首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
We have investigated the expression patterns and subcellular localization in nervous tissue of glypican, a major glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan that is predominantly synthesized by neurons, and of biglycan, a small, leucine-rich chondroitin sulfate proteoglycan. By laser scanning confocal microscopy of rat central nervous tissue and C6 glioma cells, we found that a significant portion of the glypican and biglycan immunoreactivity colocalized with nuclear staining by propidium iodide and was also seen in isolated nuclei. In certain regions, staining was selective, insofar as glypican and biglycan immunoreactivity in the nucleus was seen predominantly in a subpopulation of large spinal cord neurons. The amino acid sequences of both proteoglycans contain potential nuclear localization signals, and these were demonstrated to be functional based on their ability to target β-galactosidase fusion proteins to the nuclei of transfected 293 cells. Nuclear localization of glypican β-galactosidase or Fc fusion proteins in transfected 293 cells and C6 glioma cells was greatly reduced or abolished after mutation of the basic amino acids or deletion of the sequence containing the nuclear localization signal, and no nuclear staining was seen in the case of heparan sulfate and chondroitin sulfate proteoglycans that do not possess a nuclear localization signal, such as syndecan-3 or decorin (which is closely related in structure to biglycan). Transfection of COS-1 cells with an epitope-tagged glypican cDNA demonstrated transport of the full-length proteoglycan to the nucleus, and there are also dynamic changes in the pattern of glypican immunoreactivity in the nucleus of C6 cells both during cell division and correlated with different phases of the cell cycle. Our data therefore suggest that in certain cells and central nervous system regions, glypican and biglycan may be involved in the regulation of cell division and survival by directly participating in nuclear processes.  相似文献   

3.
We show here that the endothelial cell-line ECV 304 expresses the heparan sulfate proteoglycan glypican-1. The predominant cellular glycoform carries truncated side-chains and is accompanied by heparan sulfate oligosaccharides. Treatment with brefeldin A results in accumulation of a glypican proteoglycan with full-size side-chains while the oligosaccharides disappear. During chase the glypican proteoglycan is converted to partially degraded heparan sulfate chains and chain-truncated proteoglycan, both of which can be captured by treatment with suramin. The heparan sulfate chains in the intact proteoglycan can be depolymerized by nitrite-dependent cleavage at internally located N-unsubstituted glucosamine moieties. Inhibition of NO-synthase or nitrite-deprivation prevents regeneration of intact proteoglycan from truncated precursors as well as formation of oligosaccharides. In nitrite-deprived cells, formation of glypican proteoglycan is restored when NO-donor is supplied. We propose that, in recycling glypican-1, heparan sulfate chains are cleaved at or near glucosamines with unsubstituted amino groups. NO-derived nitrite is then required for the removal of short, nonreducing terminal saccharides containing these N-unsubstituted glucosamine residues from the core protein stubs, facilitating re-synthesis of heparan sulfate chains.  相似文献   

4.
5.
6.
7.
8.
Characterization of Slit protein interactions with glypican-1   总被引:6,自引:0,他引:6  
We have demonstrated previously that the Slit proteins, which are involved in axonal guidance and related developmental processes in nervous tissue, are ligands of the glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan glypican-1 in brain (Liang, Y., Annan, R. S., Carr, S. A., Popp, S., Mevissen, M., Margolis, R. K., and Margolis, R. U. (1999) J. Biol. Chem. 274, 17885--17892). To characterize these interactions in more detail, recombinant human Slit-2 protein and the N- and C-terminal portions generated by in vivo proteolytic processing were used in an enzyme-linked immunosorbent assay to measure the binding of a glypican-Fc fusion protein. Saturable and reversible high affinity binding to the full-length protein and to the C-terminal portion that is released from the cell membrane was seen, with dissociation constants in the 80-110 nm range, whereas only a relatively low level of binding to the larger N-terminal segment was detected. Co-transfection of 293 cells with Slit and glypican-1 cDNAs followed by immunoprecipitation demonstrated that these interactions also occur in vivo, and immunocytochemical studies showed colocalization in the embryonic and adult central nervous system. The binding affinity of the glypican core protein to Slit is an order of magnitude lower than that of the glycanated proteoglycan. Glypican binding to Slit was also decreased 80--90% by heparin (2 microg/ml), enzymatic removal of the heparan sulfate chains, and by chlorate inhibition of glypican sulfation. The differential effects of N- or O-desulfated heparin on glypican binding also indicate that O-sulfate groups on the heparan sulfate chains play a critical role in heparin interactions with Slit. Our data suggest that glypican binding to the releasable C-terminal portion of Slit may serve as a mechanism for regulating the biological activity of Slit and/or the proteoglycan.  相似文献   

