首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo(3) as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 (13)C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group (13)C-labeled. The (13)C-labeled quinone isolated from cytochrome bo(3) was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.  相似文献   

2.
Hellwig P  Yano T  Ohnishi T  Gennis RB 《Biochemistry》2002,41(34):10675-10679
During turnover of cytochrome bo(3) from Escherichia coli, a semiquinone radical is stabilized in a high-affinity binding site. To identify binding partners of this radical, site-directed mutants have been designed on the basis of a recently modeled quinone binding site (Abramson et al., 2000). The R71H, H98F, D75H, and I102W mutant enzymes were found to show very little or no quinol oxidase activity. The thermodynamic and EPR spectroscopic properties of semiquinone radicals in these mutants were characterized. For the H98F and the R71H mutants, no EPR signal of the semiquinone radical was observed in the redox potential range from -100 to 250 mV. During potentiometric titration of the D75H mutant enzyme, a semiquinone signal was detected in the same potential range as that of the wild-type enzyme. However, the EPR spectrum of the D75H mutant lacks the characteristic hyperfine structure of the semiquinone radical signal observed in the wild-type oxidase, indicating that D75 or the introduced His, interacts with the semiquinone radical. For the I102W mutant, a free radical signal was observed with a redox midpoint potential downshifted by about 200 mV. On the basis of these observations, it is suggested that R71, D75, and H98 residues are involved in the stabilization of the semiquinone state in the high-affinity binding site. Details of the possible binding motif and mechanistic implications are discussed.  相似文献   

3.
The cytochrome bo3 ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O2 to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. Two-dimensional electron spin echo envelope modulation has been applied to explore the exchangeable protons involved in hydrogen bonding to the semiquinone by substitution of 1H2O by 2H2O. Three exchangeable protons possessing different isotropic and anisotropic hyperfine couplings were identified. The strength of the hyperfine interaction with one proton suggests a significant covalent O-H binding of carbonyl oxygen O1 that is a characteristic of a neutral radical, an assignment that is also supported by the unusually large hyperfine coupling to the methyl protons. The second proton with a large anisotropic coupling also forms a strong hydrogen bond with a carbonyl oxygen. This second hydrogen bond, which has a significant out-of-plane character, is from an NH2 or NH nitrogen, probably from an arginine (Arg-71) known to be in the quinone binding site. Assignment of the third exchangeable proton with smaller anisotropic coupling is more ambiguous, but it is clearly not involved in a direct hydrogen bond with either of the carbonyl oxygens. The results support a model that the semiquinone is bound to the protein in a very asymmetric manner by two strong hydrogen bonds from Asp-75 and Arg-71 to the O1 carbonyl, while the O4 carbonyl is not hydrogen-bonded to the protein.  相似文献   

4.
Ubiquinone-2 (UQ-2) selectively labeled with (13)C (I =(1)/(2)) at either the position 1- or the 4-carbonyl carbon is incorporated into the ubiquinol oxidase bo(3) from Escherichia coli in which the native quinone (UQ-8) has been previously removed. The resulting stabilized anion radical in the high-affinity quinone-binding site (Q(H)(*)(-)) is investigated using multifrequency (9, 34, and 94 GHz) electron paramagnetic resonance (EPR) spectroscopy. The corresponding spectra reveal dramatic differences in (13)C hyperfine couplings indicating a strongly asymmetric spin density distribution over the quinone headgroup. By comparison with previous results on labeled ubisemiquinones in proteins as well as in organic solvents, it is concluded that Q(H)(*)(-) is most probably bound to the protein via a one-sided hydrogen bond or a strongly asymmetric hydrogen-bonding network. This observation is discussed with regard to the function of Q(H) in the enzyme and contrasted with the information available on other protein-bound semiquinone radicals.  相似文献   

