首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
矮牵牛是一种草本花卉,主要用来布置花坛,但病毒侵染却严重地影响其观赏价值。国内外有关危害矮牵牛的病毒报道较多[1,2],但较系统研究矮牵牛病毒病的报道较少,本文从矮牵牛病毒鉴定、优势病毒种类确定及防治矮牵牛病毒病进行了初步研究,现报道如下:材料与方法...  相似文献   

3.
4.
Recently, CRISPR‐Cas (clustered, regularly interspaced short palindromic repeats–CRISPR‐associated proteins) system has been used to produce plants resistant to DNA virus infections. However, there is no RNA virus control method in plants that uses CRISPR‐Cas system to target the viral genome directly. Here, we reprogrammed the CRISPR‐Cas9 system from Francisella novicida to confer molecular immunity against RNA viruses in Nicotiana benthamiana and Arabidopsis plants. Plants expressing FnCas9 and sgRNA specific for the cucumber mosaic virus (CMV) or tobacco mosaic virus (TMV) exhibited significantly attenuated virus infection symptoms and reduced viral RNA accumulation. Furthermore, in the transgenic virus‐targeting plants, the resistance was inheritable and the progenies showed significantly less virus accumulation. These data reveal that the CRISPR/Cas9 system can be used to produce plant that stable resistant to RNA viruses, thereby broadening the use of such technology for virus control in agricultural field.  相似文献   

5.
Cucumber mosaic virus (CMV) accumulation in leaves and stems of infected bell pepper plants at specific symptom stages was evaluated with an emphasis on the transition from full infection to recovery from Cucumber mosaic disease. Four symptom phases occurred in successive order, designated chlorosis (leaves 6–8), mosaic (leaves 9–11/12), leaf distortion (first series of leaves on secondary and tertiary branches) and recovery (progressive recovery with newly emerging leaves in tertiary and younger branches). In situ detection of CMV in leaf tissues revealed widespread occurrence in leaves expressing chlorosis and mosaic symptoms but reduced, localized occurrence in leaves in the recovery phase. Similarly, CMV accumulated to high levels throughout stems expressing chlorosis and mosaic symptoms but with dramatically reduced levels for plants in the recovery symptom phase. Stunting of internodes occurred at all locations above the inoculated leaves by the first expression of systemic symptoms, suggesting an impact on stem growth in response to initial virus invasion of young developing tissues of the stem. Despite the recovery from CMV infection, plant growth was negatively impacted early in the infection process and remained so through the course of the experiment.  相似文献   

6.
Samples of trumpet creeper (Campsis radicans) leaves showing mottling and mosaic were collected from plants growing in a private garden in Tehran province, Iran, in 2012. Symptomatic leaf samples were tested for Alfalfa mosaic virus (AMV), Cucumber mosaic virus (CMV) and Peanut stunt virus (PSV) infection in enzyme‐linked immunosorbent assay (ELISA), using specific antibodies. None of the samples were positive for CMV and PSV; however, all reacted positively with that of AMV antiserum. In biological assay, systemic infection was found on Datura stramonium, Nicotiana tabacum cvs., White Burley, and Xanthi, 21 days postinoculation (DPI), while necrotic local lesions were obtained following inoculation of Phaseolus vulgaris and Vigna unguiculata within three to four DPI. Using a pair of primers specific for AMV, a DNA fragment of 880 bp was RT‐PCR‐amplified. Analysis of the sequences revealed the presence of 657 nucleotides of AMV complete coat protein (CP) gene (translating 218 amino acid residues). Phylogenetic analysis using neighbour‐joining (NJ) method clustered AMV isolates into two main types and the IRN‐Tru (GenBank Accession No. JX865593 ) isolate fell into type I. Pairwise nucleotide distances also confirmed two main types with the highest and lowest similarities for type I and II, respectively. The association of AMV with mosaic disease of C. radicans represents the first record from the world.  相似文献   

