首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
During the operation of total hip arthroplasty, when the cement polymerizes between the stem implant and the bone, residual stresses are generated in the cement. The purpose of this study was to determine whether including residual stresses at the stem-cement interface of cemented hip implants affected the cement stress distributions due to externally applied loads. An idealized cemented hip implant subjected to bending was numerically investigated for an early post-operative situation. The finite element analysis was three-dimensional and used non-linear contact elements to represent the debonded stem-cement interface. The results showed that the inclusion of the residual stresses at the interface had up to a 4-fold increase in the von Mises cement stresses compared to the case without residual stresses.  相似文献   

2.
Stress analysis of the cement fixation of orthopaedic implants to bone is frequently carried out using finite element analysis. However the stress distribution in the cement layer is usually intricate, and it is difficult to report it in a way that facilitates comparison of implants for pre-clinical testing. To study this problem, and make recommendations for stress reporting, a finite element analysis of a hip prosthesis implanted into a synthetic composite femur is developed. Three cases are analyzed: a fully bonded implant, a debonded implant, and a debonded implant where the cement is removed distal to the stem tip. In addition to peak stresses, and contour and vector plots, a stressed volume and probability-of-failure analysis is reported. It is predicted that the peak stress is highest for the debonded stem, and that removal of the distal cement more than halves this peak stress. This would suggest that omission of the distal cement is good for polished prostheses (as practiced for the Exeter design). However, if the percentage of cement stressed above a certain threshold (say 3 MPa) is considered, then the removal of distal cement is shown to be disadvantageous because a higher volume of cement is stressed to above the threshold. Vector plots clearly demonstrate the different load transfer for bonded and debonded prostheses: A bonded stem generates maximum tensile stresses in the longitudinal direction, whereas a debonded stem generates most tensile stresses in the hoop direction, except near the tip where tensile longitudinal stresses occur due to subsidence of the stem. Removal of the cement distal to the tip allows greater subsidence but alleviates these large stresses at the tip, albeit at the expense of increased hoop stresses throughout the mantle. It is concluded that a thorough analysis of cemented implants should not report peak stress, which can be misleading, but rather stressed volume, and that vector plots should be reported if a precise analysis of the load transfer mechanism is required.  相似文献   

3.
Long-term clinical follow-up studies have shown that radiolucent lines at the cement interfaces of total hip replacement femoral components develop gradually, ultimately leading to loosening. In this experimental study, 32 synthetic femurs implanted with cemented femoral components were cyclically loaded with a dynamic joint reaction force, torque, and muscle force, to assess the relative effects of surface finish and collars on interface fixation. Four each of four otherwise identical straight femoral stems, varying only in surface finish and presence or lack of collars were used. Specimens were tested under two conditions: (1) with intact interfaces simulating immediate post-operative conditions and (2) with a thin-film at the stem-cement interface, simulating conditions several weeks to months post-operative when fibrous tissue has formed with the implant still stable. Micromotion was measured at both interfaces in three directions. Surface finish had a larger relative effect than collars, regardless of whether or not a thin-film was present. For example, a proximal grit-blasted finish enhanced fixation at the stem-cement interface by 7-12 μm per-cycle (p<0.05) and decreased early cement mantle loosening by 7-13 μm. For straight stems, rougher surfaces provided greater stability than polished, even with a thin film at the stem-cement interfaces, contradicting the theory that once debonded, rough stems are less stable than polished at the stem-cement interface. The findings of this experimental study exemplify the need to take advantage of all available tools for the preclinical evaluation of orthopaedic implants, including long-term clinical observations of related devices, analytical and numeric models, and experimental bench-top simulations.  相似文献   