5.
The high-affinity QH ubiquinone-binding site in the bo(3) ubiquinol oxidase from Escherichia coli has been characterized by an investigation of the native ubiquinone radical anion QH(*-) by pulsed electron paramagnetic resonance (EPR) spectroscopy. One- and two-dimensional electron spin-echo envelope modulation (ESEEM) spectra reveal strong interactions of the unpaired electron of QH(*-) with a nitrogen nucleus from the surrounding protein matrix. From analysis of the experimental data, the (14)N nuclear quadrupolar parameters have been determined: kappa = e(2)qQ/4h = 0.93 MHz and eta = 0.50. This assignment is confirmed by hyperfine sublevel correlation (HYSCORE) spectroscopy. On the basis of a comparison of these data with those obtained previously for other membrane-protein bound semiquinone radicals and model systems, this nucleus is assigned to a protein backbone nitrogen. This result is discussed with regard to the location and potential function of QH in the enzyme.  相似文献   

6.
Electron nuclear double resonance (ENDOR) was performed on the protein-bound, stabilized, high-affinity ubisemiquinone radical, QH*-, of bo3 quinol oxidase to determine its electronic spin distribution and to probe its interaction with its surroundings. Until this present work, such ENDOR studies of protein-stabilized ubisemiquinone centers have only been done on photosynthetic reaction centers whose function is to reduce a ubiquinol pool. In contrast, QH*- serves to oxidize a ubiquinol pool in the course of electron transfer from the ubiquinol pool to the oxygen-consuming center of terminal bo3 oxidase. As documented by large hyperfine couplings (>10 MHz) to nonexchangeable protons on the QH*- ubisemiquinone ring, we provide evidence for an electronic distribution on QH*- that is different from that of the semiquinones of reaction centers. Since the ubisemiquinone itself is physically nearly identical in both QH*- and the bacterial photosynthetic reaction centers, this electronic difference is evidently a function of the local protein environment. Interaction of QH*- with this local protein environment was explicitly shown by exchangeable deuteron ENDOR that implied hydrogen bonding to the quinone and by weak proton hyperfine couplings to the local protein matrix.  相似文献   

7.
Nitrate reductase A (NRA, NarGHI) is expressed in Escherichia coli by growing the bacterium in anaerobic conditions in the presence of nitrate. This enzyme reduces nitrate to nitrite and uses menaquinol (or ubiquinol) as the electron donor. The location of quinones in the enzyme, their number, and their role in the electron transfer mechanism are still controversial. In this work, we have investigated the spectroscopic and thermodynamic properties of a semiquinone (SQ) in membrane samples of overexpressed E. coli nitrate reductase poised in appropriate redox conditions. This semiquinone is highly stabilized with respect to free semiquinone. The g-values determined from the numerical simulation of its Q-band (35 GHz) EPR spectrum are equal to 2.0061, 2.0051, 2.0023. The midpoint potential of the Q/QH(2) couple is about -100 mV, and the SQ stability constant is about 100 at pH 7.5. The semiquinone EPR signal disappears completely upon addition of the quinol binding site inhibitor 2-n-nonyl-4-hydroxyquinoline N-oxide (NQNO). A semiquinone radical could also be stabilized in preparations where only the NarI membrane subunit is overexpressed in the absence of the NarGH catalytic dimer. Its thermodynamic and spectroscopic properties show only slight variations with those of the wild-type enzyme. The X-band continuous wave (cw) electron nuclear double resonance (ENDOR) spectra of the radicals display similar proton hyperfine coupling patterns in NarGHI and in NarI, showing that they arise from the same semiquinone species bound to a single site located in the NarI membrane subunit. These results are discussed with regard to the location and the potential function of quinones in the enzyme.  相似文献   

8.
Lipoxygenases have been implicated in cardiovascular disease. A rare single-nucleotide polymorphism causing T560M exchange has recently been described, and this mutation leads to a near null variant of the enzyme encoded for by the ALOX15 gene. When we inspected the three-dimensional structure of the rabbit ortholog, we localized Thr-560 outside the active site and identified a hydrogen bridge between its side chain and Gln-294. This interaction is part of a complex hydrogen bond network that appears to be conserved in other mammalian lipoxygenases. Gln-294 and Asn-287 are key amino acids in this network, and we hypothesized that disturbance of this hydrogen bond system causes the low activity of the T560M mutant. To test this hypothesis, we first mutated Thr-560 to amino acids not capable of forming side chain hydrogen bridges (T560M and T560A) and obtained enzyme variants with strongly reduced catalytic activity. In contrast, enzymatic activity was retained after T560S exchange. Enzyme variants with strongly reduced activity were also obtained when we mutated Gln-294 (binding partner of Thr-560) and Asn-287 (binding partner of Gln-294 and Met-418) to Leu. Basic kinetic characterization of the T560M mutant indicated that the enzyme lacks a kinetic lag phase but is rapidly inactivated. These data suggest that the low catalytic efficiency of the naturally occurring T560M mutant is caused by alterations of a hydrogen bond network interconnecting this residue with active site constituents. Disturbance of this bonding network increases the susceptibility of the enzyme for suicidal inactivation.  相似文献   