7.
8.
Light is an important environment factor controlling plant growth, development, and nutritional quality and is also one of the most important factors inducing plant defence. In this study, we assayed the potential effects of light quality on the interaction between Nicotiana tabacum and cucumber mosaic virus (CMV). Our results indicated that white light‐treated N. tabacum plants displayed obvious symptoms at early stage postinoculation, while the symptoms were significantly inhibited under red light and blue light. Western blotting and quantitative real‐time PCR (qRT‐PCR) analyses showed that blue light and red light can effectively delay the replication of CMV compared with white light. The activities of various reactive oxygen species (ROS)‐scavenging enzymes and reducing substances [reduced glutathione (GSH) and ascorbic acid (ASA)] were increased under blue light and red light. In addition, hormone measurements and qRT‐PCR analyses revealed that salicylic acid (SA)‐mediated signalling pathway plays positive role in the related regulation, and cytokinin (CTK) may also participate in them. Furthermore, we found that the formation of dark green islands (DGIs) was significantly suppressed in plants under red light and blue light at 30 days postinoculation (Dpi). However, the accumulation of virus in plants under different light conditions had no notable differences at later stage of postinoculation. Taken together, these results indicated that red light and blue light could effectively delay symptom expression and replication of CMV on N. tabacum at the relatively earlier stage postinoculation.  相似文献   

9.
Previous work has shown that the presence of excess coat protein (CP) of cucumber mosaic virus (CMV) in the chloroplasts was related with mosaic symptoms. However, whether these mosaic symptoms are directly induced by the interaction between CP and chloroplasts is unknown. To directly demonstrate the interaction between CP and the chloroplast, Synechocystis sp. PCC 6803 was used as the chloroplast model. The cDNA encoding the CMV‐CP was cloned in a cyanobacterial shuttle vector (pKT‐CP) and transferred to Synechocystis sp. PCC 6803. The CP was expressed in the cyanobacterium with the psbA promoter. The expression of CMV‐CP hindered the growth of transgenic cyanobacterium cells and decreased its photosynthetic rate and the PS II activity. The transgenic cells showed increased fluorescence (F) from the phycobilisome terminal emitters and increased fluorescence (F) from PS II. The absorption spectra at room temperature showed the Chl and the phycocyanin absorption peak of the mutant strain significantly decreased. These results showed that CP may directly affect the cyanobacterium cells and decreased its photosynthesis, especially the PS II activity. These data might provide new evidence for mosaic symptoms being directly induced by the interaction between CP and chloroplasts.  相似文献   

10.
The key regions in Panama involved in open field‐ and greenhouse‐grown commercial tomato production, including the Chiriquí, Veraguas, Herrera, Los Santos, Coclé and Panama Oeste provinces, were surveyed for the incidence and distribution of begomoviruses in the growing seasons of 2011 and 2012. The surveys took place in 14 of the 51 districts of the above‐mentioned provinces and comprised all relevant tomato production areas of the provinces. A total of 28 tomato plots were surveyed. The exact location of each plot was geo‐referenced using a hand‐held Global Positioning System unit. In total, 319 individual tomato plants (181 in 2011 and 138 in 2012) were sampled. Plants displayed diverse combinations of virus‐like symptoms of different severity, including necrosis, yellowing, mosaic, mottling, rolling, curling, distortion and puckering of leaves, reduced leaf size, and stunted growth. DNA was extracted from each plant for a subsequent polymerase chain reaction (PCR) analysis, using two sets of degenerate primers able to detect members of the genus Begomovirus. The samples displaying a positive reaction were subsequently analysed with specific primer pairs to identify the affecting begomoviruses. A total of 42.3% of all collected samples showed a positive signal to PCRs. Three begomovirus species were detected with the species‐specific set of primers; in particular, in the samples obtained in 2011, Potato yellow mosaic Panama virus (PYMPV), Tomato leaf curl Sinaloa virus (ToLCSiV) and Tomato yellow mottle virus (TYMoV) were detected, while in the 2012 samples, only PYMPV and ToLCSiV were found. To our knowledge, this is the first reported incidence of ToLCSiV and TYMoV in Panamanian tomato crops.  相似文献   

11.
In subtropical China, large‐scale phylogeographic comparisons among multiple sympatric plants with similar ecological preferences are scarce, making generalizations about common response to historical events necessarily tentative. A phylogeographic comparison of two sympatric Chinese beeches (Fagus lucida and F. longipetiolata, 21 and 28 populations, respectively) was conducted to test whether they have responded to historical events in a concerted fashion and to determine whether their phylogeographic structure is exclusively due to Quaternary events or it is also associated with pre‐Quaternary events. Twenty‐three haplotypes were recovered for F. lucida and F. longipetiolata (14 each one and five shared). Both species exhibited a species‐specific mosaic distribution of haplotypes, with many of them being range‐restricted and even private to populations. The two beeches had comparable total haplotype diversity but F. lucida had much higher within‐population diversity than F. longipetiolata. Molecular dating showed that the time to most recent common ancestor of all haplotypes was 6.36 Ma, with most haplotypes differentiating during the Quaternary. [Correction added on 14 October 2013, after first online publication: the time unit has been corrected to ‘6.36’.] Our results support a late Miocene origin and southwards colonization of Chinese beeches when the aridity in Central Asia intensified and the monsoon climate began to dominate the East Asia. During the Quaternary, long‐term isolation in subtropical mountains of China coupled with limited gene flow would have lead to the current species‐specific mosaic distribution of lineages.  相似文献   

