首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent discovery of pharmacologically relevant, high affinity, stereospecific binding sites for the benzodiazepines in the central nervous system (CNS) has rekindled investigations concerning the mechanism of action of these drugs. It has become increasingly clear that elucidation of benzodiazepine action will provide new and important insights into the neurochemical substances of seizure activity, centrally mediated muscle relaxation and anxiety, three major actions of this class of drugs.The existence of a functional receptor for the benzodiazepines, compounds not present in vivo, suggests that endogenous substances exist that serve as natural substrates for this receptor. Furthermore, the characterization of endogenous benzodiazepine receptor ligands affords an opportunity to determine the neurochemical mechanisms underlying the pharmacologic and behavioral effects manifested by the benzodiazepines.Using receptor binding methodology to assay tissue extracts for [3H] diazepam binding inhibitory activity, putative endogenous ligands for the benzodiazepine receptor have been isolated and identified as the purine nucleosides. Compounds such as inosine and hypoxanthine exhibit competitive inhibition of [3H] diazepam binding. The low affinity purinergic inhibition of diazepam binding is consistent with their in vivo concentrations. Distinct structure-activity relationships exist for the purines with subtle structural alterations having marked effects on diazepam binding inhibitory potency. The methylxanthine stimulants, caffeine, theophylline, and theobromine, also competitively inhibit diazepam binding, suggesting that some of their actions may be mediated by the benzodiazepine receptor.The purines also have “benzodiazepine-like” pharmacologic properties, since they have been shown to antagonize pentylenetetrazol induced seizures in mice in a dose dependent manner. Neurophysiologic studies have also shown that iontophoresis of inosine on cultured mouse primary neurons produce neurotransmitter like effects. Furthermore, these effects are similar to those observed with flurazepam, a finding that provides additional evidence for the “benzodiazepine-like” properties of the purines.The preliminary studies outlined below indicate that the purines are good candidates as putative endogenous ligands for the benzodiazepine receptor and provide a foundation for future studies that concern the homeostatic mediation of seizure activity and anxiety.  相似文献   

2.
Up to now the only drugs known to be able to inhibit the binding of benzodiazepines to rodent brain receptors are members of this chemical family.Zopiclone (RP 27 267), a new drug with a pharmacological profile similar to that of chlordiazepoxide and nitrazepam but entirely different chemically from benzodiazepines, has been tested for its ability to inhibit benzodiazepine binding. In vitro and in vivo studies have shown that zopiclone is able to inhibit the binding of [3H] diazepam and [3H] flunitrazepam to brain receptors. The potency of zopiclone is quite comparable to that of diazepam and nitrazepam in vitro and to that of chlordiazepoxide in vivo.These results confirm the pharmacological similarities existing between zopiclone and the benzodiazepines.  相似文献   

3.
Benzodiazepine receptors were labeled with [3H] diazepam following intravenous injection in rats. Binding of [3H] diazepam in vivo to rat forebrain membranes was displaceable by co-injection of clonazepam or the pharmacologically active enantiomers of two benzodiazepines, B9 and B10, but was not displaced by equal doses of the pharmacologically in-active enantiomers. Binding of [3H] diazepam invivo was bserved in kidney, liver, and abdominal muscle, but was not stereospecifically diplaced in any peripheral tissue studied. The regional distribution of benzodiazepine receptors in brain was uneven, with specific [3H] diazepam binding being highest in the cerebral cortex and lowest in the ponsmedulla. Preliminary studies of the subcellular distribution of [3H] diazepam binding demonstrated highest specific binding to synaptosomal membranes. These data demonstrate the feasibility of labeling benzodiazepine receptors in rat brain invivo.  相似文献   

