首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jolij J  Meurs M 《PloS one》2011,6(4):e18861

Background

Visual perception is not a passive process: in order to efficiently process visual input, the brain actively uses previous knowledge (e.g., memory) and expectations about what the world should look like. However, perception is not only influenced by previous knowledge. Especially the perception of emotional stimuli is influenced by the emotional state of the observer. In other words, how we perceive the world does not only depend on what we know of the world, but also by how we feel. In this study, we further investigated the relation between mood and perception.

Methods and Findings

We let observers do a difficult stimulus detection task, in which they had to detect schematic happy and sad faces embedded in noise. Mood was manipulated by means of music. We found that observers were more accurate in detecting faces congruent with their mood, corroborating earlier research. However, in trials in which no actual face was presented, observers made a significant number of false alarms. The content of these false alarms, or illusory percepts, was strongly influenced by the observers'' mood.

Conclusions

As illusory percepts are believed to reflect the content of internal representations that are employed by the brain during top-down processing of visual input, we conclude that top-down modulation of visual processing is not purely predictive in nature: mood, in this case manipulated by music, may also directly alter the way we perceive the world.  相似文献   

2.
Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.  相似文献   

3.
Internal representations about the external world can be driven by the external stimuli or can be internally generated in their absence. It has been a matter of debate whether novel stimuli from the external world are instructive over the brain network to create de novo representations or, alternatively, are selecting from existing pre-representations hosted in preconfigured brain networks. The hippocampus is a brain area necessary for normal internally generated spatial–temporal representations and its dysfunctions have resulted in anterograde amnesia, impaired imagining of new experiences, and hallucinations. The compressed temporal sequence of place cell activity in the rodent hippocampus serves as an animal model of internal representation of the external space. Based on our recent results on the phenomenon of novel place cell sequence preplay, we submit that the place cell sequence of a novel spatial experience is determined, in part, by a selection of a set of cellular firing sequences from a repertoire of existing temporal firing sequences in the hippocampal network. Conceptually, this indicates that novel stimuli from the external world select from their pre-representations rather than create de novo our internal representations of the world.  相似文献   

4.
Recognizing an object takes just a fraction of a second, less than the blink of an eye. Applying multivariate pattern analysis, or “brain decoding”, methods to magnetoencephalography (MEG) data has allowed researchers to characterize, in high temporal resolution, the emerging representation of object categories that underlie our capacity for rapid recognition. Shortly after stimulus onset, object exemplars cluster by category in a high-dimensional activation space in the brain. In this emerging activation space, the decodability of exemplar category varies over time, reflecting the brain’s transformation of visual inputs into coherent category representations. How do these emerging representations relate to categorization behavior? Recently it has been proposed that the distance of an exemplar representation from a categorical boundary in an activation space is critical for perceptual decision-making, and that reaction times should therefore correlate with distance from the boundary. The predictions of this distance hypothesis have been born out in human inferior temporal cortex (IT), an area of the brain crucial for the representation of object categories. When viewed in the context of a time varying neural signal, the optimal time to “read out” category information is when category representations in the brain are most decodable. Here, we show that the distance from a decision boundary through activation space, as measured using MEG decoding methods, correlates with reaction times for visual categorization during the period of peak decodability. Our results suggest that the brain begins to read out information about exemplar category at the optimal time for use in choice behaviour, and support the hypothesis that the structure of the representation for objects in the visual system is partially constitutive of the decision process in recognition.  相似文献   

5.
We describe a class of feed forward neural network models for associative content addressable memory (ACAM) which utilize sparse internal representations for stored data. In addition to the input and output layers, our networks incorporate an intermediate processing layer which serves to label each stored memory and to perform error correction and association. We study two classes of internal label representations: the unary representation and various sparse, distributed representations. Finally, we consider storage of sparse data and sparsification of data. These models are found to have advantages in terms of storage capacity, hardware efficiency, and recall reliability when compared to the Hopfield model, and to possess analogies to both biological neural networks and standard digital computer memories.  相似文献   