4.
The initial fixation of a cemented hip implant relies on the strength of the interface between the stem, bone cement and adjacent bone. Bone cement is used as grouting material to fix the prosthesis to the bone. The curing process of bone cement is an exothermic reaction where bone cement undergoes volumetric changes that will generate transient stresses resulting in residual stresses once polymerization is completed. However, the precise magnitude of these stresses is still not well documented in the literature. The objective of this study is to develop an experiment for the direct measurement of the transient and residual radial stresses at the stem-cement interface generated during cement polymerization. The idealized femoral-cemented implant consists of a stem placed inside a hollow cylindrical bone filled with bone cement. A sub-miniature load cell is inserted inside the stem to make a direct measurement of the radial compressive forces at the stem-cement interface, which are then converted to radial stresses. A thermocouple measures the temperature evolution during the polymerization process. The results show the evolution of stress generation corresponding to volumetric changes in the cement. The effect of initial temperature of the stem and bone as well as the cement-bone interface condition (adhesion or no adhesion) on residual radial stresses is investigated. A maximum peak temperature of 70 degrees C corresponds to a peak in transient stress during cement curing. Maximum radial residual stresses of 0.6MPa in compression are measured for the preheated stem.  相似文献   

5.
The long-term behavior of the stem-cement interface is one of the most frequent topics of discussion in the design of cemented total hip replacements, especially with regards to the process of damage accumulation in the cement layer. This effect is analyzed here comparing two different situations of the interface: completely bonded and debonded with friction. This comparative analysis is performed using a probabilistic computational approach that considers the variability and uncertainty of determinant factors that directly compromise the damage accumulation in the cement mantle. This stochastic technique is based on the combination of probabilistic finite elements (PFEM) and a cumulative damage approach known as B-model. Three random variables were considered: muscle and joint contact forces at the hip (both for walking and stair climbing), cement damage and fatigue properties of the cement. The results predicted that the regions with higher failure probability in the bulk cement are completely different depending on the stem-cement interface characteristics. In a bonded interface, critical sites appeared at the distal and medial parts of the cement, while for debonded interfaces, the critical regions were found distally and proximally. In bonded interfaces, the failure probability was higher than in debonded ones. The same conclusion may be established for stair climbing in comparison with walking activity.  相似文献   

6.
Experimental models can be used for pre-clinical testing of cemented and other type of hip replacements. Total hip replacement (THR) failure scenarios include, among others, cement damage accumulation and the assessment of accurate stress and strain magnitudes at the cement mantle interfaces (stem-cement and cement-bone) can be used to predict mechanical failure. The aseptic loosening scenario in cemented hip replacements is currently not fully understood, and methods of evaluating medical devices must be developed to improve clinical performance. Different results and conclusions concerning the cement micro-cracking mechanism have been reported.The aim of this study was to verify the in vitro behavior of two cemented femoral stems with respect to fatigue crack formation. Fatigue crack damage was assessed at the medial, lateral, anterior and posterior sides of the Lubinus SPII and Charnley stems. All stems were loaded and tested in stair climbing fatigue loading during one million cycles at 2 Hz. After the experiments each implanted synthetic femur was sectioned and analyzed. We observed more damage (cracks per area) for the Lubinus SPII stem, mainly on the proximal part of the cement mantle. The micro-cracking formation initiated in the stem–cement interface and grew towards the direction of cortical bone of the femur.Overall, the cement–bone interface seems to be crucial for the success of the hip replacement. The Charnley stem provoked more damage on the cement–bone interface. A failure index (maximum length of crack/maximum thickness of cement) considered was higher for the cement–stem interface of the Lubinus SPII stem. For a cement mantle thickness higher than 5 mm, cracking initiated at the cement–bone interface and depended on the opening canal process (reaming procedure and instrumentation). The analysis also showed that fatigue-induced damage on the cement mantle, increasing proximally, and depended on the axial position of the stem. The cement thickness is an important factor for the success of THR and this study evidenced that cement thickness higher than 2 mm apparently does not affect the mechanical behavior of the cement mantel and induce more crack formation on the cement–bone interface.  相似文献   

7.
Acrylic cement, used to fixate total hip arthroplasty (THA), creeps under dynamic and static loading conditions. As a result, THA stems, which are debonded from the cement, may gradually subside, depending on their shape and surface roughness. The purpose of this study was to evaluate the relationship among dynamic load, creep characteristics, interface friction, and subsidence patterns.