9.
Exchangeable protons in the immediate neighborhood of the semiquinone (SQ) at the Qi-site of the bc1 complex (ubihydroquinone:cytochrome c oxidoreductase (EC 1.10.2.2)) from Rhodobacter sphaeroides have been characterized using electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation spectroscopy (HYSCORE) and visualized by substitution of H2O by 2H2O. Three exchangeable protons interact with the electron spin of the SQ. They possess different isotropic and anisotropic hyperfine couplings that allow a clear distinction between them. The strength of interactions indicates that the protons are involved in hydrogen bonds with SQ. The hyperfine couplings differ from values typical for in-plane hydrogen bonds previously observed in model experiments. It is suggested that the two stronger couplings involve formation of hydrogen bonds with carbonyl oxygens, which have a significant out-of-plane character due to the combined influence of bulky substituents and the protein environment. These two hydrogen bonds are most probably to side chains suggested from crystallographic structures (His-217 and Asp-252 in R. sphaeroides). Assignment of the third hydrogen bond is more ambiguous but may involve either a bond between Asn-221 and a methoxy O-atom or a bond to water. The structural and catalytic roles of the exchangeable protons are discussed in the context of three high resolution crystallographic structures for mitochondrial bc1 complexes. Potential H-bonds, including those to water molecules, form a network connecting the quinone (ubiquinone) occupant and its ligands to the propionates of heme bH and the external aqueous phase. They provide pathways for exchange of protons within the site and with the exteriors, needed to accommodate the different hydrogen bonding requirements of different quinone species during catalysis.  相似文献   

10.
Wells TA  Takahashi E  Wraight CA 《Biochemistry》2003,42(14):4064-4074
In the primary quinone (Q(A)) binding site of Rb. sphaeroides reaction centers (RCs), isoleucine M265 is in extensive van der Waals contact with the ubiquinone headgroup. Substitution of threonine or serine for this residue (mutants M265IT and M265IS), but not valine (mutant M265IV), lowers the redox midpoint potential of Q(A) by about 100 mV (Takahashi et al. (2001) Biochemistry 40, 1020-1028). The unexpectedly large effect of the polar substitutions is not due to reorientation of the methoxy groups as similar redox potential changes are seen for these mutants with either ubiquinone or anthraquinone as Q(A). Using FTIR spectroscopy to compare Q(A)(-)/Q(A) IR difference spectra for wild type and the M265 mutant RCs, we found changes in the polar mutants (M265IT and M265IS) in the quinone C[double bond]O and C[double bond]C stretching region (1600-1660 cm(-1)) and in the semiquinone anion band (1440-1490 cm(-1)), as well as in protein modes. Modeling the mutations into the X-ray structure of the wild-type RC indicates that the hydroxyl group of the mutant polar residues, Thr and Ser, is hydrogen bonded to the peptide C[double bond]O of Thr(M261). It is suggested that the mutational effect is exerted through the extended backbone region that includes Ala(M260), the hydrogen bonding partner to the C1 carbonyl of the quinone headgroup. The resulting structural perturbations are likely to include lengthening of the hydrogen bond between the quinone C1[double bond]O and the peptide NH of Ala(M260). Possible origins of the IR spectroscopic and redox potential effects are discussed.  相似文献   

