首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

2.
The ameliorative effect of salicylic acid (SA: 0.5 mM) on sunflower (Helianthus annuus L.) under Cu stress (5 mg l−1) was studied. Excess Cu reduced the fresh and dry weights of different organs (roots, stems and leaves) and photosynthetic pigments (chlorophyll a, b and carotenoids) in four-week-old plants. There was a considerable increase in Chl a/b ratio and lipid peroxidation in both the roots and leaves of plants under excess Cu. Soluble sugars and free amino acids in the roots also decreased under Cu stress. However, soluble sugars in the leaves, free amino acids in the stems and leaves, and proline content in all plant organs increased in response to Cu toxicity. Salicylic acid (SA) significantly reduced the Chl a/b ratio and the level of lipid peroxidation in Cu-stressed plants. Under excess Cu, a higher accumulation of soluble sugars, soluble proteins and free amino acids including proline occurred in plants treated with 0.5 mM SA. Exogenous application of SA appeared to induce an adaptive response to Cu toxicity including the accumulation of organic solutes leading to protective reactions to the photosynthetic pigments and a reduction in membrane damage in sunflower.  相似文献   

3.
The effects of bio-regulators salicylic acid (SA) and 24-epibrassinolide (EBL) as seed soaking treatment on the growth traits, content of photosynthetic pigments, proline, relative water content (RWC), electrolyte leakage percent (EC%), antioxidative enzymes and leaf anatomy of Zea mays L. seedlings grown under 60 or 120 mM NaCl saline stress were studied. A greenhouse experiment was performed in a completely randomized design with nine treatments [control (treated with tap water); 60 mM NaCl; 120 mM NaCl; 10 4 M SA; 60 mM NaCl + 10 4 M SA; 120 mM NaCl + 10 4 M SA; 10 μM EBL; 60 mM NaCl + 10 μMEBL or 120 mM NaCl + 10 μM EBL] each with four replicates. The results indicated that NaCl stress significantly reduced plant growth traits, leaf photosynthetic pigment, soluble sugars, RWC%, and activities of catalase (CAT), peroxidase (POX) as well as leaf anatomy. However, the application of SA or EBL mitigated the toxic effects of NaCl stress on maize seedlings and considerably improved growth traits, photosynthetic pigments, proline, RWC%, CAT and POX enzyme activities as well as leaf anatomy. This study highlights the potential ameliorative effects of SA or EBL in mitigating the phytotoxicity of NaCl stress in seeds and growing seedlings.  相似文献   

4.
In the present study, the physiological responses of Nitraria tangutorum Bobr. seedlings to NaCl stress and the regulatory function of exogenous application of salicylic acid (SA) were investigated. NaCl in low concentration (100 mM) increased while in higher concentrations (200–400 mM) decreased the individual plant dry weights (wt) of seedlings. Decreased relative water content (RWC) and chlorophyll content were observed in the leaves of seedlings subjected to salinity stress (100–400 mM NaCl). Furthermore, NaCl stress significantly increased electrolyte leakage and malondialdehyde (MDA) content. The levels of osmotic adjustment solutes including proline, soluble sugars, and soluble protein were enhanced under NaCl treatments as compared to the control. In contrast, exogenous application of SA (0.5–1.5 mM) to the roots of seedlings showed notable amelioration effects on the inhibition of individual plant dry wt, RWC, and chlorophyll content. The increases in electrolyte leakage and MDA content in the leaves of NaCl-treated seedlings were markedly inhibited by SA application. The SA application further increased the contents of proline, soluble sugars, and soluble protein. The activities of antioxidant enzymes including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were up-regulated by NaCl stress and the activities of SOD, POD, and CAT were further enhanced by SA treatments. Application of SA in low concentration (0.5 mM) enhanced while in higher concentrations (1.0 and 1.5 mM) inhibited APX activities in leaves of NaCl-treated seedlings. These results indicate that SA effectively alleviated the adverse effects of NaCl stress on N. tangutorum.  相似文献   