A laboratory model consisting of a metal tapered cone, surrounded by a cement mantle, was developed. The cone was gradually compressed in the cement by a dynamic, sinusoidal axial force, cycling between 0 and 7 kN for 1.7 million cycles at a frequency of 1 Hz. Subsidence and cement strain were monitored. Two tapers were tested in this way. The relationships among subsidence, creep properties and interface friction were evaluated from a finite element (FE) model, used to simulate the experiments. In this model, the creep properties obtained in dynamic and static, tension and compression experiments measured earlier, were used.

The subsidence patterns of both tapers were similar, but one subsided more than the other (380 vs 630 μm). Both subsided stepwise instead of continuous, with a frequency much smaller than that of the applied load. The characteristics of the subsidence and cement-strain patterns could be reproduced by the FE model, but not with great numerical precision. The stepwise subsidence could be explained by slip-stick mechanisms at the interface starting distally and gradually working towards proximal. Variations in friction from 0.25 to 0.50 reduced the total subsidence and the step frequency by about 50%.

It was concluded that FE-models used to simulate the mechanical endurance characteristics of THA reconstructions, extended to incorporate cement creep, produce realistic results. These results showed that prosthetic subsidence under dynamic loads occurs due to cement creep. The extent of the subsidence is extremely sensitive to interface friction, hence to small variations in surface roughness and cement constitution. This may explain the relatively large variation of in vivo prosthetic subsidence rates reported in the literature.  相似文献   


8.
The long-term success of a cementless total hip arthroplasty depends on the implant geometry and interface bonding characteristics (fit, coating and ingrowth) and on stem stiffness. This study evaluates the influence of stem geometry and fitting conditions on the evolution and distribution of the bone–stem contact, stress and strain during and after the hip stem insertion, by means of dynamic finite element techniques. Next, the influence of the mechanical state (bone–stem contact, stress and strain) resulted from the insertion process on the stem initial resistance to subsidence is investigated. In addition, a study on the influence of bone–stem interface conditions (friction) on the insertion process and on the initial stem stability under physiological loading is performed. The results indicate that for a stem with tapered shape the contact in the proximal part of the stem was improved, but contact in the calcar region was achieved only when extra press-fit conditions were considered. Changes in stem geometry towards a more tapered shape and extra press fit and variation in the bone–stem interface conditions (contact amount and high friction) led to a raise in the total insertion force. A direct positive relationship was found between the stem resistance to subsidence and stem geometry (tapering and press fit), bone–stem interface conditions (bone–stem contact and friction interface) and the mechanical status at the end of the insertion (residual stress and strain). Therefore, further studies on evaluating the initial performance of different stem types should consider the parameters describing the bone–stem interface conditions and the mechanical state resulted from the insertion process.  相似文献   

9.
Stress shielding of the femur is known to be a principal factor in aseptic loosening of hip replacements. This paper considers the use of a hollow stemmed hip implant for reducing the effects of stress shielding, while maintaining acceptably low levels of stress in the cement. Using finite element modelling, the stresses in the proximal femur using different shapes of hollow stem were compared with those produced using comparable sizes of solid stem with different values of elastic modulus. A reduction in stress shielding could be achieved with a hollow stem. A cylindrical hollow stem design was then optimised in order to control the maximum allowable stress in the cement, the minimum allowable stresses in the bone, and a combination of the two. The resulting stems achieved an increase in proximal bone stress of about 15% for the first case and 32% for a model using high strength cement, compared with solid stems of the same nominal outside diameter. The gains of these theoretically optimised designs dropped off rapidly further down the stem. Linearly tapered hollow stems reached a 22% gain, which could be a good compromise between acceptable cement stresses and ease of manufacture.  相似文献   