11.
Quinol/nitrate oxidoreductase (NarGHI) is the first enzyme involved in respiratory denitrification in prokaryotes. Although this complex in E. coli is known to operate with both ubi and menaquinones, the location and the number of quinol binding sites remain elusive. NarGHI strongly stabilizes a semiquinone radical located within the dihemic anchor subunit NarI. To identify its location and function, we used a combination of mutagenesis, kinetics, EPR, and ENDOR spectroscopies. For the NarGHIH66Y and NarGHIH187Y mutants lacking the distal heme bD, no EPR signal of the semiquinone was observed. In contrast, a semiquinone was detected in the NarGHIH56Y mutant lacking the proximal heme bP. Its thermodynamic properties and spectroscopic characteristics, as revealed by Q-band EPR and ENDOR spectroscopies, are identical to those observed in the native enzyme. The substitution by Ala of the Lys86 residue close to heme bD, which was previously proposed to be in a quinol oxidation site of NarGHI (QD), also leads to the loss of the EPR signal of the semiquinone, although both hemes are present. Enzymatic assays carried out on the NarGHIK86A mutant reveal that the substitution dramatically reduces the rate of oxidation of both mena and ubiquinol analogues. These observations demonstrate that the semiquinone observed in NarI is strongly associated with heme bD and that Lys86 is required for its stabilization. Overall, our results indicate that the semiquinone is located within the quinol oxidation site QD. Details of the possible binding motif of the semiquinone and mechanistic implications are discussed.  相似文献   

12.
The B3LYP hybrid density functional method is used to calculate spin densities and hyperfine couplings for the 1,4-naphthosemiquinone anion radical and a model of the phyllosemiquinone anion radical. The effect of hydrogen bonding on the spin density distribution is shown to lead to a redistribution of pi spin density from the semiquinone carbonyl oxygens to the carbonyl carbon atoms. The effect of in plane and out of plane hydrogen bonding is examined. Out of plane hydrogen bonding is shown to give rise to a significant delocalisation of spin density on to the hydrogen bond donor heavy atom. Excellent agreement is observed between calculated and experimental hyperfine couplings. Comparison of calculated hyperfine couplings with experimental determinations for the A1 phyllosemiquinone anion radical present in Photosystem I (PS I) of higher plant photosynthesis indicates that the in vivo radical may have a hydrogen bond to the O4 atom only as opposed to hydrogen bonds to each oxygen atom in alcohol solvents. The hydrogen bonding situation appears to be the reverse of that observed for QA in the bacterial type II reaction centres where the strong hydrogen bond occurs to the quinone O1 oxygen atom. For different types of reaction centre the presence or absence of the non-heme Fe(II) atom may well determine which type of hydrogen bonding situation prevails at the primary quinone site which in turn may influence the direction of subsequent electron transfer.  相似文献   

13.
The roles of tyrosine 9 and aspartic acid 101 in the catalytic mechanism of rat glutathione S-transferase YaYa were studied by site-directed mutagenesis. Replacement of tyrosine 9 with phenylalanine (Y9F), threonine (Y9T), histidine (Y9H), or valine (Y9V) resulted in mutant enzymes with less than 5% catalytic activity of the wild type enzymes. Kinetic studies with purified Y9F and Y9T mutants demonstrated poor catalytic efficiencies which were largely due to a drastic decrease in kcat. The estimated pK alpha values of the sulfhydryl group of glutathione bound to Y9F and Y9T mutant enzymes were 8.5 to 8.7, similar to the chemical reaction, in contrast to the estimated pK alpha value of 6.7 to 6.8 for the glutathione enzyme complex of wild type glutathione S-transferase. These results indicate that tyrosine 9 is directly responsible for the lowering of the pKa of the sulfhydryl group of glutathione, presumably due to the stabilization of the thiolate anion through hydrogen bonding with the hydroxyl group of tyrosine. To examine the role of aspartic acid in the binding of glutathione to YaYa, 4 conserved aspartic acid residues at positions 61, 93, 101, and 157 were changed to glutamic acid and asparagine. All mutant enzymes retained either full or partial activity except D157N, which was virtually inactive. Kinetic studies with four mutant enzymes (D93E, D93N, D101E, and D101N) indicate that only D101N exhibited a 5-fold increase in Km toward glutathione. Also, the binding of this mutant to the affinity column was greatly reduced. These results demonstrate that aspartic acid 101 plays an important role in glutathione interaction to YaYa. The role of aspartic acid 157 in catalysis remains to be determined.  相似文献   