4.
Avermectin B1a, an antihelminthic macrocyclic lactone, has been previously shown to reduce muscle membrane resistance by stimulating γ-aminobutyric acid-mediated chloride conductance. Since the benzodiazepine receptor is coupled to a receptor for γ-aminobutyric acid and related chloride ionophore, the effects of Avermectin B1a on [3H]diazepam binding to the benzodiazepine receptor were studied. In well-washed membrane fragments from rat cerebral cortex, Avermectin B1a markedly increased the binding of [3H]diazepam to benzodiazepine receptors. This effect was qualitatively similar to that observed with either γ-aminobutyric acid or chloride ion and was partially reversed by the γ-aminobutyric acid receptor antagonist, bicuculline. In contrast to the effects of γ-aminobutyric acid and chloride, the enhanced binding of [3H]benzodiazepine elicited by Avermectin B1a was not reversed by extensive washing of the membrane preparation. Avermectin B1a appears to irreversibly modify benzodiazepine receptors at a γ-aminobutyric acid-chloride recognition site and may be valuable in biochemical studies of the regulation of benzodiazepine receptor function.  相似文献   

5.
Denzimol, a new anticonvulsant drug with a pharmacological profile similar to that of phenytoin, enhances the ataxic and antimetrazol activity of diazepam in rats without affecting its activity against picrotoxin-induced seizures. In vivo and ex vivo denzimol enhances the binding of 3H-flunitrazepam in cortex and in hippocampus but not in cerebellum.The possibility of this increase in the number of benzodiazepine binding sites contributing in some way to enhancement of the depressive and anticonvulsant activity of diazepam is discussed.  相似文献   

6.
Five and 11 days after withdrawal from 8 weeks of treatment with 90 mg/kg/day of diazepam p.o. or 60 mg/kg/day of lorazepam p.o. there were no consistent changes in the number of benzodiazepine receptors or apparent affinity in vitro for 3H-diazepam at 0°C in rat forebrain membranes. Daily exposure of rats from 10 days before birth until 7 days after birth was also without gross effects on the benzodiazepine receptor. Abstinence and tolerance to benzodiazepines were thus not attributable to changes in brain benzodiazepine receptors.  相似文献   

7.
An in vivo method for labeling specific benzodiazepine (BDZ) binding sites in brain was developed using intravenously injected [3H]diazepam. Labeling of these sites is blocked by pretreatment of animals with high doses of pharmacologically active BDZs (but not by an inactive BDZ). Using this in vivo binding technique, specific BDZ binding is enhanced by pretreatment of rats with the GAB?A agonist muscimol or with amino-oxyacetic acid, which increases GABA levels in brain.  相似文献   

8.
It has been demonstrated in experiments on rats that only the drugs of benzodiazepine structure are responsible for complete cross tolerance as regards the myorelaxant effect under application with phenazepam. Other substances such as neuroleptics (chlorpromazine, triftazin), ethanol, phenobarbital, tranquilizers of non-benzodiazepine structure (meprobamate, ataractic), and an agonist of GABA receptors, muscimol, in doses that produce myorelaxation are not capable to replace phenazepam under conditions of this drug tolerance development. Partial cross tolerance under application with phenazepam arises from the use of supposed endogenous ligands of benzodiazepine receptors, nicotinamide and inosine, as well as of the use of the GABA-mimetic calcium valproate. The mechanisms of benzodiazepine tolerance development are discussed.  相似文献   

9.
Norharman competitively inhibits specific binding of [3H]-diazepam in mouse brain homogenates. In vivo this β-carboline produces a striking rigid catatonic-like appearance which is abolished by diazepam. It also causes a rapid tremor but has little anticonvulsant effect. Measurement of in vivo concentrations and receptor occupancy demonstrate that these biological effects occur at doses which occupy a large proportion of benzo-diazepine receptors. It may represent a ligand of the benzo-diazepine receptors whose effects are opposite those of diazepam.  相似文献   

10.
The data relating the pharmacological activities of benzodiazepines to in vivo occupancy of their receptor sites is reviewed, in the light of the complexity of evaluating pharmacodynamic parameters in living animals. Methodological problems in the measurement of in vivo receptor occupancy and species differences in benzodiazepine metabolism are considered in detail.  相似文献   