10.
Many cementless implant designs rely upon a diaphyseal press-fit in conjunction with a porous coated implant surface to achieve primary or short term fixation, thereby constraining interface micromotion to such a level that bone ingrowth and consequent secondary or long-term fixation, i.e., osseointegration, can occur. Bone viscoelasticity, however, has been found to affect stem primary stability by reducing push-out load. In this investigation, an axisymmetric finite element model of a cylindrical stem and diaphyseal cortical bone section was created in order to parametrically evaluate the effect of bone viscoelasticity on stem push-out while controlling coefficient of friction (mu = 0.15, 0.40, and 1.00) and stem-bone diametral interference (delta = 0.01, 0.05, 0.10, and 0.50 mm). Based on results from a previous study, it was hypothesized that stem-bone interference (i.e., press-fit) would elicit a bone viscoelastic response which would reduce the initial fixation of the stem as measured by push-out load. Results indicate that for all examined combinations of mu and delta, bone viscoelastic behavior reduced the push-out load by a range of 2.6-82.6% due to stress relaxation of the bone. It was found that the push-out load increased with mu for each value of delta, but minimal increases in the push-out load (2.9-4.9%) were observed as delta was increased beyond 0.10 mm. Within the range of variables reported for this study, it was concluded that bone viscoelastic behavior, namely stress relaxation, has an asymptotic affect on stem contact pressure, which reduces stem push-out load. It was also found that higher levels of coefficient of friction are beneficial to primary fixation, and that an interference "threshold" exists beyond which no additional gains in push-out load are achieved.  相似文献   

11.
The aim of this study is to define stem design related factors causing both gaps in the metal-bone cement interface and cracks within the cement mantle. Six different stem designs (Exeter; Lubinus SP II; Ceraver Osteal; Mueller-straight stem; Centega; Spectron EF) (n=15 of each design) were cemented into artificial femur bones. Ten stems of each design were loaded, while five stems served as an unloaded control. Physiologically adapted cyclical loading (DIN ISO 7206-4) was performed with a hip simulator. After loading both interfaces and the bone cement itself were analysed regarding gaps and cracks in the cement mantle. Significant differences between the stem designs concerning gaps in the metal-bone cement interface and cracks in the cement mantle became apparent. Additionally, a high correlation between gaps in the metal-bone cement interface and cracks within the cement mantle could be proven. Gaps in the metal-bone cement interface but no cracks within the cement mantle were seen in the unloaded specimens. Differences between the unloaded control groups and the cyclical loaded stems regarding the longitudinal extension and width of gaps in the metal-bone cement interface were obvious. The designs of cemented femoral stems have an influence on both the quality of the metal-bone cement contact and the failure rate of the cement mantle. Less interface gaps and less cement defects were found with anatomically formed, collared, well-rounded stem designs without undercuttings.  相似文献   

12.
Ceramic hip resurfacing may offer improved wear resistance compared to metallic components. The study is aimed at investigating the effects of stiffer ceramic components on the stress/strain-related failure mechanisms in the resurfaced femur, using three-dimensional finite element models of intact and resurfaced femurs with varying stem–bone interface conditions. Tensile stresses in the cement varied between 1 and 5 MPa. Postoperatively, 20–85% strain shielding was observed inside the resurfaced head. The variability in stem–bone interface condition strongly influenced the stresses and strains generated within the resurfaced femoral head. For full stem–bone contact, high tensile (151–158 MPa) stresses were generated at the cup–stem junction, indicating risk of fracture. Moreover, there was risk of femoral neck fracture due to elevated bone strains (0.60–0.80% strain) in the proximal femoral neck region. Stresses in the ceramic component are reduced if a frictionless gap condition exists at the stem–bone interface. High stresses, coupled with increased strain shielding in the ceramic resurfaced femur, appear to be major concerns regarding its use as an alternative material.  相似文献   

13.
The present work reports the pre-clinical validation of an innovative partially cemented femoral prosthesis called cement-locked uncemented (CLU) prosthesis. The inventors of the device under investigation claimed that, when compared to a comparable fully cemented stem, the new stem would present various advantages. Two previous experimental studies confirmed that primary stability and stress shielding were comparable to those of cemented stems. Aim of the present study was to investigate if the remaining claims were confirmed as well. A complete finite element model of the bone-implant complex was created from CT data. The model was validated against in vitro measurements of bone surface strains as well as against primary stability measurements. The peak stresses predicted in the CLU cement mantle were not found significantly lower than those reported in other studies on fully cemented stems. However, once the cement inlet geometry is optimised and the associated stress risers are eliminated, the CLU cement mantle should be subjected to much lower stresses. The stress induced in the stems by both load cases was well below the fatigue limit of the Ti6Al4V alloy. Finite element models predicted for all load cases relative motion between cement and metal lower than 60 microm. This amplitude may be fully accommodated by elastic deformations of the cement micro-ridges. The experimental and numerical results showed the validity of the new fixation concept, although a further optimisation of the geometry of the cement pockets is needed in order to further reduce the stresses in the cement.  相似文献   