6.
A defining feature of passionate love is idealization—evaluating romantic partners in an overly favorable light. Although passionate love can be expected to color how favorably individuals represent their partner in their mind, little is known about how passionate love is linked with visual representations of the partner. Using reverse correlation techniques for the first time to study partner representations, the present study investigated whether women who are passionately in love represent their partner’s facial appearance more favorably than individuals who are less passionately in love. In a within-participants design, heterosexual women completed two forced-choice classification tasks, one for their romantic partner and one for a male acquaintance, and a measure of passionate love. In each classification task, participants saw two faces superimposed with noise and selected the face that most resembled their partner (or an acquaintance). Classification images for each of high passion and low passion groups were calculated by averaging across noise patterns selected as resembling the partner or the acquaintance and superimposing the averaged noise on an average male face. A separate group of women evaluated the classification images on attractiveness, trustworthiness, and competence. Results showed that women who feel high (vs. low) passionate love toward their partner tend to represent his face as more attractive and trustworthy, even when controlling for familiarity effects using the acquaintance representation. Using an innovative method to study partner representations, these findings extend our understanding of cognitive processes in romantic relationships.  相似文献   

7.
Filial imprinting is a dedicated learning process that lacks explicit reinforcement. The phenomenon itself is narrowly heritably canalized, but its content, the representation of the parental object, reflects the circumstances of the newborn. Imprinting has recently been shown to be even more subtle and complex than previously envisaged, since ducklings and chicks are now known to select and represent for later generalization abstract conceptual properties of the objects they perceive as neonates, including movement pattern, heterogeneity and inter-component relationships of same or different. Here, we investigate day-old Mallard (Anas platyrhynchos) ducklings’ bias towards imprinting on acoustic stimuli made from mallards’ vocalizations as opposed to white noise, whether they imprint on the temporal structure of brief acoustic stimuli of either kind, and whether they generalize timing information across the two sounds. Our data are consistent with a strong innate preference for natural sounds, but do not reliably establish sensitivity to temporal relations. This fits with the view that imprinting includes the establishment of representations of both primary percepts and selective abstract properties of their early perceptual input, meshing together genetically transmitted prior pre-dispositions with active selection and processing of the perceptual input.  相似文献   

8.
Perceptual decision making is prone to errors, especially near threshold. Physiological, behavioural and modeling studies suggest this is due to the intrinsic or ‘internal’ noise in neural systems, which derives from a mixture of bottom-up and top-down sources. We show here that internal noise can form the basis of perceptual decision making when the external signal lacks the required information for the decision. We recorded electroencephalographic (EEG) activity in listeners attempting to discriminate between identical tones. Since the acoustic signal was constant, bottom-up and top-down influences were under experimental control. We found that early cortical responses to the identical stimuli varied in global field power and topography according to the perceptual decision made, and activity preceding stimulus presentation could predict both later activity and behavioural decision. Our results suggest that activity variations induced by internal noise of both sensory and cognitive origin are sufficient to drive discrimination judgments.  相似文献   

9.
Despite extensive research on face perception, few studies have investigated individuals’ knowledge about the physical features of their own face. In this study, 50 participants indicated the location of key features of their own face, relative to an anchor point corresponding to the tip of the nose, and the results were compared to the true location of the same individual’s features from a standardised photograph. Horizontal and vertical errors were analysed separately. An overall bias to underestimate vertical distances revealed a distorted face representation, with reduced face height. Factor analyses were used to identify separable subconfigurations of facial features with correlated localisation errors. Independent representations of upper and lower facial features emerged from the data pattern. The major source of variation across individuals was in representation of face shape, with a spectrum from tall/thin to short/wide representation. Visual identification of one’s own face is excellent, and facial features are routinely used for establishing personal identity. However, our results show that spatial knowledge of one’s own face is remarkably poor, suggesting that face representation may not contribute strongly to self-awareness.  相似文献   