9.
Heparan sulfate proteoglycan from human and equine glomeruli and tubules   总被引:1,自引:0,他引:1  
1. Proteoglycans were isolated from human and equine glomeruli or tubules by guanidine extraction and anion exchange chromatography. 2. These proteoglycan preparations contained about equal amounts of heparan sulfate and chondroitin sulfates. 3. During the preparation of glomerular or tubular basement membranes the main part of proteoglycans (greater than 50%) was extracted in the salt extract. Chondroitin sulfate proteoglycan was mainly found in the water and salt extracts of glomeruli and tubules, heparan sulfate proteoglycan in the deoxycholate extracts and the basement membranes. 4. The glomerular basement membrane (GBM) contains about 12% (human) or 20% (equine) of the proteoglycans of the total glomerulus. They consist of greater than 70% (equine) or 80% (human) of heparan sulfate. 5. Heparan sulfate proteoglycan was isolated from the proteoglycan preparations of human or equine glomeruli and tubules by additional treatment with nucleases and chondroitinase ABC followed by CsCl gradient centrifugation. 6. Protein accounts for about 40% (dry weight) of the heparan sulfate proteoglycans. Their amino acid composition is characterized by a high content of glycine, but 3-hydroxyproline, 4-hydroxyproline and hydroxylysine are lacking. 7. The biochemical characteristics of the heparan sulfate proteoglycan of human or equine glomeruli or tubules differ from that isolated from rat glomeruli by their higher protein content and their amino acid composition. The significance of these differences is discussed.  相似文献   

10.
Treating the liposome-intercalatable heparan sulfate proteoglycans from human lung fibroblasts and mammary epithelial cells with heparitinase and chondroitinase ABC revealed different core protein patterns in the two cell types. Lung fibroblasts expressed heparan sulfate proteoglycans with core proteins of approximately 35, 48/90 (fibroglycan), 64 (glypican), and 125 kDa and traces of a hybrid proteoglycan which carried both heparan sulfate and chondroitin sulfate chains. The mammary epithelial cells, in contrast, expressed large amounts of a hybrid proteoglycan and heparan sulfate proteoglycans with core proteins of approximately 35 and 64 kDa, but the fibroglycan and 125-kDa cores were not detectable in these cells. Phosphatidylinositol-specific phospholipase C and monoclonal antibody (mAb) S1 identified the 64-kDa core proteins as glypican, whereas mAb 2E9, which also reacted with proteoglycan from mouse mammary epithelial cells, tentatively identified the hybrid proteoglycans as syndecan. The expression of syndecan in lung fibroblasts was confirmed by amplifying syndecan cDNA sequences from fibroblastic mRNA extracts and demonstrating the cross-reactivity of the encoded recombinant core protein with mAb 2E9. Northern blots failed to detect a message for fibroglycan in the mammary epithelial cells and in several other epithelial cell lines tested, while confirming the expression of both glypican and syndecan in these cells. Confluent fibroblasts expressed higher levels of syndecan mRNA than exponentially growing fibroblasts, but these levels remained lower than observed in epithelial cells. These data formally identify one of the cell surface proteoglycans of human lung fibroblasts as syndecan and indicate that the expression of the cell surface proteoglycans varies in different cell types and under different culture conditions.  相似文献   

11.
Several processes that occur in the luminal compartments of the tissues are modulated by heparin-like polysaccharides. To identify proteins responsible for the expression of heparan sulfate at the apex of polarized cells, we investigated the polarity of the expression of the cell surface heparan sulfate proteoglycans in CaCo-2 cells. Domain- specific biotinylation of the apical and basolateral membranes of these cells identified glypican, a GPI-linked heparan sulfate proteoglycan, as the major source of apical heparan sulfate. Yet, most of this proteoglycan was expressed at the basolateral surface, an unexpected finding for a glypiated protein. Metabolic labeling and chase experiments indicated that sorting mechanisms, rather than differential turnover, accounted for this bipolar expression of glypican. Chlorate treatment did not affect the polarity of the expression of glypican in CaCo-2 cells, and transfectant MDCK cells expressed wild-type glypican and a syndecan-4/glypican chimera also in an essentially unpolarized fashion. Yet, complete removal of the heparan sulfate glycanation sites from the glypican core protein resulted in the nearly exclusive apical targeting of glypican in the transfectants, whereas two- and one-chain mutant forms had intermediate distributions. These results indicate that glypican accounts for the expression of apical heparan sulfate, but that glycanation of the core protein antagonizes the activity of the apical sorting signal conveyed by the GPI anchor of this proteoglycan. A possible implication of these findings is that heparan sulfate glycanation may be a determinant of the subcellular expression of glypican. Alternatively, inverse glycanation-apical sorting relationships in glypican may insure near constant deliveries of HS to the apical compartment, or "active" GPI-mediated entry of heparan sulfate into apical membrane compartments may require the overriding of this antagonizing effect of the heparan sulfate chains.  相似文献   

