurons. Several lines of evidence suggest DGK-zeta promotes neurite outgrowth through association with the GTPase Rac1. DGK-zeta colocalized with Rac1 in neuronal processes and DGK-zeta-induced outgrowth was inhibited by dominant-negative Rac1. Moreover, DGK-zeta directly interacts with Rac1 through a binding site located within its C1 domains. Together with syntrophin, these proteins form a tertiary complex in N1E-115 cells. A DGK-zeta mutant that mimics phosphorylation of the MARCKS domain was unable to bind an activated Rac1 mutant (Rac1(V12)) and phorbol myristate acetate-induced protein kinase C activation inhibited the interaction of DGK-zeta with Rac1(V12), suggesting protein kinase C-mediated phosphorylation of the MARCKS domain negatively regulates DGK-zeta binding to active Rac1. Collectively, these findings suggest DGK-zeta, syntrophin, and Rac1 form a regulated signaling complex that controls polarized outgrowth in neuronal cells.  相似文献   

8.
The carboxy-terminal region of dystrophin has been suggested to be crucially important for its function to prevent muscle degeneration. We have previously shown that this region is the locus that interacts with the sarcolemmal glycoprotein complex, which mediates membrane anchoring of dystrophin, as well as with the cytoplasmic peripheral membrane protein, A0 and beta 1-syntrophin (Suzuki, A., M. Yoshida, K. Hayashi, Y. Mizuno, Y. Hagiwara, and E. Ozawa. 1994. Eur. J. Biochem. 220:283- 292). In this work, by using the overlay assay technique developed previously, we further analyzed the dystrophin-syntrophin/A0 interaction. Two forms of mammalian syntrophin, alpha 1- and beta 1- syntrophin, were found to bind to very close but discrete regions on the dystrophin molecule. Their binding sites are located at the vicinity of the glycoprotein-binding site, and correspond to the amino acid residues encoded by exons 73-74 which are alternatively spliced out in some isoforms. This suggests that the function of syntrophin is tightly linked to the functional diversity among dystrophin isoforms. Pathologically, it is important that the binding site for alpha 1- syntrophin, which is predominantly expressed in skeletal muscle, coincides with the region whose deletion was suggested to result in a severe phenotype. In addition, A0, a minor component of dystrophin- associated proteins with a molecular mass of 94 kD which is immunochemically related to syntrophin, binds to the same site as beta 1-syntrophin. Finally, based on our accumulated evidence, we propose a revised model of the domain organization of dystrophin from the view point of protein-protein interactions.  相似文献   

9.
10.
Dystrophin is a multidomain protein that links the actin cytoskeleton to laminin in the extracellular matrix through the dystrophin associated protein (DAP) complex. The COOH-terminal domain of dystrophin binds to two components of the DAP complex, syntrophin and dystrobrevin. To understand the role of syntrophin and dystrobrevin, we previously generated a series of transgenic mouse lines expressing dystrophins with deletions throughout the COOH-terminal domain. Each of these mice had normal muscle function and displayed normal localization of syntrophin and dystrobrevin. Since syntrophin and dystrobrevin bind to each other as well as to dystrophin, we have now generated a transgenic mouse deleted for the entire dystrophin COOH-terminal domain. Unexpectedly, this truncated dystrophin supported normal muscle function and assembly of the DAP complex. These results demonstrate that syntrophin and dystrobrevin functionally associate with the DAP complex in the absence of a direct link to dystrophin. We also observed that the DAP complexes in these different transgenic mouse strains were not identical. Instead, the DAP complexes contained varying ratios of syntrophin and dystrobrevin isoforms. These results suggest that alternative splicing of the dystrophin gene, which naturally generates COOH-terminal deletions in dystrophin, may function to regulate the isoform composition of the DAP complex.  相似文献   