5.
Endophyte-infected (EI) seeds of Lolium perenne L. were used to attain endophyte-free (EF) population by heating the seeds at 43°C for 15 min and then 57°C for 25 min. Relative water content (RWC), chlorophyll, soluble sugar and starch content of EI and EF populations under normal and drought stress conditions were compared to investigate the effect of endophyte infection on the host plant. Under severe stress, RWC of EI leaf was significantly higher than that of EF leaf, i.e. EI plants took more advantages over EF plants in water-holding ability. Under mild stress, endophyte could enhance soluble sugars in host plants to improve their osmotic ability. With stress intensification, the improvement of endophyte no longer existed, and more photosynthetic products (such as starch) accumulated in EI plants to survive through the undesirable conditions. In the next spring, EI populations will recover more rapidly than EF populations. The biomass of a population is closely related to its photosynthesis. Under severe stress, EI population significantly accumulated more biomass than EF population. As far as photosynthetic pigments were concerned, contents of Chla, Chlb and Car of EI plants were close to those of EF plants, which suggested that endophyte infection didn’t alleviate photosynthetic pigments from being destroyed by drought stress, and endophyte might improve photosynthesis ability of its host plant in other ways. __________ Translated from Acta Ecologica Sinica, 2005, 25 (2) [译自: 生态学报, 2005, 25(2)]  相似文献   

6.
Two species with different resistances to alkaline pH, the glycophylic Triticum aestivum (wheat) and the halophilic Chloris virgata, were chosen as test organisms. The salt-alkaline (SA) mixed stress conditions with different buffer capacities (BC) but with the same salt molarities and pH were established by mixing neutral (NaCl, Na2SO4), and alkaline salts (NaHCO3 and Na2CO3) in various proportions. Growth, photosynthetic characteristics, and solute accumulation of the seedlings were monitored to test the validity of BC as a decisive index of alkali-stress (AS) intensity in SA mixed stress. At the same salinities and pHs, the relative growth rate, the content of photosynthetic pigments, and net photosynthetic rates of wheat and C. virgata decreased, while Na+ content and Na+/K+ ratios in shoots increased with increasing BC. Hence BC was a true measure of AS intensity at mixed SA stress and the alkali-resistance mechanism of plants was easy to interpret. BC of soil solution is an important parameter for estimating the alkalization degree of salt-alkalized soil.  相似文献   

7.
The present study was carried out to examine the effects of seed soaking in 1 mM ascorbic acid (AA) or 1 mM proline on the growth, content of photosynthetic pigments and proline, relative water content, electrolyte leakage, antioxidant enzymes and leaf anatomy of Hordeum vulgare L. Giza 124 seedlings grown in greenhouse under 100 or 200 mM NaCl. The plants exposed to the NaCl stress exhibited a significant reduction in growth, relative water content, leaf photosynthetic pigments, soluble sugars, as well as alterations in leaf anatomy. However, the treatment with AA or proline ameliorated the stress generated by NaCl and improved the above mentioned parameters. NaCl increased electrolyte leakage, proline content, and activities of antioxidant enzymes (SOD, CAT, and POX). The antioxidant enzymes and leaf anatomy exhibited considerable changes in response to AA or proline application in the absence or presence of NaCl.  相似文献   

8.
Soil salinity is one of the most important environmental factors responsible for serious agricultural problems. Tomato salt tolerance may be improved by genetic selection and by the use of adapted physiological tools. The aim of this study was to investigate the impact of exogenous application of salicylic acid (SA 0.01 mM) and calcium sulphate (CaSO4 5 mM), singly or in combination, on plant growth, photosynthetic pigments, nutritional behaviour and some metabolic parameters (total chlorophyll, carotenoids, soluble sugars, proline and lipid peroxidation) of two tomato cultivars (cv. Super Marmande and cv. Red River) exposed to salt stress (100 mM NaCl). Application of 100 mM NaCl reduced plant growth, total chlorophyll and carotenoid contents. Salt stress also induced an accumulation of Na+, a decrease in K+ and Ca2 + concentration and root sugar level, an increase in malondialdehyde (MDA) and proline concentration. Deleterious impact of salinity was related to modification in ion content rather than modification in the plant water status. Exogenous application of SA or Ca alone improved plant behaviour in the presence of NaCl. Nevertheless, the best results in terms of growth, photosynthetic pigment concentrations and mineral nutrition (limitation of Na+ accumulation and maintenance of K+ and Ca2 + content) were obtained in response to the combined SA + Ca treatment. Although the involved physiological parameters varied depending on the considered cultivar, our results suggest that Ca2 + and SA may interact to reduce the stress experienced by the plant in the presence of NaCl.  相似文献   