10.
The aim of the study was to explore the possibilities of multi-parametric representations of voxel-wise quantitative MRI data to objectively discriminate pathological cerebral tissue in patients with brain disorders. For this purpose, we recruited 19 patients with Multiple Sclerosis (MS) as benchmark samples and 19 age and gender matched healthy subjects as a reference group. The subjects were examined using quantitative Magnetic Resonance Imaging (MRI) measuring the tissue structure parameters: relaxation rates, R and R, and proton density. The resulting parameter images were normalized to a standard template. Tissue structure in MS patients was assessed by voxel-wise comparisons with the reference group and with correlation to a clinical measure, the Expanded Disability Status Scale (EDSS). The results were visualized by conventional geometric representations and also by multi-parametric representations. Data showed that MS patients had lower R and R, and higher proton density in periventricular white matter and in wide-spread areas encompassing central and sub-cortical white matter structures. MS-related tissue abnormality was highlighted in posterior white matter whereas EDSS correlation appeared especially in the frontal cortex. The multi-parameter representation highlighted disease-specific features. In conclusion, the proposed method has the potential to visualize both high-probability focal anomalies and diffuse tissue changes. Results from voxel-based statistical analysis, as exemplified in the present work, may guide radiologists where in the image to inspect for signs of disease. Future clinical studies must validate the usability of the method in clinical practice.  相似文献   

11.
Learning leads to a neuronal representation of acquired knowledge. This idea of knowledge representation was traditionally developed as a “cognitive map” of spatial memory represented in the hippocampus. The framework of cognitive mapping has been extended in the past decade to include not only spatial memory, but also non-spatial factual and temporal memory. Following this conceptual advancement, a line of recent neurophysiological research discovered such knowledge representations not only in the hippocampus, but also in the entorhinal cortex and frontal cortex. Although the distinct terms “cognitive map,” “schema,” “abstract task structure” or “categorization” were used in these studies, it is likely that these terms can be reconciled as a common mechanism of learned knowledge representations. Future experimental work will be required to differentiate the parametric nature of knowledge representations across brain areas.  相似文献   

12.
Most computational models for gender classification use global information (the full face image) giving equal weight to the whole face area irrespective of the importance of the internal features. Here, we use a global and feature based representation of face images that includes both global and featural information. We use dimensionality reduction techniques and a support vector machine classifier and show that this method performs better than either global or feature based representations alone. We also present results of human subjects performance on gender classification task and evaluate how the different dimensionality reduction techniques compare with human subjects performance. The results support the psychological plausibility of the global and feature based representation.  相似文献   

13.
Corticopetal acetylcholine (ACh) is released transiently from the nucleus basalis of Meynert (NBM) into the cortical layers and is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3 pyramidal neurons (PYRs) via muscarinic presynaptic effects on inhibitory synapses. Together with other possible presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses associated with top-down attention. However, the system-level consequences and cognitive relevance of such disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor landscape (Q-landscape, present under low-ACh, non-attentional conditions) and the attractor landscape (A-landscape, present under high-ACh, top-down attentional conditions). We present a conceptual computational model based on experimental knowledge of the structure of PYRs and interneurons (INs) in cortical layers 1 and 2/3 and discuss the possible physiological implications of our results.  相似文献   