14.
1IntroductionAseptic loosening is a major clinical probleminterfering with long term success of arthroplasty inhumans.When this occurs,the stem will migrate withinthe cortical bone.The migration of the stem after hiparthroplasty is an unavoidable phenomenon and is one ofthe major cause of late aseptic loosening of the hiparthroplasty[1-5].Many factors,such as cement mantle performance,stem type and surface finish,cementing and surgerytechniques affect the subsidence or migration of thefemoral …  相似文献   

15.
A three-dimensional non-linear finite element analysis of a cemented femoral component in which the component was partially debonded from the cement mantle was used to assess the effects of debonding on stresses in the cement. Three cases of partial cement-metal debonding were modelled with debonding of the proximal portion of the implant down to a horizontal plane which was 35, 62.5, or 82.5 mm below the prosthesis collar. Each situation was studied under loads simulating both gait and stairclimbing. Also, complete debonding between the implant and the surrounding cement mantle was modeled for loads simulating gait. Under stair climbing loads with partial cement-mental debonding, hoop stresses of 13-18 MPa were observed in the cement at the cement-metal interface at the proximal postero-medial corner of the implant. Similarly, in stair climbing, the maximum principal stresses in the cement were also adjacent to the proximal postero-medial region of the implant. These stresses were compressive and increased from 15 MPa with fully bonded interfaces to 48 MPa with debonding down to 82.5 mm below the prosthesis collar. Under gait loads, complete debonding caused high compressive stresses up to 34.9 MPa in the cement distal to the prosthesis tip. Thus, cement failure subsequent to prosthesis debonding is likely in the proximal region in a partially debonded implant due to stair climbing loads and is likely below the prosthesis tip in a fully debonded implant due to gait loading.  相似文献   

16.
In this study, the in vitro fixation of four otherwise identical double-tapered stem-types, varying only in surface finish (polished or matte) and proximal stem geometry (with or without flanges) were compared under two conditions. First, four specimens of each stem type were tested with initially bonded stem–cement interfaces, representing early post-operative conditions. Then, simulating conditions a few weeks to months later, stems were implanted in unused synthetic femurs, with a thin layer coating the stem to prevent stem–cement adhesion. Per-cycle motions were measured at both cement interfaces throughout loading. Overall, surface finish had the smallest relative effect on fixation compared to flanges. Flanges increased axial fixation by 22 μm per-cycle, regardless of surface finish (P=0.01). Further, all stems moved under dynamic load at the stem–cement interface during the first few cycles of loading, even without a thin film. The results indicate that flanges have a greater effect on fixation than surface finish, and therefore adverse findings about matte surfaces should not necessarily apply to all double-tapered stems. Specifically, dorsal flanges enhance the stability of a tapered cemented femoral stem, regardless of surface finish.  相似文献   

17.
Residual stress due to shrinkage of polymethylmethacrylate bone cement after polymerisation is possibly one factor capable of initiating cracks in the mantle of cemented hip replacements. No relationship between residual stress and observed cracking of cement has yet been demonstrated. To investigate if any relationship exists, a physical model has been developed which allows direct observation of damage in the cement layer on the femoral side of total hip replacement. The model contains medial and lateral cement layers between a bony surface and a metal stem; the tubular nature of the cement mantle is ignored. Five specimens were prepared and examined for cracking using manual tracing of stained cracks, observed by transmission microscopy; cracks were located and measured using image analysis. A mathematical approach for the prediction of residual stress due to shrinkage was developed which uses the thermal history of the material to predict when stress-locking occurs, and estimates subsequent thermal stress. The residual stress distribution of the cement layer in the physical model was then calculated using finite element analysis. Results show maximum tensile stresses normal to the observed crack directions, suggesting a link between residual stress and pre-load cracking. The residual stress predicted depends strongly on the definition of the reference temperature for stress-locking. The highest residual stresses (4-7 MPa) are predicted for shrinkage from maximum temperature; in this case, magnitudes are sufficiently high to initiate cracks when the influence of stress raisers such as pores or interdigitation at the bone/cement interface are taken into account (up to 24 MPa when calculating stress around a pore according to the method of Harrigan and Harris (J. Biomech. 24(11) (1991) 1047-1058). We conclude that the damage accumulation failure scenario begins before weight-bearing due to cracking induced by residual stress around pores or stress raisers.  相似文献   