12.
Plant virus infections are known to alter host plant attractiveness and suitability for insect herbivores.This study was conducted to determine how cucumber mosaic virus (CMV)-infected chilli plants affect the fitness and settling preferences ofnonvector whitefly,Bemisia tabaci adults under dual-choice conditions with volatile organic compounds analyzed using solid phase microextraction coupled with gas chromatography-mass spectrometry (GC-MS).Results showed that the presence of CIVIV in chilli plants substantially affects the settling preferences of the B.tabaci,which preferred to settle on noninfected plants.Duration of the egg stage and the longevity and fecundity of adult B.tabaci on CMV-infected chilli plants were not markedly different from those on noninfected chilli plants.In contrast,the developmental time from egg to adult was significantly reduced in CMV-infected chilli plants compared to the noninfected plants.The results also showed that CMV-infected chilli plants released significantly more linalool and phenylacetaldehyde than noninfected plants.Overall,it was suggested that the behavioral response of B.tabaci might be modified by CMV-infected plants,which alter the release of specific headspace volatiles.Based on these results,the modification of plant volatile profiles may help in enhancing the effectiveness of biological control and the protection of crop plants against B.tabaci.  相似文献   

13.
Patterns of spread of Bean yellow mosaic virus (necrotic type, BYMV‐N) and Cucumber mosaic virus (CMV) were examined in stands of narrow‐leafed lupin (Lupinus angustifolius) where naturally occurring aphid vectors moved them from external or internal primary virus sources. The lupin stands were: commercial crops near BYMV‐infected clover pasture with or without an intervening non‐host barrier crop; a large rectangular block with BYMV‐N and CMV sources on opposite sides and a narrow, non‐host barrier crop facing the BYMV‐N source; and a plot within which seed‐infected lupin plants acted as internal CMV sources. When BYMV‐N spread into commercial crops in the absence of a non‐host barrier, there was a steep decline in its incidence with distance from the crop edge. However, when a 20 m‐wide perimeter barrier of oats intervened between the two, there was only a shallow decline. When CMV and BYMV‐N spread from opposite directions into a block with a 0.25 m‐wide oat barrier between it and the BYMV‐N source, the BYMV‐N incidence gradient was shallow but in the opposite direction the CMV gradient was steep. When CMV spread from primary sources within a plot, infection was concentrated in large internal patches. Spread of BYMV‐N was more diffuse with more isolated symptomatic plants and small clusters than occurred with CMV, spread of which was more comprehensive, reacting the near monocyclic and polycyclic patterns of spread with BYMV‐N with CMV respectively. Spread of both viruses was greater along than across rows, especially with CMV. With BYMV‐N, three different phased cycles of secondary spread were evident in the individual symptomatic plants within the small clusters that formed away from the edges of lupin stands. These findings help validate inclusion of perimeter non‐host barriers within an integrated disease management strategy for BYMV‐N in lupin.  相似文献   

14.
H. Sato    S. Hase    M. Sugiyama    A. Karasawa    T. Suzuki    H. Takahashi  Y. Ehara 《Journal of Phytopathology》2000,148(1):47-51
The CMV(YW) isolate of cucumber mosaic virus (CMV) induced unique line‐pattern mosaic symptoms in systemically infected leaves of tobacco (Nicotiana tabacum cv. Ky57). By northern hybridization analysis using cDNA to CMV(Y) satellite RNA as a probe, it was confirmed that CMV(YW) contained a satellite RNA. which was designated sat‐YW RNA; this was 388 nucleotides in length and did not have either a conserved domain that induces necrosis in tomato or chlorosis in tobacco. CMV(YW) free of sat‐YW RNA. which was isolated by the single lesion isolation method using Chenopodium amaranticolor, did not induce the unique line‐pattern mosaic symptom. Furthermore, the sat‐YW RNA‐mediated line‐pattern mosaic symptom was also induced by in vitro transcribed infectious sat‐YW RNA in tobaccos infected with either CMV(YW) or CMV(Y) genomic RNA. These results clearly demonstrated that sat‐YW RNA induces the unique line‐pattern mosaic symptom on CMV‐infected tobaccos.  相似文献   

