首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Human lymphocytes exposed to low doses of ionizing radiation from incorporated tritiated thymidine or from X-rays become less susceptible to the induction of chromatid breaks by high doses of X-rays. This response can be induced by 0.01 Gy (1 rad) of X-rays, and has been attributed to the induction of a repair mechanism that causes the restitution of X-ray-induced chromosome breaks. Because the major lesions responsible for the induction of chromosome breakage are double-strand breaks in DNA, attempts have been made to see if the repair mechanism can affect various types of clastogenic lesions induced in DNA by chemical mutagens and carcinogens. When cells exposed to 0.01 Gy of X-rays or to low doses of tritiated thymidine were subsequently challenged with high doses of tritiated thymidine or bleomycin, which can induce double-strand breaks in DNA, or mitomycin C, which can induce cross-links in DNA, approximately half as many chromatid breaks were induced as expected. When, on the other hand, the cells were challenged with the alkylating agent methyl methanesulfonate (MMS), which can produce single-strand breaks in DNA, approximately twice as much damage was found as was induced by MMS alone. The results indicate that prior exposure to 0.01 Gy of X-rays reduces the number of chromosome breaks induced by double-strand breaks, and perhaps even by cross-links, in DNA, but has the opposite effect on breaks induced by the alkylating agent MMS. The results also show that the induced repair mechanism is different from that observed in the adaptive response that follows exposure to low doses of alkylating agents.  相似文献   

2.
A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects.  相似文献   

3.
Genome stability in eukaryotic cells is maintained through efficient DNA damage repair pathways, which have to access and utilize chromatin as their natural template. Here we investigate the role of chromatin assembly factor 1 (CAF-1) and its interacting protein, PCNA, in the response of quiescent human cells to DNA double-strand breaks (DSBs). The expression of CAF-1 and PCNA is dramatically induced in quiescent cells upon the generation of DSBs by the radiomimetic drug bleocin (a bleomycin compound) or by ionizing radiation. This induction depends on DNA-PK. CAF-1 and PCNA are recruited to damaged chromatin undergoing DNA repair of single- and double-strand DNA breaks by the base excision repair and nonhomologous end-joining pathways, respectively, in the absence of extensive DNA synthesis. CAF-1 prepared from repair-proficient quiescent cells after induction by bleocin mediates nucleosome assembly in vitro. Depletion of CAF-1 by RNA interference in bleocin-treated quiescent cells in vivo results in a significant loss of cell viability and an accumulation of DSBs. These results support a novel and essential role for CAF-1 in the response of quiescent human cells to DSBs, possibly by reassembling chromatin following repair of DNA strand breaks.  相似文献   

4.
Ionizing radiation is a potent inducer of DNA damage because it causes single- and double-strand breaks, alkali-labile sites, base damage, and crosslinks. The interest in ionizing radiation is due to its environmental and clinical implications. Single-strand breaks, which are the initial damage induced by a genotoxic agent, can be used as a biomarker of exposure, whereas the more biologically relevant double-strand breaks can be analyzed to quantify the extent of damage. In the present study the effects of 137Cs γ-radiation at doses of 1, 5, and 10 Gray on DNA and subsequent repair by C3H10T1/2 cells (mouse embryo fibroblasts) were investigated. Two versions of the comet assay, a sensitive method for evaluating DNA damage, were implemented: the alkaline one to detect single-strand breaks, and the neutral one to identify double-strand breaks. The results show a good linear relation between DNA damage and radiation dose, for both single-strand and double-strand breaks. A statistically significant difference with respect to controls was found at the lowest dose of 1 Gy. Heterogeneity in DNA damage within the cell population was observed as a function of radiation dose. Repair kinetics showed that most of the damage was repaired within 2 h after irradiation, and that the highest rejoining rate occurred with the highest dose (10 Gy). Single-strand breaks were completely repaired 24 h after irradiation, whereas residual double-strand breaks were still present. This finding needs further investigation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
A multi-drug-resistant cell line selected in increasing concentrations of Adriamycin and designated LZ (J. A. Belli, Radiat. Res. 119, 88-100, 1989) is shown to exhibit a survival response characterized by radiation sensitivity and Adriamycin resistance. To determine if this response is due to alterations in either the initial levels of damage induced or the repair of DNA damage, LZ cells and the parental V79 cells were exposed to either radiation or Adriamycin and the damage and repair were measured with alkaline or nondenaturing filter elution. After exposure to radiation, induction and repair of both single-strand and double-strand breaks were equivalent. LZ cells exposed to 100 micrograms/ml Adriamycin for 1 h contained no measurable damage while the same treatment induced breaks and crosslinks in V79 cells. Pretreatment of LZ cells for 1 h with Adriamycin before irradiation did not alter either the initial levels of induced damage or the repair of strand breakage. These results suggest that (1) mechanisms other than differential induction and repair of strand breaks are responsible for the increased radiation sensitivity in LZ, and (2) the lack of Adriamycin-induced DNA damage in LZ is at least partially responsible for the increased cell survival after treatment.  相似文献   