11.
The human skeletal muscle yeast two-hybrid cDNA library was screened with the carboxyl-terminal region (the last 200 amino acids) of dystrophin. Two interacting clones were identified corresponding to alpha-actinin-2 and actin. Interactions between alpha-actinin, actin, and dystrophin were confirmed by the ligand-blotting technique, by colocalization of dystrophin and alpha-actinin-2 to the isolated skeletal muscle sarcolemmal vesicles and to the plasma membranes isolated from C2C12 myoblasts, and by indirect immunolocalization of dystrophin and alpha-actinin-2 in skeletal muscle cells. This is the first identification of a direct interaction between alpha-actinin, actin, and the carboxyl-terminal region of dystrophin. We propose that dystrophin forms lateral, multicontact association with actin and that binding of alpha-actinin-2 to the carboxyl-terminus of dystrophin is the communication link between the integrins and the dystrophin/dystrophin-glycoprotein complex.  相似文献   

12.
Syntrophins are adaptor proteins that link intracellular signaling molecules to the dystrophin based scaffold. In this study, we investigated the function of syntrophins in cell migration, one of the early steps in myogenic differentiation and in regeneration of adult muscle. Hepatocyte growth factor (HGF) stimulates migration and lamellipodia formation in cultured C2 myoblasts. In the migrating cells, syntrophin concentrated in the rear-lateral region of the cell, opposite of the lamellipodia, instead of being diffusely present throughout the cytoplasm of non-migrating cells. When the expression of α-syntrophin, the major syntrophin isoform of skeletal muscle, was reduced by transfection with the α-syntrophin-specific siRNA, HGF stimulation of lamellipodia formation was prevented. Likewise, migration of myoblasts from α-syntrophin knockout mice could not be stimulated by HGF. However, HGF-induced migration was restored in myoblasts isolated from a transgenic mouse expressing α-syntrophin only in muscle cells. Treatment of C2 myoblasts with inhibitors of PI3-kinase not only reduced the rate of cell migration, but also impaired the accumulation of syntrophins in the rear-lateral region of the migrating cells. Phosphorylation of Akt was reduced in the α-syntrophin siRNA-treated C2 cells. These results suggest that α-syntrophin is required for HGF-induced migration of myoblasts and for proper PI3-kinase/Akt signaling.  相似文献   

13.
Membrane scaffolding complexes are key features of many cell types, serving as specialized links between the extracellular matrix and the actin cytoskeleton. An important scaffold in skeletal muscle is the dystrophin-associated protein complex. One of the proteins bound directly to dystrophin is syntrophin, a modular protein comprised entirely of interaction motifs, including PDZ (protein domain named for PSD-95, discs large, ZO-1) and pleckstrin homology (PH) domains. In skeletal muscle, the syntrophin PDZ domain recruits sodium channels and signaling molecules, such as neuronal nitric oxide synthase, to the dystrophin complex. In epithelia, we identified a variation of the dystrophin complex, in which syntrophin, and the dystrophin homologues, utrophin and dystrobrevin, are restricted to the basolateral membrane. We used exogenously expressed green fluorescent protein (GFP)-tagged fusion proteins to determine which domains of syntrophin are responsible for its polarized localization. GFP-tagged full-length syntrophin targeted to the basolateral membrane, but individual domains remained in the cytoplasm. In contrast, the second PH domain tandemly linked to a highly conserved, COOH-terminal region was sufficient for basolateral membrane targeting and association with utrophin. The results suggest an interaction between syntrophin and utrophin that leaves the PDZ domain of syntrophin available to recruit additional proteins to the epithelial basolateral membrane. The assembly of multiprotein signaling complexes at sites of membrane specialization may be a widespread function of dystrophin-related protein complexes.  相似文献   

14.
Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force transduction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaffold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins. The adaptor proteins syntrophin contribute to recruit and regulate various signalling proteins such as ion channels, into a macromolecular complex. Although dystrophin and dystroglycan can be directly involved in signalling pathways, syntrophins play a central role in organizing signalplex anchored to the dystrophin scaffold. The dystrophin associated complex, can bind up to four syntrophin through binding domains of dystrophin and dystrobrevin, allowing the scaffold of multiple signalling proteins in close proximity. Multiple interactions mediated by PH and PDZ domains of syntrophin also contribute to build a complete signalplex which may include ion channels, such as voltage-gated sodium channels or TRPC cation channels, together with, trimeric G protein, G protein-coupled receptor, plasma membrane calcium pump, and NOS, to enable efficient and regulated signal transduction and ion transport. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