18.
This study aimed to improve understanding of the mechanical aspects of cemented implant loosening. After aggressive fatigue loading of stem/cement/femur constructs, micro-cracks and stem/bone micro-motions were quantified to answer three research questions: Are cracks preferentially associated with the stem/cement interface, the cement/bone interface or voids? Is cement damage dependent on axial position? Does cement damage correlate with micro-motion between the stem and the bone? Eight Charnley Cobra stems were implanted in cadaveric femora. Six stem/cement/femur constructs were subjected to "stair-climbing" loads for 300 kcycles at 2Hz. Loads were normalized by construct stiffness to avoid fracture. Two additional constructs were not loaded. Transverse sections were cut at 10mm intervals, stained with a fluorescent dye penetrant and examined using epi-fluorescence stereomicroscopy. Crack lengths and cement areas were recorded for 9 sections per specimen. Crack length-density was calculated by dividing summed crack length by cement mantle area. To isolate the effect of loading, length-density data were offset by the baseline length-density measured in the non-loaded specimens. Significantly more cracks were associated with the interdigitated area (35.1%+/-11.6%) and the cement/bone interface (31.0%+/-6.2%) than with the stem/cement interface (11.0%+/-5.2%) or voids (6.1%+/-4.8%) (p<0.05). Load-induced micro-crack length-density was significantly dependent on axial position, increasing proximally (p<0.001). Micro-motions were small, all stems rotated internally. Cement damage did not correlate with micro-motion.  相似文献   

19.
The long-term clinical success of cemented hip stems is influenced both by the implant design, and by the surgical procedure. A methodology is proposed for discriminating between implant designs with different clinical outcomes. The protocol was designed with industrial pre-clinical validation in mind.Two cemented stem types were tested, one (Lubinus SPII) having good and the other (Müller Curved) having poor clinical outcomes. Three implants for each type were subjected to a mechanical in vitro test of one million loading cycles. Each cycle reproduced the load components of stair climbing. Interface shear micromotion was measured during the test in the direction of rotation and along the stem axis. The stem roughness before and after the test was compared. After the test, the cement mantles were retrieved and inspected through dye penetrants to detect evidences of micro-damage. For each specimen, the events of the loosening process were examined, based on the in vitro data available, so as to analyze the whole failure mechanism.The protocol developed was sensitive to the implant design, with significantly different results being found for the two stem types, both in terms of stem-cement micromotions, surface roughness alteration, and cement mantle damage. The information yielded by the three different investigation techniques was consistent for each of the two groups of specimens tested, allowing a better understanding of the failure process. In vitro inducible micromotion and permanent migration measurements, together with cement-stem interface fretting damage and cement fatigue damage, can help predicting the clinical performance of cemented stems.  相似文献   

20.
One possible loosening mechanism of the femoral component in total hip replacement is fatigue cracking of the cement mantle. A computational method capable of simulating this process may therefore be a useful tool in the preclinical evaluation of prospective implants. In this study, we investigated the ability of a computational method to predict fatigue cracking in experimental models of the implanted femur construct. Experimental specimens were fabricated such that cement mantle visualisation was possible throughout the test. Two different implant surface finishes were considered: grit blasted and polished. Loading was applied to represent level gait for two million cycles. Computational (finite element) models were generated to the same geometry as the experimental specimens, with residual stress and porosity simulated in the cement mantle. Cement fatigue and creep were modelled over a simulated two million cycles. For the polished stem surface finish, the predicted fracture locations in the finite element models closely matched those on the experimental specimens, and the recorded stem displacements were also comparable. For the grit blasted stem surface finish, no cement mantle fractures were predicted by the computational method, which was again in agreement with the experimental results. It was concluded that the computational method was capable of predicting cement mantle fracture and subsequent stem displacement for the structure considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号