6.
To better understand the basis for the difference in radiosensitivity between the variant murine leukemic lymphoblast cell lines L5178Y-R (resistant) and L5178Y-S (sensitive), the production and repair of DNA damage after X irradiation were measured by the DNA alkaline and neutral elution techniques. The initial yield of single-strand DNA breaks and the rates of their repair were found to be the same in both cell lines by the DNA alkaline elution technique. Using the technique of neutral DNA elution, L5178Y-S cells exhibited slightly increased double-strand breakage immediately after irradiation, most significantly at lower doses (i.e., less than 10 Gy). Nevertheless, even at doses that yielded equal initial double-strand breakage of both cell lines, the survival of L5178Y-S cells was significantly less than that of L5178Y-R cells. When the technique of neutral DNA elution was employed to measure the kinetics of DNA double-strand break repair, both cell lines exhibited biphasic fast and slow components of repair. However, the double-strand repair rate was much lower in the radiosensitive L5178Y-S cells than in the L5178Y-R cells (T1/2 of 60 vs 16 min). This difference was more pronounced in the fast-repair component. These results suggest that the repair of double-strand DNA breaks is an important factor determining the radiosensitivity of L5178Y cells.  相似文献   

7.
The ChlR1 DNA helicase is mutated in Warsaw breakage syndrome characterized by developmental anomalies, chromosomal breakage, and sister chromatid cohesion defects. However, the mechanism by which ChlR1 preserves genomic integrity is largely unknown. Here, we describe the roles of ChlR1 in DNA replication recovery. We show that ChlR1 depletion renders human cells highly sensitive to cisplatin; an interstrand-crosslinking agent that causes stalled replication forks. ChlR1 depletion also causes accumulation of DNA damage in response to cisplatin, leading to a significant delay in resolution of DNA damage. We also report that ChlR1-depleted cells display defects in the repair of double-strand breaks induced by the I-PpoI endonuclease and bleomycin. Furthermore, we demonstrate that ChlR1-depeleted cells show significant delays in replication recovery after cisplatin treatment. Taken together, our results indicate that ChlR1 plays an important role in efficient DNA repair during DNA replication, which may facilitate efficient establishment of sister chromatid cohesion.  相似文献   

8.
To elucidate the mechanism of the cell killing activity of neocarzinostatin on mammalian cells, the drug-induced damage of DNA and its repair were examined. Very low doses of neocarzinostatin, at which high survival of cells was observed, clearly produced single-strand breaks of DNA and decomposition of the 'DNA complex', but these damages appeared to be repaired almost completely. At higher doses of neocarzinostatin, single-strand breaks were repaired to a considerable extent while double-strand breaks seemed not to be repaired. The number of non-repairable single-strand breaks was about twice that of double-strand breaks. This implies that single-strand breaks are repaired except for those constituting double-strand breaks. Although at low levels of neocarzinostatin repair of double-strand breaks may occur, the correlation existing between the colony-forming ability of cells treated with neocarzinostatin and non-repairable DNA breakage suggests that production of a small number of critical non-repairable double-strand breaks per cell may be responsible for the cell killing activity of the drug.  相似文献   

9.
DNA recombinational repair, and an increase in its capacity induced by DNA damage, is believed to be the major mechanism that confers resistance to killing by ionizing radiation in yeast. We have examined the nature of the DNA lesions generated by ionizing radiation that induce this mechanism, using two different end points: resistance to cell killing and ability of the error-free recombinational repair system to compete for other DNA lesions and thereby suppress chemical mutation. Under the various conditions examined in this study, the "maximum" inducible radiation resistance was increased approximately 1.5- to 3-fold and suppression of mutation about 10-fold. DNA lesions produced by low-LET gamma rays at doses greater than about 20 Gy given in oxygen were shown to be more efficient, per unit dose, at inducing radioresistance to killing than were lesions produced by neutrons (high-LET radiation). This suggests that DNA single-strand breaks are more important lesions in the induction of radioresistance than DNA double-strand breaks. Oxygen-modified lesions produced by gamma rays (low-LET radiation) were particularly efficient as induction signals. DNA damage due to hydroxyl radicals (OH.) derived from the radiolytic decomposition of H2O produced lesions that strongly induced this DNA repair mechanism. Similarly, OH. derived from aqueous electrons (e-aq) in the presence of N2O also efficiently induced the response. Cells induced to radioresistance to killing with high-LET radiation did not suppress N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-generated mutations as well as cells induced with low-LET radiation, supporting the conclusion that the type of DNA damage produced by low-LET radiation is a better inducer of recombinational repair. Surprisingly, however, cells induced with gamma radiation in the presence of N2O that became radioresistant to killing were unable to suppress MNNG mutations. This result indicates that OH. generated via e-aq (in N2O) may produce unusual DNA lesions which retard normal repair and render the system unavailable to compete for MNNG-generated lesions. We suggest that the repairability of these unique lesions is restricted by either their chemical nature or topological accessibility. Attempted repair of these lesions has lethal consequences and accounts for N2O radiosensitization of repair-competent but not incompetent cells. We conclude that induction of radioresistance in yeast by ionizing radiation responds variably to different DNA lesions, and these affect the availability of the induced recombinational repair system to deal with subsequent damage.  相似文献   