9.
We studied the effects of wheat (Triticum aestivum L.) seed presowing treatment with 0.05 mM salicylic acid (SA) on its endogenous content and the ratio of free to bound forms in seedling shoots and roots. During two-week-long seedling growth, we observed a gradual decrease in the total SA content in shoots but not in roots. In shoots, the content of conjugated SA increased and that of its free form reduced. Seed presowing treatment with SA reduced total content of endogenous SA in both seedling shoots and roots. The content of free SA reduced intensely in shoots and somewhat less in roots. Such reduction was supposed to occur due to the disturbance in SA biosynthesis. These were accompanied by the increases in the shoot and especially root biomass and length, stimulation of total dark respiration, and changes in the ratio between respiratory pathways. In the roots, we observed an increased proportion of cytochrome respiration, whereas in the shoots — alternative cyan-resistant respiration. We also observed changes in the plant antioxidant system. A degree of lipid peroxidation was stronger in shoots than in roots. Pretreatment with SA resulted in MDA 2.5-fold accumulation in shoots, whereas its content in roots reduced by 1.7 times. We concluded that the type and intensity of SA effects on plant growth, energetic balance, and antioxidant status were related to changes in its endogenous content and redistribution between free and conjugated forms.  相似文献   

10.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acid-reactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.  相似文献   

11.
The effects of different growth conditions (ventilated and closed vessels, medium with 0, 15 and 30 g dm−3 sucrose) during proliferation of donor quince (Cydonia oblonga Mill.) shoots (stage I) on net photosynthetic rate and soluble sugars content were evaluated. In order to assess the influence of these physiological parameters on morphogenesis, leaf explants harvested from donor shoots were induced to form somatic embryos and adventitious roots under ventilated and closed Petri dishes (stage II). Natural ventilation and low sucrose contents (0–15 g dm−3) promoted the photosynthetic rate of quince shoots whereas biomass accumulation was the highest in those shoots cultured with 30 g dm−3 sucrose in both vessel types and 15 g dm−3 sucrose under natural ventilation. Increasing sucrose content in the medium induced greater accumulation of sucrose in leaf tissues of donor shoots. The content of reducing sugars was higher than that of sucrose, and it appeared to be higher in shoots cultured under natural ventilation compared to those in closed vessels. Somatic embryogenesis and root regeneration were influenced by stage I and II treatments. A significant correlation between sucrose content in the leaves of donor shoots and the number of somatic embryos regenerated was found, suggesting that identification of biochemical and physiological characteristics of donor shoots associated with increased regeneration ability might be helpful for improving morphogenesis in plant tissue culture.  相似文献   

12.
Responses of wheat (Triticum aestivum L.) to various concentrations of NaCl and levels of drought were followed. With the rise of NaCl or drought, or NaCl and drought together, growth was retarded. The water content of shoots and roots was mostly unchanged. The chlorophyll and carotenoid contents were increased in plants subjected to salinity or drought or both. Only high salinity level induced a considerable decrease in net photosynthetic rate (PN) and dark respiration rate (RD). PN and RD were decreased with the decrease of soil moisture content. The content of Na+ in the shoots and roots of wheat plants increased with increasing salinity or decreasing soil moisture content or both treatments. Considerable variations in the content of K+, Ca2+ or Mg2+ were induced by the NaCl, drought or both treatments.  相似文献   

13.
Endophyte-infected (EI) seeds of Lolium perenne L. were used to attain endophyte-free (EF) population by heating the seeds at 43°C for 15 min and then 57°C for 25 min. Relative water content (RWC), chlorophyll, soluble sugar and starch content of EI and EF populations under normal and drought stress conditions were compared to investigate the effect of endophyte infection on the host plant. Under severe stress, RWC of EI leaf was significantly higher than that of EF leaf, i.e. EI plants took more advantages over EF plants in water-holding ability. Under mild stress, endophyte could enhance soluble sugars in host plants to improve their osmotic ability. With stress intensification, the improvement of endophyte no longer existed, and more photosynthetic products (such as starch) accumulated in EI plants to survive through the undesirable conditions. In the next spring, EI populations will recover more rapidly than EF populations. The biomass of a population is closely related to its photosynthesis. Under severe stress, EI population significantly accumulated more biomass than EF population. As far as photosynthetic pigments were concerned, contents of Chla, Chlb and Car of EI plants were close to those of EF plants, which suggested that endophyte infection didn’t alleviate photosynthetic pigments from being destroyed by drought stress, and endophyte might improve photosynthesis ability of its host plant in other ways.  相似文献   