15.
Proliferating skeletal myoblasts show multiple specific responses to laminin, one of the major glycoprotein components of basement membranes. Using MM14Dy myoblasts, a myogenic cell strain derived from a normal adult mouse skeletal muscle, we show in this study that substrate-bound laminin but not other matrix proteins such as collagens or fibronectin specifically and rapidly induces the outgrowth of cell processes, resulting in bipolar, spindle-shaped cells. This effect is independent from the presence of collagens or serum, and was also observed in primary cultures of fetal mouse skeletal myoblasts. The outgrowth of cell processes on laminin is associated with a dramatic stimulation of cell motility: MM14 myoblasts migrate about five times faster on laminin than on fibronectin. In another series of experiments the effect of laminin and fibronectin on thymidine uptake and proliferation of myoblasts was tested. On top of a type I collagen substrate which was provided to ensure complete adhesion even at low doses of laminin or fibronectin, laminin stimulated myoblast proliferation and incorporation of [3H]thymidine in a dose-dependent manner. The stimulation is two- to threefold higher than on dishes coated with equivalent amounts of fibronectin and is observed both in the presence and in the absence of serum. These results suggest that laminin, a major component of the muscle basal lamina, may be actively involved in the development and regeneration of skeletal muscle.  相似文献   

16.
In skeletal myoblasts, Ras has been considered to be a strong inhibitor of myogenesis. Here, we demonstrate that Ras is involved also in the chemotactic response of skeletal myoblasts. Expression of a dominant-negative mutant of Ras inhibited chemotaxis of C2C12 myoblasts in response to basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and insulin-like growth factor 1 (IGF-1), key regulators of limb muscle development and skeletal muscle regeneration. A dominant-negative Ral also decreased chemotactic migration by these growth factors, while inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase (MEK) showed no effect. Activation of the Ras-Ral pathway by expression of an activated mutant of either Ras, the guanine-nucleotide dissociation stimulator for Ral, or Ral resulted in increased motility of myoblasts. The ability of Ral to stimulate motility was reduced by introduction of a mutation which prevents binding to Ral-binding protein 1 or phospholipase D. These results suggest that the Ras-Ral pathway is essential for the migration of myoblasts. Furthermore, we found that Ras and Ral are activated in C2C12 cells by bFGF, HGF and IGF-1 and that the Ral activation is regulated by the Ras- and the intracellular Ca(2+)-mediated pathways. Taken together, our data indicate that Ras and Ral regulate the chemotactic migration of skeletal muscle progenitors.  相似文献   

17.
18.
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function.  相似文献   

19.
《FEBS letters》1993,320(3):276-280
Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extarcellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex.  相似文献   

20.
The main role of the plasma membrane Ca2+/calmodulin-dependent ATPase (PMCA) is in the removal of Ca2+ from the cytosol. Recently, we and others have suggested a new function for PMCA as a modulator of signal transduction pathways. This paper shows the physical interaction between PMCA (isoforms 1 and 4) and alpha-1 syntrophin and proposes a ternary complex of interaction between endogenous PMCA, alpha-1 syntrophin, and NOS-1 in cardiac cells. We have identified that the linker region between the pleckstrin homology 2 (PH2) and the syntrophin unique (SU) domains, corresponding to amino acids 399-447 of alpha-1 syntrophin, is crucial for interaction with PMCA1 and -4. The PH2 and the SU domains alone failed to interact with PMCA. The functionality of the interaction was demonstrated by investigating the inhibition of neuronal nitric-oxide synthase-1 (NOS-1); PMCA is a negative regulator of NOS-1-dependent NO production, and overexpression of alpha-1 syntrophin and PMCA4 resulted in strongly increased inhibition of NO production. Analysis of the expression levels of alpha-1 syntrophin protein in the heart, skeletal muscle, brain, uterus, kidney, or liver of PMCA4-/- mice, did not reveal any differences when compared with those found in the same tissues of wild-type mice. These results suggest that PMCA4 is tethered to the syntrophin complex as a regulator of NOS-1, but its absence does not cause collapse of the complex, contrary to what has been reported for other proteins within the complex, such as dystrophin. In conclusion, the present data demonstrate for the first time the localization of PMCA1b and -4b to the syntrophin.dystrophin complex in the heart and provide a specific molecular mechanism of interaction as well as functionality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号