10.
A common way to use pulsed-field gel electrophoresis (PFGE) for measuring the induction and repair of DNA double-strand breaks (DSBs) in mammalian cells is by using the fraction of total DNA released, FR, from the plug. We have analyzed the general relationship between initial chromosome sizes and FR. It is shown that, because of the difference in initial chromosomal size, the discrepancy in FR values between human and rodent cells may become significant at doses of radiation producing approximately 5 DSBs/100 Mbp or less.  相似文献   

11.
Following DNA double-strand breaks cells activate several DNA-damage response protein kinases, which then trigger histone H2AX phosphorylation and the accumulation of proteins such as MDC1, p53-binding protein 1, and breast cancer gene 1 at the damage site to promote DNA double-strand breaks repair. We identified a novel biomarker, Bora (previously called C13orf34), that is associated with radiosensitivity. In the current study, we set out to investigate how Bora might be involved in response to irradiation. We found a novel function of Bora in DNA damage repair response. Bora down-regulation increased colony formation in cells exposed to irradiation. This increased resistance to irradiation in Bora-deficient cells is likely due to a faster rate of double-strand breaks repair. After irradiation, Bora-knockdown cells displayed increased G2-M cell cycle arrest and increased Chk2 phosphorylation. Furthermore, Bora specifically interacted with the tandem breast cancer gene 1 C-terminal domain of MDC1 in a phosphorylation dependent manner, and overexpression of Bora could abolish irradiation induced MDC1 foci formation. In summary, Bora may play a significant role in radiosensitivity through the regulation of MDC1 and DNA repair.  相似文献   

12.
真核生物的DNA损伤检控系统是维持细胞基因组稳定的一个重要机制,该系统能检测细胞在生命活动过程中出现的DNA损伤并引发细胞周期阻滞,对DNA损伤进行修复,以维持细胞遗传的稳定性。端粒是位于真核细胞染色体末端由重复DNA序列和蛋白质组成的复合物,具有保护染色体、介导染色体复制、引导减数分裂时的同源染色体配对和调节细胞衰老等作用。虽然端粒与DNA双链断裂都具有作为线性染色体末端的共同特点,但正常端粒并不像DNA双链断裂那样激活DNA损伤检控系统。另一方面,端粒又与DNA损伤相似,因为多种DNA损伤检控蛋白在端粒长度稳定中起重要作用。因此DNA损伤检控系统既参与了维持正常端粒的完整性,又可对端粒损伤作出应答。现就DNA损伤检控系统在维持端粒稳定中的作用及其对功能缺陷端粒的应答作一简要综述。  相似文献   

13.
14.
Elizabeth M. Kass 《FEBS letters》2010,584(17):3703-42482
DNA double-strand breaks resulting from normal cellular processes including replication and exogenous sources such as ionizing radiation pose a serious risk to genome stability, and cells have evolved different mechanisms for their efficient repair. The two major pathways involved in the repair of double-strand breaks in eukaryotic cells are non-homologous end joining and homologous recombination. Numerous factors affect the decision to repair a double-strand break via these pathways, and accumulating evidence suggests these major repair pathways both cooperate and compete with each other at double-strand break sites to facilitate efficient repair and promote genomic integrity.  相似文献   

15.
DNA double-strand breaks can seriously damage the genetic information that organisms depend on for survival and reproduction. Therefore, cells require a robust DNA damage response mechanism to repair the damaged DNA. Homologous recombination (HR) allows error-free repair, which is key to maintaining genomic integrity. Long non-coding RNAs (lncRNAs) are RNA molecules that are longer than 200 nucleotides. In recent years, a number of studies have found that lncRNAs can act as regulators of gene expression and DNA damage response mechanisms, including HR repair. Moreover, they have significant effects on the occurrence, development, invasion and metastasis of tumor cells, as well as the sensitivity of tumors to radiotherapy and chemotherapy. These studies have therefore begun to expose the great potential of lncRNAs for clinical applications. In this review, we focus on the regulatory roles of lncRNAs in HR repair.  相似文献   