14.
Quinones are naturally occurring isoprenoids that are widely exploited by photosynthetic reaction centers. Protein interactions modify the properties of quinones such that similar quinone species can perform diverse functions in reaction centers. Both type I and type II (oxygenic and nonoxygenic, respectively) reaction centers contain quinone cofactors that serve very different functions as the redox potential of similar quinones can operate at up to 800 mV lower reduction potential when present in type I reaction centers. However, the factors that determine quinone function in energy transduction remain unclear. It is thought that the location of the quinone cofactor, the geometry of its binding site, and the "smart" matrix effects from the surrounding protein environment greatly influence the functional properties of quinones. Photosystem II offers a unique system for the investigation of the factors that influence quinone function in energy transduction. It contains identical plastoquinones in the primary and secondary quinone acceptor sites, Q(A) and Q(B), which exhibit very different functional properties. This study is focused on elucidating the tuning and control of the primary semiquinone state, Q(A)(-), of photosystem II. We utilize high-resolution two-dimensional hyperfine sublevel correlation spectroscopy to directly probe the strength and orientation of the hydrogen bonds of the Q(A)(-) state with the surrounding protein environment of photosystem II. We observe two asymmetric hydrogen bonding interactions of reduced Q(A)(-) in which the strength of each hydrogen bond is affected by the relative nonplanarity of the bond. This study confirms the importance of hydrogen bonds in the redox tuning of the primary semiquinone state of photosystem II.  相似文献   

15.
Hellwig P  Barquera B  Gennis RB 《Biochemistry》2001,40(4):1077-1082
Aspartate-75 (D75) was recently suggested to participate in a ubiquinone-binding site in subunit I of cytochrome bo(3) from Escherichia coli on the basis of a structural model [Abramson, J., Riistama, S., Larsson, G., Jasaitis, A., Svensson-Ek, M., Laakkonen, L., Puustinen, A., Iwata, S., and Wikstr?m, M. (2000) Nat. Struct. Biol. 7 (10), 910-917]. We studied the protonation state of D75 for the reduced and oxidized forms of the enzyme, using a combined site-directed mutagenesis, electrochemical, and FTIR spectroscopic approach. The D75H mutant is catalytically inactive, whereas the more conservative D75E substitution has quinol oxidase activity equal to that of the wild-type enzyme. Electrochemically induced FTIR difference spectra of the inactive D75H mutant enzyme show a clear decrease in the spectroscopic region characteristic of protonated aspartates and glutamates. Strong variations in the amide I region of the FTIR difference spectrum, however, reflect a more general perturbation due to this mutation of both the protein and the bound quinone. Electrochemically induced FTIR difference spectra on the highly conservative D75E mutant enzyme show a shift from 1734 to 1750 cm(-1) in direct comparison to wild type. After H/D exchange, the mode at 1750 cm(-1) shifts to 1735 cm(-1). These modes, concomitant with the reduced state of the enzyme, can be assigned to the nu(C=O) vibrational mode of protonated D75 and E75, respectively. In the spectroscopic region where signals for deprotonated acidic groups are expected, band shifts for the nu(COO(-))(s/as) modes from 1563 to 1554-1539 cm(-1) and from 1315 to 1336 cm(-1), respectively, are found for the oxidized enzyme. These signals indicate that D75 (or E75 in the mutant) is deprotonated in the oxidized form of cytochrome bo(3) and is protonated upon full reduction of the enzyme. It is suggested that upon reduction of the bound ubiquinone at the high affinity site, D75 takes up a proton, possibly sharing it with ubiquinol.  相似文献   