14.
Houneida Attia 《Phyton》2023,92(1):149-164
Pea is a seed legume. It is rich in cellulose fibre and protein. It is also a significant source of minerals and vitamins. In this paper, we set out to better characterize the physiological responses of Pisum sativum L. to the combined effects of NaCl, 100 mM and gibberellins (GA3). Our analysis revealed that NaCl caused a decrease in growth resulting in a reduction in root elongation, distribution and density, leaf number and leaf area, and a decrease in dry matter of roots and shoots. However, the contribution of GA3 in the salty environment induced an increase in these different parameters suggesting an improving effect of this hormone on growth of pea in presence of salt. NaCl also led to a disturbance of the photosynthetic machinery. Indeed, level of chlorophyll pigments (a and total) and photosynthetic activity were decreased compared to the control plants. However, the exogenous supply of GA3 restored this decrease in net CO2 assimilation, but not in chlorophyll content. Additional analyses were performed on the effect of salinity/GA3 interaction on osmolytes (soluble sugars and starch). Our results showed an increase in sugars and a decrease in starch in the presence of 100 mM NaCl. The salt-GA3 combination resulted in compensation of soluble sugar contents but not of starch contents, suggesting a beneficial effect of GA3 under saline stress conditions. Level of three main polyamines putrescine, spermidine, and spermine increased significantly in all organs of salt-treated plants.  相似文献   

15.
The effects of NaCl stress on growth, water status, contents of protein, proline, malondialdehyde (MDA), various sugars and photosynthetic pigments were investigated in seedlings of Salicornia persica and S. europaea grown in vitro. Seeds were germinated under NaCl (0, 100, 200, 300, 400, 500 and 600 mM) on Murashige and Skoog medium for 45 d. The shoot growth of both species increased under low NaCl concentration (100 mM) and then decreased with increasing NaCl concentrations. In contrast to S. persica, root length in S. europaea reduced steadily with an increase in salinity. Proline content in S. persica was higher than in S. europaea at most NaCl concentrations. Proline, reducing saccharide, oligosaccharide and soluble saccharide contents increased under salinity in both species. In contrast, contents of proteins and polysaccharides reduced in both species under salt stress. MDA content remained close to control at moderate NaCl concentrations (100 and 200 mM) and increased at higher salinities. MDA content in S. europaea was significantly higher than S. persica at higher salinities. Salt treatments decreased K+ and P contents in seedlings of both species. Significant reduction in contents of chlorophylls and carotenoids due to NaCl stress was also observed in seedlings of both species. Some differences appeared between S. persica and S. europaea concerning proteins profile. On the basis of the data obtained, S. persica is more salt-tolerant than S. europaea.  相似文献   

16.
The influences of silicon (Si) on parameters, such as plant growth, pigment contents, photosynthesis, chlorophyll fluorescence, soluble sugar and starch concentration, and some cell ultra-structures, were investigated in grapevines under salt stress. Compared with the control, the treatment with 100 mM NaCl dramatically inhibited the growth of grapevines and greatly decreased the content of pigments. Silicon treatment in the absence of salt had negative effects in most observed parameters. However, the addition of Si under salt stress improved all growth parameters and increased the pigments and photosynthetic rates compared with the NaCl treatment. Furthermore, investigation of chlorophyll fluorescence, soluble sugars, starch concentration and cell ultra-structure indicated that photosynthesis in the NaCl treatment decreased. The supplement of silicon mitigated the inhibited photosynthesis caused by NaCl, and increased the maximum yield and potential photochemical efficiency of the photochemical reactions in photosystem II. On the other hand, the addition of exogenous Si and NaCl also increased the concentration of soluble sugars and starch, and influenced ultra-structural changes. It is possible that silicon might play an important role in protecting photosynthetic machinery from damage and improving the salt-tolerance of the grape by increasing the concentration of soluble sugars and starch.  相似文献   

17.
Sodium chloride and sodium sulfate are commonly present in extraction tailings waters produced as a result of surface mining and affect plants on reclaimed areas. Red-osier dogwood (Cornus stolonifera Michx) seedlings were demonstrated to be relatively resistant to these high salinity oil sands tailings waters. The objectives of this study were to compare the effects of Na2SO4 and NaCl, on growth, tissue ion content, water relations and gas exchange in red-osier dogwood (Cornus stolonifera Michx) seedlings. In the present study, red-osier dogwood seedlings were grown in aerated half-strength modified Hoagland's mineral solution containing 0, 25, 50 or 100 mM of NaCl or Na2SO4. After four weeks of treatment, plant dry weights decreased and the amount of Na+ in plant tissues increased with increasing salt concentration. Na+ tissue content was higher in plants treated with NaCl than Na2SO4 and it was greater in roots than shoots. However, Cl concentration in the NaCl treated plants was higher in shoots than in roots. The decrease in stomatal conductance and photosynthetic rates observed in presence of salts is likely to contribute to the growth reduction. Our results suggest that red-osier dogwood is able to control the transport of Na+ from roots to shoots when external concentrations are 50 mM or less.  相似文献   