12.
Glypicans are major cell surface heparan sulfate proteoglycans, the structures of which are characterized by the presence of a cysteine-rich globular domain, a short glycosaminoglycan (GAG) attachment region, and a glycosylphosphatidylinositol membrane anchor. Despite strong evolutionary conservation of the globular domains of glypicans, no function has yet been attributed to them. By using a novel quantitative approach for assessing proteoglycan glycosylation, we show here that removal of the globular domain from rat glypican-1 converts the proteoglycan from one that bears approximately 90% heparan sulfate (HS) to one that bears approximately 90% chondroitin sulfate. Mutational analysis shows that sequences at least 70 amino acids away from the glypican-1 GAG attachment site are required for preferential HS assembly, although more nearby sequences also play a role. The effects of the glypican-1 globular domain on HS assembly could also be demonstrated by fusing this domain to sequences representing the GAG attachment sites of other proteoglycans or, surprisingly, simply by expressing the isolated globular domain in cells and analyzing effects either on an exogenously expressed glypican-1 GAG attachment domain or on endogenous proteoglycans. Quantitative analysis of the effect of the globular domain on GAG addition to proteoglycan core proteins suggested that preferential HS assembly is achieved, at least in part, through the inhibition of chondroitin sulfate assembly. These data identify the glypican-1 globular domain as a structural motif that potently influences GAG class determination and suggest that an important role of glypican globular domains is to ensure a high level of HS substitution of these proteoglycans.  相似文献   

13.
14.
15.
We have used antibodies to the basement membrane proteoglycan to screen lambda gt11 expression vector libraries and have isolated two cDNA clones, termed BPG 5 and BPG 7, which encode different portions of the core protein of the heparan sulfate basement membrane proteoglycan. These clones hybridize to a single mRNA species of approximately 12 kilobases. Amino acid sequences obtained on peptides derived from protease digests of the core protein were found in the deduced sequence, confirming the identity of these clones. BPG 5 spanned 1986 base pairs and has an open reading frame of 662 amino acids. The amino acid sequence deduced from BPG 5 contains two cysteine-rich domains and two internally homologous domains lacking cysteine. The cysteine-rich domains show homology to the cysteine-rich domains of the laminin chains. A globule-rod structure, similar to that of the short arms of the laminin chains, is proposed for this region of the proteoglycan. The other clone, BPG 7, is 2193 base pairs long and has an open reading frame of 731 amino acids. The deduced sequence contains eight internal repeats with 2 cysteine residues in each repeat. These repeats show homology to the neural-cell adhesion molecule N-CAM and the plasma alpha 1B-glycoprotein. Looping structures similar to these proteins and to other proteins of the immunoglobulin gene superfamily are proposed for this region of the proteoglycan. The sequence DSGEY was found four times in this domain and could be heparan sulfate attachment sites.  相似文献   

16.
A cDNA clone coding for a membrane proteoglycan core protein was isolated from a neonatal rat Schwann cell cDNA library by screening with an oligonucleotide based on a conserved sequence in cDNAs coding for previously described proteoglycan core proteins. Primer extension and polymerase chain reaction amplification were used to obtain additional 5' protein coding sequences. The deduced amino acid sequence predicted a 353 amino acid polypeptide with a single membrane spanning segment and a 34 amino acid hydrophilic COOH-terminal cytoplasmic domain. The putative extracellular domain contains three potential glycosaminoglycan attachment sites, as well as a domain rich in Thr and Pro residues. Analysis of the cDNA and deduced amino acid sequences revealed a high degree of identity with the transmembrane and cytoplasmic domains of previously described proteoglycans but a unique extracellular domain sequence. On Northern blots the cDNA hybridized to a single 5.6-kb mRNA that was present in Schwann cells, neonatal rat brain, rat heart, and rat smooth muscle cells. A 16-kD protein fragment encoded by the cDNA was expressed in bacteria and used to immunize rabbits. The resulting antibodies reacted on immunoblots with the core protein of a detergent extracted heparan sulfate proteoglycan. The core protein had an apparent mass of 120 kD. When the anti-core protein antibodies were used to stain tissue sections immunoreactivity was present in peripheral nerve, newborn rat brain, heart, aorta, and other neonatal tissues. A ribonuclease protection assay was used to quantitate levels of the core protein mRNA. High levels were found in neonatal rat brain, heart, and Schwann cells. The mRNA was barely detectable in neonatal or adult liver, or adult brain.  相似文献   