16.
Selective (15)N isotope labeling of the cytochrome bo(3) ubiquinol oxidase from Escherichia coli with auxotrophs was used to characterize the hyperfine couplings with the side-chain nitrogens from residues R71, H98, and Q101 and peptide nitrogens from residues R71 and H98 around the semiquinone (SQ) at the high-affinity Q(H) site. The two-dimensional ESEEM (HYSCORE) data have directly identified N(ε) of R71 as an H-bond donor carrying the largest amount of unpaired spin density. In addition, weaker hyperfine couplings with the side-chain nitrogens from all residues around the SQ were determined. These hyperfine couplings reflect a distribution of the unpaired spin density over the protein in the SQ state of the Q(H) site and the strength of interaction with different residues. The approach was extended to the virtually inactive D75H mutant, where the intermediate SQ is also stabilized. We found that N(ε) of a histidine residue, presumably H75, carries most of the unpaired spin density instead of N(ε) of R71, as in wild-type bo(3). However, the detailed characterization of the weakly coupled (15)N atoms from selective labeling of R71 and Q101 in D75H was precluded by overlap of the (15)N lines with the much stronger ~1.6 MHz line from the quadrupole triplet of the strongly coupled (14)N(ε) atom of H75. Therefore, a reverse labeling approach, in which the enzyme was uniformly labeled except for selected amino acid types, was applied to probe the contribution of R71 and Q101 to the (15)N signals. Such labeling has shown only weak coupling with all nitrogens of R71 and Q101. We utilize density functional theory-based calculations to model the available information about (1)H, (15)N, and (13)C hyperfine couplings for the Q(H) site and to describe the protein-substrate interactions in both enzymes. In particular, we identify the factors responsible for the asymmetric distribution of the unpaired spin density and ponder the significance of this asymmetry to the quinone's electron transfer function.  相似文献   

17.
The role of the protein environment in determining the redox midpoint potential (E(m)) of Q(A), the primary quinone of bacterial reaction centers, was investigated by mutation of isoleucine at position 265 of the M subunit in Rhodobacter sphaeroides. Isoleucine was changed to threonine, serine, and valine, yielding mutants M265IT, M265IS, and M265IV, respectively. All three mutants, with smaller residues replacing isoleucine, exhibited decreased binding affinities of the Q(A) site for various quinone analogues, consistent with an enlargement or loosening of the headgroup binding domain and a decrease in the van der Waals contact for small quinones. In all other respects, M265IV was like the wild type, but the polar mutants, M265IT and M265IS, had unexpectedly dramatic decreases in the redox midpoint potential of Q(A), resulting in faster rates of P(+)Q(A)(-) charge recombination. For both anthraquinone and native ubiquinone, the in situ E(m) of Q(A) was estimated to be approximately 100 and 85 mV lower in M265IT and M265IS, respectively. The effect on E(m)(Q(A)) indicates destabilization of the semiquinone or stabilization of the quinone. This is suggested to arise from either (i) electrostatic interaction between the partial charges or dipole of the residue hydroxyl group and the charge distribution of quinone and semiquinone states with particular influence near the C4 carbonyl group or (ii) from hydrogen bonding interactions between the hydroxyl oxygen and the N(delta)H of histidine M219, causing a weakening of the hydrogen bond to the C4 carbonyl. The rate of the first electron transfer (k(AB)(()(1)())) in the polar mutants was the same as in the wild type at low pH but decelerated at higher pH with altered pH dependence. The rate of the second electron transfer (k(AB)(()(2)())) was 3-4-fold greater than in the wild type over the whole pH range from 4 to 11, consistent with a larger driving force for electron transfer derived from the lower E(m) of Q(A).  相似文献   