15.
In April 2022, Aristolochia plants with symptoms of mosaic were observed in a garden at Jardim Botânico Plantarum, Nova Odessa, São Paulo State, Brazil. Potyviridae-like particles were observed by transmission electron microscopy in leaf extracts. Total RNA extracted from symptomatic plants used in RT-PCR with universal and BCMV-specific primers detected the potyvirus bean common mosaic virus (BCMV). The cucumovirus cucumber mosaic virus (CMV) was identified only in Aristolochia littoralis plants that tested negative by RT-PCR for BCMV. Phylogenetic analysis grouped samples of Aristolochia in a different clade among samples of Phaseolus vulgaris. Phylogenetic analysis indicated that the CMV isolate from Aristolochia belongs to the CMV group IA. BCMV was mechanically transmitted to healthy plants of A. fimbriata, Chenopodium quinoa, P. vulgaris cv. Jalo and Macroptilium lathyroides. CMV was mechanically transmitted to plants of A. fimbriata and C. quinoa. The BCMV and CMV were aphid transmitted only by Aphis gossypii to Aristolochia plants. This is the first report of BCMV and CMV infecting Aristolochia plants in Brazil.  相似文献   

16.
Cucumber mosaic virus (CMV) encodes the 2b protein, which plays a role in local and systemic virus movement, symptom induction and suppression of RNA silencing. It also disrupts signalling regulated by salicylic acid and jasmonic acid. CMV induced an increase in tolerance to drought in Arabidopsis thaliana. This was caused by the 2b protein, as transgenic plants expressing this viral factor showed increased drought tolerance, but plants infected with CMVΔ2b, a viral mutant lacking the 2b gene, did not. The silencing effector ARGONAUTE1 (AGO1) controls a microRNA‐mediated drought tolerance mechanism and, in this study, we noted that plants (dcl2/3/4 triple mutants) lacking functional short‐interfering RNA‐mediated silencing were also drought tolerant. However, drought tolerance engendered by CMV may be independent of the silencing suppressor activity of the 2b protein. Although CMV infection did not alter the accumulation of the drought response hormone abscisic acid (ABA), 2b‐transgenic and ago1‐mutant seeds were hypersensitive to ABA‐mediated inhibition of germination. However, the induction of ABA‐regulated genes in 2b‐transgenic and CMV‐infected plants was inhibited more strongly than in ago1‐mutant plants. The virus engenders drought tolerance by altering the characteristics of the roots and not of the aerial tissues as, compared with the leaves of silencing mutants, leaves excised from CMV‐infected or 2b‐transgenic plants showed greater stomatal permeability and lost water more rapidly. This further indicates that CMV‐induced drought tolerance is not mediated via a change in the silencing‐regulated drought response mechanism. Under natural conditions, virus‐induced drought tolerance may serve viruses by aiding susceptible hosts to survive periods of environmental stress.  相似文献   

17.
The relationship between time of inoculation with cucumber mosaic cucumovirus (CMV) and the growth, seed production and rate of seed transmission of virus in lupin (Lupinus angustifolius cv. Illyarrie) was studied in field-grown plants. Plants inoculated at the seedling stage (2 days post-emergence) showed 45% mortality. Plants infected through the seed were more stunted than plants inoculated at the seedling stage. Plants inoculated up to the mid-vegetative growth stage (58 days post-emergence) yielded ≤ 27% of the dry matter and ≤ 9% of the seed of healthy plants. Late inoculation (114 days post-emergence) did not affect dry matter yield, but reduced seed yield to 75% of that of healthy plants. Rate of seed transmission depended on the time of inoculation of plants. The maximum rate was 24.5% for plants that were inoculated at the mid-vegetative growth stage (58 days post-emergence). However, early inoculation caused a large reduction in seed yield, and it was shown that plants inoculated at the beginning of flowering (94 days post-emergence) produced greater numbers of infected progeny than plants inoculated at earlier or later times. No relationship was observed between seed weight and transmission of CMV. Infectious CMV was recovered from the embryo, but not from the testa. A simple seed transmission model was used to evaluate several hypothetical epidemics and to determine the time of inoculation which results in greatest rates of seed transmission of CMV. For example, when fewer than 73% of plants in a crop become infected with CMV, then the rate of transmission of virus in crop seeds will be greatest when inoculations are at the beginning of flowering.  相似文献   