16.
Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand breaks. Here we report that histone acetyltransferase 1 (HAT1), a classical B type histone acetyltransferase responsible for acetylating the N-terminal tail of newly synthesized histone H4 in the cytoplasm, is a key regulator of DNA repair by homologous recombination in the nucleus. We found that HAT1 is required for the incorporation of H4K5/K12-acetylated H3.3 at sites of double-strand breaks through its HIRA-dependent histone turnover activity. Incorporated histones with specific chemical modifications facilitate subsequent recruitment of RAD51, a key repair factor in mammalian cells, to promote efficient homologous recombination. Significantly, depletion of HAT1 sensitized cells to DNA damage compromised the global chromatin structure, inhibited cell proliferation, and induced cell apoptosis. Our experiments uncovered a role for HAT1 in DNA repair in higher eukaryotic organisms and provide a mechanistic insight into the regulation of histone dynamics by HAT1.  相似文献   

17.
The Werner syndrome helicase/3′-exonuclease (WRN) is a major component of the DNA repair and replication machinery. To analyze whether WRN is involved in the repair of topoisomerase-induced DNA damage we utilized U2-OS cells, in which WRN is stably down-regulated (wrn-kd), and the corresponding wild-type cells (wrn-wt). We show that cells not expressing WRN are hypersensitive to the toxic effect of the topoisomerase I inhibitor topotecan, but not to the topoisomerase II inhibitor etoposide. This was shown by mass survival assays, colony formation and induction of apoptosis. Upon topotecan treatment WRN deficient cells showed enhanced DNA replication inhibition and S-phase arrest, whereas after treatment with etoposide they showed the same cell cycle response as the wild-type. A considerable difference between WRN and wild-type cells was observed for DNA single- and double-strand break formation in response to topotecan. Topotecan induced DNA single-strand breaks 6 h after treatment. In both wrn-wt and wrn-kd cells these breaks were repaired at similar kinetics. However, in wrn-kd but not wrn-wt cells they were converted into DNA double-strand breaks (DSBs) at high frequency, as shown by neutral comet assay and phosphorylation of H2AX. Our data provide evidence that WRN is involved in the repair of topoisomerase I, but not topoisomerase II-induced DNA damage, most likely via preventing the conversion of DNA single-strand breaks into DSBs during the resolution of stalled replication forks at topo I–DNA complexes. We suggest that the WRN status of tumor cells impacts anticancer therapy with topoisomerase I, but not topoisomerase II inhibitors.  相似文献   

18.
Akt signaling: a damaging interaction makes good   总被引:1,自引:0,他引:1  
  相似文献   

19.
DNA damage activates the DNA damage checkpoint and the DNA repair machinery. After initial activation of DNA damage responses, cells recover to their original states through completion of DNA repair and termination of checkpoint signaling. Currently, little is known about the process by which cells recover from the DNA damage checkpoint, a process called checkpoint recovery. Here, we show that Src family kinases promote inactivation of ataxia telangiectasia mutated (ATM)-dependent checkpoint signaling during recovery from DNA double-strand breaks. Inhibition of Src activity increased ATM-dependent phosphorylation of Chk2 and Kap1. Src inhibition increased ATM signaling both in G2 phase and during asynchronous growth. shRNA knockdown of Lyn increased ATM signaling. Src-dependent nuclear tyrosine phosphorylation suppressed ATM-mediated Kap1 phosphorylation. These results suggest that Src family kinases are involved in upstream signaling that leads to inactivation of the ATM-dependent DNA damage checkpoint.  相似文献   

20.
An Adriamycin-resistant subline of a human breast cancer cell line, MCF-7 ADRR, has been shown to exhibit radioresistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, damage to DNA of MCF-7 sublines WT and ADRR by 60Co gamma radiation was measured by filter elution techniques. The initial amount of DNA damage, measured by both alkaline and neutral filter elution, was lower in ADRR cells, suggesting that these cells are resistant to radiation-induced single- and double-strand DNA breaks. In the case of double-strand breaks the difference between WT and ADRR cells was significant only at the lower radiation doses studied (up to 100 Gy). In cells depleted of glutathione (GSH) by L-buthionine sulfoximine (BSO) treatment, ADRR cells were sensitized to radiation-induced DNA damage, while WT cells were unaffected. The rate of repair of single- and double-strand DNA breaks following radiation was the same for both sublines, and repair of radiation damage was not affected by BSO treatment in either cell line. The relative resistance of ADRR cells to initial DNA damage by radiation is the only difference so far detected at the molecular level which reflects radiation survival, and it is possible that other factors are involved in the resistance of ADRR cells to killing by radiation. Sensitization of ADRR cells to radiation-induced DNA damage by GSH depletion, although not likely to involve inhibition of GSH-dependent detoxification enzymes per se (irradiation was done at 4 degrees C), suggests that at the molecular level radioresponse in this subline is related to maintenance of GSH/GSSG redox equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号