14.
To understand visual cognition, it is imperative to determine when, how and with what information the human brain categorizes the visual input. Visual categorization consistently involves at least an early and a late stage: the occipito-temporal N170 event related potential related to stimulus encoding and the parietal P300 involved in perceptual decisions. Here we sought to understand how the brain globally transforms its representations of face categories from their early encoding to the later decision stage over the 400 ms time window encompassing the N170 and P300 brain events. We applied classification image techniques to the behavioral and electroencephalographic data of three observers who categorized seven facial expressions of emotion and report two main findings: (1) over the 400 ms time course, processing of facial features initially spreads bilaterally across the left and right occipito-temporal regions to dynamically converge onto the centro-parietal region; (2) concurrently, information processing gradually shifts from encoding common face features across all spatial scales (e.g., the eyes) to representing only the finer scales of the diagnostic features that are richer in useful information for behavior (e.g., the wide opened eyes in ‘fear’; the detailed mouth in ‘happy’). Our findings suggest that the brain refines its diagnostic representations of visual categories over the first 400 ms of processing by trimming a thorough encoding of features over the N170, to leave only the detailed information important for perceptual decisions over the P300.  相似文献   

15.
Distributed neural systems for the generation of visual images   总被引:26,自引:0,他引:26  
Ishai A  Ungerleider LG  Haxby JV 《Neuron》2000,28(3):979-990
Visual perception of houses, faces, and chairs evoke differential responses in ventral temporal cortex. Using fMRI, we compared activations evoked by perception and imagery of these object categories. We found content-related activation during imagery in extrastriate cortex, but this activity was restricted to small subsets of the regions that showed category-related activation during perception. Within ventral temporal cortex, activation during imagery evoked stronger responses on the left whereas perception evoked stronger responses on the right. Additionally, visual imagery evoked activity in parietal and frontal cortex, but this activity was not content related. These results suggest that content-related activation during imagery in visual extrastriate cortex may be implemented by "top-down" mechanisms in parietal and frontal cortex that mediate the retrieval of face and object representations from long-term memory and their maintenance through visual imagery.  相似文献   

16.
BACKGROUND: Regions in human frontal cortex may have modulatory top-down influences on retinotopic visual cortex, but to date neuroimaging methods have only been able to provide indirect evidence for such functional interactions between remote but interconnected brain regions. Here we combined transcranial magnetic stimulation (TMS) with concurrent functional magnetic resonance imaging (fMRI), plus psychophysics, to show that stimulation of the right human frontal eye-field (FEF) produced a characteristic topographic pattern of activity changes in retinotopic visual areas V1-V4, with functional consequences for visual perception. RESULTS: FEF TMS led to activity increases for retinotopic representations of the peripheral visual field, but to activity decreases for the central field, in areas V1-V4. These frontal influences on visual cortex occurred in a top-down manner, independently of visual input. TMS of a control site (vertex) did not elicit such visual modulations, and saccades, blinks, or pupil dilation could not account for our results. Finally, the effects of FEF TMS on activity in retinotopic visual cortex led to a behavioral prediction that we confirmed psychophysically by showing that TMS of the frontal site (again compared with vertex) enhanced perceived contrast for peripheral relative to central visual stimuli. CONCLUSIONS: Our results provide causal evidence that circuits originating in the human FEF can modulate activity in retinotopic visual cortex, in a manner that differentiates the central and peripheral visual field, with functional consequences for perception. More generally, our study illustrates how the new approach of concurrent TMS-fMRI can now reveal causal interactions between remote but interconnected areas of the human brain.  相似文献   

17.
In adult dragonflies, the compound eyes are augmented by three simple eyes known as the dorsal ocelli. The outputs of ocellar photoreceptors converge on relatively few second-order neurons with large axonal diameters (L-neurons). We determine L-neuron morphology by iontophoretic dye injection combined with three-dimensional reconstructions. Using intracellular recording and white noise analysis, we also determine the physiological receptive fields of the L-neurons, in order to identify the extent to which they preserve spatial information. We find a total of 11 median ocellar L-neurons, consisting of five symmetrical pairs and one unpaired neuron. L-neurons are distinguishable by the extent and location of their terminations within the ocellar plexus and brain. In the horizontal dimension, L-neurons project to different regions of the ocellar plexus, in close correlation with their receptive fields. In the vertical dimension, dendritic arborizations overlap widely, paralleled by receptive fields that are narrow and do not differ between different neurons. These results provide the first evidence for the preservation of spatial information by the second-order neurons of any dorsal ocellus. The system essentially forms a one-dimensional image of the equator over a wide azimuthal area, possibly forming an internal representation of the horizon. Potential behavioural roles for the system are discussed.  相似文献   