18.
The ubisemiquinone stabilized at the Qi-site of the bc1 complex of Rhodobacter sphaeroides forms a hydrogen bond with a nitrogen from the local protein environment, tentatively identified as ring N from His-217. The interactions of 14N and 15N have been studied by X-band (approximately 9.7 GHz) and S-band (3.4 GHz) pulsed EPR spectroscopy. The application of S-band spectroscopy has allowed us to determine the complete nuclear quadrupole tensor of the 14N involved in H-bond formation and to assign it unambiguously to the Nepsilon of His-217. This tensor has distinct characteristics in comparison with H-bonds between semiquinones and Ndelta in other quinone-processing sites. The experiments with 15N showed that the Nepsilon of His-217 was the only nitrogen carrying any considerable unpaired spin density in the ubiquinone environment, and allowed calculation of the isotropic and anisotropic couplings with the Nepsilon of His-217. From these data, we could estimate the unpaired spin density transferred onto 2s and 2p orbitals of nitrogen and the distance from the nitrogen to the carbonyl oxygen of 2.38+/-0.13A. The hyperfine coupling of other protein nitrogens with semiquinone is <0.1 MHz. This did not exclude the nitrogen of the Asn-221 as a possible hydrogen bond donor to the methoxy oxygen of the semiquinone. A mechanistic role for this residue is supported by kinetic experiments with mutant strains N221T, N221H, N221I, N221S, N221P, and N221D, all of which showed some inhibition but retained partial turnover.  相似文献   

19.
The roles of the Escherichia coli H(+)-ATPase (FoFl) delta subunit (177 amino acid residues) was studied by analyzing mutants. The membranes of nonsense (Gln-23----end, Gln-29----end, Gln-74----end) and missense (Gly-150----Asp) mutants had very low ATPase activities, indicating that the delta subunit is essential for the binding of the Fl portion to Fo. The Gln-176----end mutant had essentially the same membrane-bound activity as the wild type, whereas in the Val-174----end mutant most of the ATPase activity was in the cytoplasm. Thus Val-174 (and possibly Leu-175 also) was essential for maintaining the structure of the subunit, whereas the two carboxyl terminal residues Gln-176 and Ser-177 were dispensable. Substitutions were introduced at various residues (Thr-11, Glu-26, Asp-30, Glu-42, Glu-82, Arg-85, Asp-144, Arg-154, Asp-161, Ser-163), including apparently conserved hydrophilic ones. The resulting mutants had essentially the same phenotypes as the wild type, indicating that these residues do not have any significant functional role(s). Analysis of mutations (Gly-150----Asp, Pro, or Ala) indicated that Gly-150 itself was not essential, but that the mutations might affect the structure of the subunit. These results suggest that the overall structure of the delta subunit is necessary, but that individual residues may not have strict functional roles.  相似文献   

20.
Bradley LH  Swenson RP 《Biochemistry》2001,40(30):8686-8695
The role of the hydrogen bonding interaction with the N(3)H of the flavin cofactor in the modulation of the redox properties of flavoproteins has not been extensively investigated. In the flavodoxin from Clostridium beijerinckii, the gamma-carboxylate group of glutamate-59 serves as a dual hydrogen bond acceptor with the N(3)H of flavin mononucleotide (FMN) cofactor and the amide hydrogen of the adjacent polypeptide backbone in all three oxidation states. This "bridging" interaction serves to anchor the FMN in the binding site, which, based on the E59Q mutant, indirectly affects the stability of the neutral flavin semiquinone by facilitating a strong and critical interaction at the FMN N(5)H [Bradley, L. H., and Swenson, R. P. (1999) Biochemistry 38, 12377-12386]. In this study, the specific role of the N(3)H interaction itself was investigated through the systematic replacement of Glu59 by aspartate, asparagine, and alanine in an effort to weaken, disrupt, and/or eliminate this interaction, respectively. Just as for the E59Q mutant, each replacement significantly weakened the binding of the cofactor, particularly for the semiquinone state, affecting the midpoint potentials of each one-electron couple in opposite directions. (1)H-(15)N HSQC nuclear magnetic resonance (NMR) spectroscopic studies revealed that not only was the N(3)H interaction weakened as anticipated, but so also was the hydrogen bonding interaction with the N(5)H. Using the temperature coefficients of the N(5)H to quantify and correct for changes in this interaction, the contribution of the N(3)H hydrogen bond to the binding of each redox state of the FMN was isolated and estimated. Based on this analysis, the N(3)H hydrogen bonding interaction appears to contribute primarily to the stability of the oxidized state (by as much as 2 kcal/mol) and to a lesser extent the reduced states. It is concluded that this interaction contributes only modestly (<45 mV) to the modulation of the midpoint potential for each redox couple in the flavodoxin. These conclusions are generally consistent with ab initio calculations and model studies on the non-protein-bound cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号