18.
Tomato chlorosis virus (ToCV) is a whitefly‐transmitted, phloem‐limited, bipartite Crinivirus. In 2012, severe interveinal symptoms characteristic of ToCV infections were observed in greenhouse tomato plants in the Shandong province of China. High levels of infestation by whiteflies (Bemisia tabaci), which transmit ToCV, were also observed on tomato plants in all the greenhouses investigated. The presence of ToCV was confirmed by specific RT‐PCR either in the sampled plants or in the whiteflies collected from the ventral surface of the leaves of diseased plants. The complete genomic nucleotide sequences (RNA1 and RNA2) of the Shandong isolate of ToCV (ToCV‐SDSG) were determined and analysed. ToCV‐SDSG RNA1 consisted of 8594 nucleotides encompassing four open reading frames (ORFs). ToCV‐SDSG RNA2 consisted of 8242 nucleotides encompassing nine ORFs. Phylogenetic analysis suggests that the Chinese ToCV‐SDSG isolate is most similar to the ToCV‐Florida isolate.  相似文献   

19.
D. Xi    H. Feng    L. Lan    J. Du    J. Wang    Z. Zhang    L. Xue    W. Xu    H. Lin 《Journal of Phytopathology》2007,155(9):570-573
Mixed infections of Nicotiana benthamiana plants by Cucumber mosaic virus (CMV) and Tobacco necrosis virus (TNV) exhibit a synergistic interaction and result in symptom enhancement. Accumulation of CMV(+) RNA as well as capsid protein (CP) in mixed infection was considerably higher than that of singly‐infected plants. There was also a slight increase in TNV(+) RNA and CP levels in doubly infected plants. Synergistic infection by CMV‐ and TNV‐induced higher increase in the levels of malonyldialdehyde, hydrogen peroxide (H2O2) and more decline in the activities of catalase than singly infected ones. Both peroxidase and superoxide dismutase activities increased rapidly for the first 10 days post inoculation (dpi) in doubly‐infected plants and then declined, whereas the enzyme activities continued to increase after 10 dpi in singly infected plants and had higher enzyme activities in the late stages than that of co‐infected plants. These results suggest that synergistic infection by CMV and TNV produced severes oxidative stress in N. benthamiana plants and the synergy between the two viruses was mutual.  相似文献   

20.
Age-related Resistance in Bell Pepper to Cucumber mosaic virus   总被引:2,自引:0,他引:2  
We demonstrated the occurrence of mature plant resistance in Capsicum annuum‘Early Calwonder’ to Cucumber mosaic virus (CMV) under greenhouse conditions. When Early Calwonder plants were sown at 10 day intervals and transplanted to 10‐cm square pots, three distinct plant sizes were identified that were designated small, medium and large. Trials conducted during each season showed that CMV accumulated in inoculated leaves of all plants of each size category. All small plants (with the exception of the winter trial) developed a systemic infection that included accumulation of CMV in uninoculated leaves and severe systemic symptoms. Medium plants had a range of responses that included no systemic infection to detection of CMV in uninoculated leaves with the systemically infected plants being either symptomless or expressing only mild symptoms. None of the large plants contained detectable amounts of CMV in uninoculated leaves or developed symptoms. When plants were challenged by inoculation of leaves positioned at different locations along the stem or different numbers of leaves were inoculated, large plants continued to accumulate CMV in inoculated leaves but no systemic infection was observed. When systemic infection of large plants did occur, e.g. when CMV‐infected pepper was used as a source of inoculum, virus accumulation in uninoculated leaves was relatively low and plants remained symptomless. A time‐course study of CMV accumulation in inoculated leaves revealed no difference between small and large plants. Analyses to examine movement of CMV into the petiole of inoculated leaves and throughout the stem showed a range in the extent of infection. While all large plants contained CMV in inoculated leaves, some had no detectable amounts of virus beyond the leaf blade, whereas others contained virus throughout the length of the stem but with limited accumulation relative to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号