18.
 A computational model of hippocampal activity during spatial cognition and navigation tasks is presented. The spatial representation in our model of the rat hippocampus is built on-line during exploration via two processing streams. An allothetic vision-based representation is built by unsupervised Hebbian learning extracting spatio-temporal properties of the environment from visual input. An idiothetic representation is learned based on internal movement-related information provided by path integration. On the level of the hippocampus, allothetic and idiothetic representations are integrated to yield a stable representation of the environment by a population of localized overlapping CA3-CA1 place fields. The hippocampal spatial representation is used as a basis for goal-oriented spatial behavior. We focus on the neural pathway connecting the hippocampus to the nucleus accumbens. Place cells drive a population of locomotor action neurons in the nucleus accumbens. Reward-based learning is applied to map place cell activity into action cell activity. The ensemble action cell activity provides navigational maps to support spatial behavior. We present experimental results obtained with a mobile Khepera robot. Received: 02 July 1999 / Accepted in revised form: 20 March 2000  相似文献   

19.
Primates display a remarkable ability to adapt to novel situations. Determining what is most pertinent in these situations is not always possible based only on the current sensory inputs, and often also depends on recent inputs and behavioral outputs that contribute to internal states. Thus, one can ask how cortical dynamics generate representations of these complex situations. It has been observed that mixed selectivity in cortical neurons contributes to represent diverse situations defined by a combination of the current stimuli, and that mixed selectivity is readily obtained in randomly connected recurrent networks. In this context, these reservoir networks reproduce the highly recurrent nature of local cortical connectivity. Recombining present and past inputs, random recurrent networks from the reservoir computing framework generate mixed selectivity which provides pre-coded representations of an essentially universal set of contexts. These representations can then be selectively amplified through learning to solve the task at hand. We thus explored their representational power and dynamical properties after training a reservoir to perform a complex cognitive task initially developed for monkeys. The reservoir model inherently displayed a dynamic form of mixed selectivity, key to the representation of the behavioral context over time. The pre-coded representation of context was amplified by training a feedback neuron to explicitly represent this context, thereby reproducing the effect of learning and allowing the model to perform more robustly. This second version of the model demonstrates how a hybrid dynamical regime combining spatio-temporal processing of reservoirs, and input driven attracting dynamics generated by the feedback neuron, can be used to solve a complex cognitive task. We compared reservoir activity to neural activity of dorsal anterior cingulate cortex of monkeys which revealed similar network dynamics. We argue that reservoir computing is a pertinent framework to model local cortical dynamics and their contribution to higher cognitive function.  相似文献   

20.
How do I know the person I see in the mirror is really me? Is it because I know the person simply looks like me, or is it because the mirror reflection moves when I move, and I see it being touched when I feel touch myself? Studies of face-recognition suggest that visual recognition of stored visual features inform self-face recognition. In contrast, body-recognition studies conclude that multisensory integration is the main cue to selfhood. The present study investigates for the first time the specific contribution of current multisensory input for self-face recognition. Participants were stroked on their face while they were looking at a morphed face being touched in synchrony or asynchrony. Before and after the visuo-tactile stimulation participants performed a self-recognition task. The results show that multisensory signals have a significant effect on self-face recognition. Synchronous tactile stimulation while watching another person''s face being similarly touched produced a bias in recognizing one''s own face, in the direction of the other person included in the representation of one''s own face. Multisensory integration can update cognitive representations of one''s body, such as the sense of ownership. The present study extends this converging evidence by showing that the correlation of synchronous multisensory signals also updates the representation of one''s face. The face is a key feature of our identity, but at the same time is a source of rich multisensory experiences used to maintain or update self-representations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号