18.
The aim of the study was to determine the ability of spent mushroom compost (SMC) from the production of Agaricus bisporus (A. bisporus) to stimulate the growth and efficiency of copper (Cu) accumulation by Salix purpurea × viminalis hybrid. Roots, shoots and leaves were analysed in terms of total Cu content and selected biometric parameters. Due to the absence of information regarding the physiological response of the studied plant, low molecular weight organic acids (LMWOAs), phenolic compounds and salicylic acid (SA) contents were investigated. The obtained results clearly demonstrate the effectiveness (usefulness) of SMC in promoting the growth and stimulation of Cu accumulation by the studied Salix taxon. The highest Cu content in roots and shoots was found at the 10% SMC addition (507±22 and 380±11 mg kg?1 DW, respectively), while there was a reduction of the content in leaves and young shoots (109±8 and 124±7 mg kg?1 DW, respectively). In terms of physiological response, lowered secretion of LMWOAs, biosynthesis of phenolic compounds and SA, as well as accumulation of soluble sugars in Salix leaves was observed with SMC addition. Simultaneously, an elevation of the total phenolic content in leaves of plants cultivated with SMC was observed, considered as antioxidant biomolecules.  相似文献   

19.
Growth, osmotic adjustment, antioxidant enzyme defense and the principle medicinal component bacoside A were studied in the in vitro raised shoot cultures of Bacopa monnieri, a known medicinal plant, under different concentrations of NaCl [0.0 (control), 50, 100, 150 or 200 mM]. A sharp increase in Na+ content was observed at 50 mM NaCl level and it was about 6.4-fold higher when compared with control. While Na+ content increased in the shoots with increasing levels of NaCl in the medium, both K+ and Ca2+ concentrations decreased. Significant reduction was observed in shoot number per culture; shoot length, fresh weight (FW), dry weight (DW) and tissue water content (TWC) when shoots were exposed to increasing NaCl concentrations (50–200 mM) as compared with the control. Decrease in TWC was not significant at higher NaCl level (150 and 200 mM). At 200 mM NaCl, growth of shoots was adversely affected and microshoots died under prolonged stress. Minimum damage to the membrane as assessed by malondialdehyde (MDA) content was noticed in the controls in contrast to sharp increase of it in NaCl-stressed shoots. Higher amounts of free proline, glycinebetaine and total soluble sugars (TSS) accumulated in NaCl-stressed shoots indicating that it is a glycinebetaine accumulator. About 2.11-fold higher H2O2 content was observed at 50 mM NaCl as compared with control and it reached up to 7.1-folds more at 200 mM NaCl. Antioxidant enzyme activities (superoxide dismutase, catalase, ascorbate peroxidase and guaiacol peroxidase) also increased with a rise in NaCl level. Increase in bacoside A, a triterpene saponin content was observed only up to 100 mM NaCl level. Higher salt concentrations inhibited the accumulation of bacoside A. It appears from the data that accumulation of osmolytes, ions and elevated activities of antioxidant enzymes play an important role in osmotic adjustment in shoot cultures of Bacopa under salt stress.  相似文献   

20.
In the present investigation, the role of salicylic acid (SA) in inducing salinity tolerance was studied in Artemisia annua L., which is a major source of the antimalarial drug artemisinin. SA, when applied at 1.00 mM, provided considerable protection against salt stress imposed by adding 50, 100, or 200 mM NaCl to soil. Salt stress negatively affected plant growth as assessed by length and dry weight of shoots and roots. Salinity also reduced the values of photosynthetic attributes and total chlorophyll content and inhibited the activities of nitrate reductase and carbonic anhydrase. Furthermore, salt stress significantly increased electrolyte leakage and proline content. Salt stress also induced oxidative stress as indicated by the elevated levels of lipid peroxidation compared to the control. A foliar spray of SA at 1.00 mM promoted the growth of plants, independent of salinity level. The activity of antioxidant enzymes, namely, catalase, peroxidase, and superoxide dismutase, was upregulated by salt stress and was further enhanced by SA treatment. Artemisinin content increased at 50 and 100 mM NaCl but decreased at 200 mM NaCl. The application of SA further enhanced artemisinin content when applied with 50 and 100 mM NaCl by 18.3 and 52.4%, respectively. These results indicate that moderate saline conditions can be exploited to obtain higher artemisinin content in A. annua plants, whereas the application of SA can be used to protect plant growth and induce its antioxidant defense system under salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号