11.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

12.
Properties of [3H] diazepam binding to rat peritoneal mast cells   总被引:6,自引:0,他引:6  
Benzodiazepine binding to rat peritoneal mast cells was investigated using [3H] diazepam as the radioactive probe. The specific binding of [3H] diazepam reaches equilibrium within 10–15 min, is saturable and is linear with cell number. Scatchard analysis of equilibrium binding indicates the existence of only one class of binding sites with a KD = 90 ± 10 nM and Bmax of 261 ± 60 fmoles/106 cells. The binding of [3H] diazepam is temperature dependent, the highest amount is bound at 0°C and shows a pH-optimum between pH 6.8 – 7.4. The binding of [3H] diazepam is reversible with t12 = 1.2 ± 0.2 min. Based on the relative potency of clonazepam and Ro5-4864 in displacing the specific [3H] diazepam binding, the binding sites in the mast cell are similar to those in the peripheral tissues like lung, liver, and kidney and are different from those in the brain. These data indicate that the mast cells have benzodiazepine binding sites which are of the peripheral type.  相似文献   

13.
Both enzyme-mediated group translocation and facilitated diffusion have been proposed as mechanisms by which mammalian cells take up purine bases and nucleosides. We have investigated the mechanisms for hypoxanthine and inosine transport by using membrane vesicles from Chinese hamster ovary cells (CHO), Balb/c 3T3 and SV3T3 cells prepared by identical procedures. Uptake mechanisms were characterized by analyzing intravesicular contents, determining which substrates could exchange with the transport products, assaying for hypoxanthine phosphoribosyltransferase activity, and measuring the stimulation of uptake of hypoxanthine by phosphoribosyl pyrophosphate (PRib-PP).We found that the uptake of hypoxanthine in Balb 3T3 vesicles was stimulated 3–4-fold by PRib-PP. The intravesicular product was predominantly IMP. The hypoxanthine phosphoribosyltransferase activity copurified with the vesicle preparation. These results suggest the possible involvement of this enzyme in hypoxanthine uptake in 3T3 vesicles. In contrast to the 3T3 vesicles, CHO vesicles prepared under identical procedures did not retain hypoxanthine phosphoribosyltransferase activity and did not demonstrate PRib-PP-stimulated hypoxanthine uptake. The intravesicular product of hypoxanthine uptake in CHO vesicles was hypoxanthine. These results and data from our kinetic and exchange studies indicated that CHO vesicles transport hypoxanthine via facilitated diffusion. An analogous situation was observed for inosine uptake; CHO vesicles accumulated inosine via a facilitated diffusion mechanism, while in the same experiments SV3T3 vesicles exhibited a purine nucleoside phosphorylase-dependent translocation of the ribose moiety of inosine.  相似文献   

14.
A number of β-carboline analogs have been obtained or synthesized, and their in vitro receptor affinities and in vivo antagonist activities determined. The choice of analogs was made in order to explore the importance of the N9-H, the aromatic nitrogen and the C3-ester moiety for high-receptor affinity and antagonist activity of this class of benzodiazepine antagonist. Among the analogs investigated, we describe the properties of 3-cyano-β-carboline (lh), the first potent β-carboline antagonist without a carbonyl at the C3-position.The results obtained indicate: (1) Specific interactions of the C3-substituent with key cationic receptor sites rather than electron-withdrawing properties are important for high-receptor affinity and antagonist activity. (2) Specific in-plane interactions of the atomatic nitrogen with a cationic receptor site, rather than stacking with neutral aromatic residues of the receptor are also important for high affinity and antagonist activity. (3) While the presence of an N9H enhances receptor affinity, interaction with an anionic receptor site does not appear essential for antagonist activity.  相似文献   

15.
Binding activity for the cage convulsant [35S]-tert-butylbicyclophosphorothionate, which appears to label a site closely associated with the chloride ionophore of the GABAA/benzodiazepine receptor complex has been solubilized from rat cerebral cortex using the zwitterionic detergent CHAPS. Of several detergents screened, only CHAPS and CHAPSO were capable of solubilizing the binding activity with good recovery. The pharmacologic specificity of soluble [35S]-tert-butylbicyclophosphorothionate binding is very similar to the membrane state. In both the membrane and soluble state, [35S]-tert-butylbicyclophosphorothionate binding is enhanced by anions which support inhibitory post-synaptic potentials (“Eccles anions”), suggesting that [35S]-t-butylbicyclophosphorothionate may label chloride channels thought to be involved in these potentials. Since this solubilization procedure also preserves GABA and benzodiazepine binding and their regulation by drugs such as barbiturates, purification and isolation of the macromolecular complex including chloride channel and GABA-benzodiazepine sites may be feasible.  相似文献   

