首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
Resistance to stress-induced apoptosis was examined in cells in which the expression of hsp70 was either constitutively elevated or inducible by a tetracycline-regulated transactivator. Heat-induced apoptosis was blocked in hsp70-expressing cells, and this was associated with reduced cleavage of the common death substrate protein poly(ADP-ribose) polymerase (PARP). Heat-induced cell death was correlated with the activation of the stress-activated protein kinase SAPK/JNK (c-Jun N-terminal kinase). Activation of SAPK/JNK was strongly inhibited in cells in which hsp70 was induced to a high level, indicating that hsp70 is able to block apoptosis by inhibiting signaling events upstream of SAPK/JNK activation. In contrast, SAPK/JNK activation was not inhibited by heat shock in cells with constitutively elevated levels of hsp70. Cells that constitutively overexpress hsp70 resist apoptosis induced by ceramide, a lipid signaling molecule that is generated by apoptosis-inducing treatments and is linked to SAPK/JNK activation. Similar to heat stress, resistance to ceramide-induced apoptosis occurs in spite of strong SAPK/JNK activation. Therefore, hsp70 is also able to inhibit apoptosis at some point downstream of SAPK/JNK activation. Since PARP cleavage is prevented in both cell lines, these results suggest that hsp70 is able to prevent the effector steps of apoptotic cell death. Processing of the CED-3-related protease caspase-3 (CPP32/Yama/apopain) is inhibited in hsp70-expressing cells; however, the activity of the mature enzyme is not affected by hsp70 in vitro. Caspase processing may represent a critical heat-sensitive target leading to cell death that is inhibited by the chaperoning function of hsp70. The inhibition of SAPK/JNK signaling and apoptotic protease effector steps by hsp70 likely contributes to the resistance to stress-induced apoptosis seen in transiently induced thermotolerance.  相似文献   

8.
9.
The induction of heat shock protein gene expression in response to stress is critical for the ability of organisms to cope with and survive exposure to these stresses. However, most studies on HSF1-mediated induction of hsp70 gene expression have utilized immortalized cell lines and temperatures above the physiologically relevant range. For these reasons much less is known about the heat shock response as it occurs in mammalian cells within tissues in the intact organism. To gain insight into this area we determined the temperature thresholds for activation of HSF1 DNA binding in different mouse tissues. We have found that HSF1 DNA binding activity and hsp70 synthesis are induced in spleen cells at significantly lower temperatures relative to cells of other tissues, with a temperature threshold for activation (39 degrees C) that is within the physiological range for fever. Furthermore, we found that the lowered temperature set point for induction of the stress response in spleen is specific to T-lymphocytes residing within this tissue and is not exhibited by B-lymphocytes. This lowered threshold is also observed in T-lymphocytes isolated from lymph nodes, suggesting that it is a general property of T-lymphocytes, and is seen in different mouse strains. Fever is an early event in the immune response to infection, and thus activation of the cellular stress response in T-lymphocytes by fever temperatures could serve as a way to give these cells enough time to express hsps in anticipation of their function in the coming immune response. The induced hsps likely protect these cells from the stressful conditions that can exist during the immune response, for example increasing their protection against stress-induced apoptosis.  相似文献   

10.
TNFalpha uniquely combines proinflammatory features with a proapoptotic potential. Activation of HSF1 followed by induction of hsp70 is part of a stress response, which protects cells from apoptosis. Herein, the effects of TNFalpha on the hsp70 stress response were investigated. TNFalpha caused transient downregulation of HSF1 activation and hsp70 synthesis, leading to increased sensitivity to heat-induced apoptosis. Blockade of TNF-R1, but not TNF-R2, as well as inhibition of protein phosphatases PP1/PP2a and PP2b completely blocked this effect. In contrast, blockade of MAPK/SAPK-, NF-kappaB (NF-kappaB)-, and PKC- pathways as well as the caspase cascade did not prevent downregulation of HSF1/hsp70. These data demonstrate that TNFalpha transiently inhibits the hsp70 stress response via TNF-R1 and activation of protein phosphatases. The price of inhibition of an essential cellular stress response is increased sensitivity to apoptotic cell death.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
Expression of stress proteins is generally induced by a variety of stressors. To gain a better understanding of the sensing and induction mechanisms of stress responses, we studied the effects of culture temperature on responses to various stressors, since the induction of hsp70 in mammalian cells by heat shock is somehow modulated by culture temperature. Hsp70 was not induced by treatment with sodium arsenite, azetidine-2-carboxylic acid, or zinc sulfate at the level of heat shock factor (HSF) 1 activation in cells incubated at low temperature, although these treatments induced hsp70 in cells incubated at 37 degrees C. The repression of sodium arsenite or zinc sulfate-induced HSF1 activation by low temperature was not simply due to the inhibition of protein synthesis. On the other hand, heat shock and iodoacetamide induced HSF 1 activation in cells incubated at either temperature. Thus, there seem to be two kinds of stressors that induce HSF1 activation independently of or dependent on culture temperature. Furthermore, the reduction of glutathione level seemed to be essential for HSF1 activation by chemical stressors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号