17.
Molecular cloning of syndecan, an integral membrane proteoglycan   总被引:49,自引:18,他引:31  
We describe cDNA clones for a cell surface proteoglycan that bears both heparan sulfate and chondroitin sulfate and that links the cytoskeleton to the interstitial matrix. The cDNA encodes a unique core protein of 32,868 D that contains several structural features consistent with its role as a glycosamino-glycan-containing matrix anchor. The sequence shows discrete cytoplasmic, transmembrane, and NH2-terminal extracellular domains, indicating that the molecule is a type I integral membrane protein. The cytoplasmic domain is small and similar in size but not in sequence to that of the beta-chain of various integrins. The extracellular domain contains a single dibasic sequence adjacent to the extracellular face of the transmembrane domain, potentially serving as the protease-susceptible site involved in release of this domain from the cell surface. The extracellular domain contains two distinct types of putative glycosaminoglycan attachment sites; one type shows sequence characteristics of the sites previously described for chondroitin sulfate attachment (Bourdon, M. A., T. Krusius, S. Campbell, N. B. Schwartz, and E. Ruoslahti. 1987. Proc. Natl. Acad. Sci. USA. 84:3194-3198), but the other type has newly identified sequence characteristics that potentially correspond to heparan sulfate attachment sites. The single N-linked sugar recognition sequence is within the putative chondroitin sulfate attachment sequence, suggesting asparagine glycosylation as a mechanism for regulating chondroitin sulfate chain addition. Both 5' and 3' regions of this cDNA have sequences substantially identical to analogous regions of the human insulin receptor cDNA: a 99-bp region spanning the 5' untranslated and initial coding sequences is 67% identical and a 35-bp region in the 3' untranslated region is 81% identical in sequence. mRNA expression is tissue specific; various epithelial tissues show the same two sizes of mRNA (2.6 and 3.4 kb); in the same relative abundance (3:1), the cerebrum shows a single 4.5-kb mRNA. This core protein cDNA describes a new class of molecule, an integral membrane proteoglycan, that we propose to name syndecan (from the Greek syndein, to bind together).  相似文献   

18.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

19.
Lysyl oxidase cDNA clones were identified by their reactivity with anti-bovine lysyl oxidase in a neonatal rat aorta cDNA lambda gt11 expression library. A 500-bp cDNA sequence encoding four of six peptides derived from proteolytic digests of bovine aorta lysyl oxidase was found from the overlapping cDNA sequences of two positive clones. The library was rescreened with a radiolabeled cDNA probe made from one of these clones, thus identifying an additional 13 positive clones. Sequencing of the largest two of these overlapping clones resulted in 2672 bp of cDNA sequence containing partial 5'- and 3'-untranslated sequences of 286 and 1159 nucleotides, respectively, and a complete open reading frame of 1227 bp encoding a polypeptide of 409 amino acids (46 kDa), consistent with the 48 +/- 3 kDa cell-free translation product of rat smooth muscle cell RNA that was immunoprecipitated by anti-bovine lysyl oxidase. The rat aorta cDNA-derived amino acid sequence contains the sequence of each of the six peptides isolated and sequenced from the 32-kDa bovine aorta enzyme, including the C-terminal peptide with sequence identity of 96%. Northern blots screened with lysyl oxidase cDNA probes identified hybridizing species of 5.8 and 4.5 kb in mRNA of rat aorta and lung, while dot blot analyses were negative for lysyl oxidase mRNA in preparations of rat brain, liver, kidney, and heart. A 258-bp segment of the 3'-untranslated region of lysyl oxidase cDNA is 93% identical with a highly conserved region of the 3'-untranslated sequence of rat elastin cDNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Cloning, expression and sequence homologies of cDNA for human gamma enolase   总被引:6,自引:0,他引:6  
D Oliva  G Barba  G Barbieri  A Giallongo  S Feo 《Gene》1989,79(2):355-360
The nucleotide sequence of the human gamma-enolase mRNA was determined from recombinant cDNA clones. The sequence spans 2273 bp and includes the complete coding region of 1299 bp, a 5'-noncoding region of 74 bp and a 897-bp-long 3'-noncoding region containing a variant polyadenylation signal (ATTAAA). The deduced amino acid (aa) sequence is 433 aa long and shows a 97% similarity with rat gamma-enolase. Both the 5'- and 3'-untranslated regions are similar (82% and 68%, respectively) to the analogous regions of the rat gamma-enolase gene, suggesting that a strong selective pressure operates on noncoding segments of gamma-enolase mRNAs. The size of the gamma-enolase mRNA expressed in human brain is 2.4 kb. A crosshybridizing 1.5-kb message is detected in human skeletal muscle which may be derived from the beta-enolase-coding gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号