16.
J. Birk  R.G. Noble 《Life sciences》1981,29(11):1125-1131
Three experiments investigated the effects of the intragastric administration of the benzodiazepine diazepam on feeding in non-deprived Syrian hamsters (mesocricetus auratus). In the first experiment diazepam (0, 0.5, 1.0, 2.0, and 4.0 mg/kg) produced dose dependant increases in feeding. 4.0 mg/kg of diazepam produced significantly more feeding than the other doses tested and the lowest dose tested (0.5 mg/kg) produced a significant increase in feeding. In the second experiment naloxone (10 mg/kg) partially antagonized the effect of 4 mg/kg of diazepam on feeding. In the third experiment the ability of naloxone (0.1, 1.0, 5.0, 10.0 or 20 mg/kg) to reduce feeding produced by either 4 mg/kg or 2 mg/kg of diazepam was tested. Naloxone partially antagonized the effects of 4 mg/kg of diazepam on feeding in a dose dependant manner. While 2 mg/kg of diazepam produced significantly less feeding than 4 mg/kg, naloxone did not antagonize the effect of 2 mg/kg on feeding. The results suggest that two mechanisms are involved in diazepam-induced feeding in hamsters. The high dose of diazepam may produce increased feeding by activating the endorphin system while the low dose of diazepam produces increased feeding via a naloxone insensitive mechanism.  相似文献   

17.
Male rats treated chronically with high doses of Valium (50mg/ Kg/day; 10 days) failed to exhibit changes in their reproductive system. Testicular and prostate weights, serum testosterone (T) and LH were unaffected. Testes and pituitary tissue stimulated invitro with LH and GnRH, respectively, released normal amounts of T, LH and FSH. Brain benzodiazepine receptors were slightly but significantly elevated by Valium treatment as well as by castration. We conclude that the male reproductive system is resistant to chronic Valium treatment even though the brain levels of benzodiazepine receptors are not.  相似文献   

18.
The crystal structure of an orthorhombic form of inosine was determined from three-dimensional X-ray diffraction data. There are two crystallographically independent inosine molecules, both of which assume a syn conformation that is different from the conformations found in other crystalline forms of inosine. Apparently, inosine has considerable conformational freedom, a property that may be required at the “wobble” position of anticodon triplets.  相似文献   

19.
The influence of GABA on the affinity of flunitrazepam (FLU) for benzodiazepine receptor subtypes (type I and II) was studied by measurement of the competitive inhibition of [3H]FLU and [3H]propyl beta-carboline-3-carboxylate ([3H]PCC) binding. When assays were carried out at 0°C using a low concentration (0.040 nM) of [3H]PCC so that the type I receptors were selectively labelled, no significant effect of GABA (10?4 M) on the FLU[3H]PCC competition curve was detected. In contrast, when assays were carried out at 0°C using [3H]FLU or a high concentration of [3H]PCC to achieve [3H]ligand receptor occupancy of both type I and type II receptors, GABA (10?4 M) caused a significant increase in the affinity of FLU as measured by FLU[3H]FLU and FLU[3H]PCC competition experiments. Collectively, these data suggest that the influence of GABA on benzodiazepine receptor binding is mediated, primarily, by the type II receptor. It was also noted that the PCC[3H]FLU competition curve had a Hill coefficient of approximately 1 at 37°C as compared to the results of experiments at 0°C during which a Hill coefficient of approximately 0.7 was calculated.  相似文献   

20.
The membrane fluidity of freshly collected human erythrocytes, of erythrocytes stored for 3–4 weeks and of stored erythrocytes rejuvenated with glucose and inosine was investigated by measuring polarization of fluorescence emission of 1,6-diphenyl-1,3,5-hexatriene and N-phenyl-1-naphthylamine. The fluidity of membranes prepared from stored erythrocytes was higher than that of fresh erythrocytes. After rejuvenation of erythrocytes with glucose and with or without inosine the membrane fluidity decreased. These changes were probably due to variations of ATP levels in the erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号