首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The genome sizes of 8 species of amphipods collected from the Canadian Arctic were estimated by flow cytometry. Haploid genome sizes ranged from 2.94 +/- 0.04 pg DNA in Acanthostepheia malmgreni (Oedicerotidae) to 64.62 +/- 2.85 pg in Ampelisca macrocephala (Ampeliscidae). The value for Ampelisca macrocephala represents the largest crustacean genome size recorded to date (and also the largest within the Arthropoda) and indicates a 400-fold variation in genome size among crustaceans. The presence of such large genomes within a relatively small sample of Arctic amphipods is striking and highlights the need to further explore the relationships between genome size, development rates, and body size in both Arctic and temperate amphipods.  相似文献   

2.
Matsuba C  Merilä J 《Hereditas》2006,143(2006):155-158
Genome size variation in the common frog (Rana temporaria) was investigated with flow cytometry in three latitudinally separated populations in Sweden to see whether it could provide a useful tool for sex-identification in this species. Depending on the sex and population, per cell DNA content (2C value) varied from 8.823 to 11.266 pg with a mean (+/- SE) 2C value of 9.961+/-0.083 pg. Analysis of variance revealed significant differences in genome size among populations and between sexes. Females had ca 3% larger genomes (x=10.133+/-0.068 pg) than males (x=9.832+/-0.068 pg) in all of the populations (sex x population interaction: P>0.10). Individuals from the southern-most population had significantly (x=9.330+/-0.081 pg) smaller genomes than those from the more northern populations (x=10.032+/-0.085 and x=10.584+/-0.085 pg, respectively). These results are in line with the interpretation that males in the common frog are the heterogametic sex, and that there exists large (up to 12%) geographic variation in genome size in this species. However, the sex differences in the genome size are too small to be useful in individual sex identification.  相似文献   

3.
Most angiosperms possess small genomes (mode 1C = 0.6 pg, median 1C = 2.9 pg). Those with truly enormous genomes (i.e. > or = 35 pg) are phylogenetically restricted to a few families and include Liliaceae - with species possessing some of the largest genomes so far reported for any plant as well as including species with much smaller genomes. To gain insights into when and where genome size expansion took place during the evolution of Liliaceae and the mode and tempo of this change, data for 78 species were superimposed onto a phylogenetic tree and analysed. Results suggest that genome size in Liliaceae followed a punctuated rather than gradual mode of evolution and that most of the diversification evolved recently rather than early in the evolution of the family. We consider that the large genome sizes of Liliaceae may have emerged passively rather than being driven primarily by selection.  相似文献   

4.
Sauropodomorph dinosaurs include the largest land animals to have ever lived, some reaching up to 10 times the mass of an African elephant. Despite their status defining the upper range for body size in land animals, it remains unknown whether sauropodomorphs evolved larger-sized genomes than non-avian theropods, their sister taxon, or whether a relationship exists between genome size and body size in dinosaurs, two questions critical for understanding broad patterns of genome evolution in dinosaurs. Here we report inferences of genome size for 10 sauropodomorph taxa. The estimates are derived from a Bayesian phylogenetic generalized least squares approach that generates posterior distributions of regression models relating genome size to osteocyte lacunae volume in extant tetrapods. We estimate that the average genome size of sauropodomorphs was 2.02 pg (range of species means: 1.77–2.21 pg), a value in the upper range of extant birds (mean = 1.42 pg, range: 0.97–2.16 pg) and near the average for extant non-avian reptiles (mean = 2.24 pg, range: 1.05–5.44 pg). The results suggest that the variation in size and architecture of genomes in extinct dinosaurs was lower than the variation found in mammals. A substantial difference in genome size separates the two major clades within dinosaurs, Ornithischia (large genomes) and Saurischia (moderate to small genomes). We find no relationship between body size and estimated genome size in extinct dinosaurs, which suggests that neutral forces did not dominate the evolution of genome size in this group.  相似文献   

5.
The genome sizes of 18 species of New Zealand triplefin fishes (family Tripterygiidae) were determined by flow cytometry of erythrocytes. The evolutionary relationships of these species were examined with a molecular phylogeny derived from DNA sequence data based on 1771 base pairs from fragments of three mitochondrial loci (12S and 16S ribosomal RNA, and the control region) and one nuclear locus (ETS2). Haploid genome sizes ranged from .85 pg (1C) to 1.28 pg with a mean of 1.15 +/- .01pg. Genome size appeared to be highly plastic, with up to 20% variation occurring within genera and a 50% difference in size between the smallest and the largest genome. No evidence was found to indicate polyploidy as a mechanism for speciation in New Zealand triplefins. Factors suggested to influence genome sizes of other organisms, such as morphological complexity, neoteny, and longevity, do not appear to be associated with shifts in the genome sizes of New Zealand triplefins.  相似文献   

6.
T Ryan Gregory 《Génome》2003,46(5):841-844
The haploid genome sizes of two important molluscs were assessed by Feulgen image analysis densitometry. The genome size of the zebra mussel (Dreissena polymorpha), a prolific invader of North American lakes, was estimated to be 1C = 1.70 +/- 0.03 pg, and that of the freshwater snail Biomphalaria glabrata, the predominant intermediate vector of the human parasite Schistosoma mansoni, was estimated at 0.95 +/- 0.01 pg. These estimates will be important in future efforts in molluscan genomics, which at present lags far behind work being carried out with vertebrate and arthropod models. B. glabrata in particular, which has one of the smallest known gastropod genomes, is recommended as a highly suitable target for future genome sequencing.  相似文献   

7.
Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. In the present study, the genome size of 61 accessions corresponding to 11 genera and 50 species of Vitaceae and Leeaceae is determined using flow cytometry. Phylogenetically based statistical analyses were used to infer ancestral character reconstructions of nuclear DNA contents. The DNA 1C‐values of 38 species are reported for the first time, with the largest genome (Cyphostemma humile (N. E. Br.) Desc. ex Wild & R. B. Drumm, 1C = 3.25 pg) roughly 10.48‐fold larger than the smallest (Vitis vulpina L., 1C = 0.31 pg). The large genomes are restricted to the tribe Cayratieae, and most other extant species in the family possess relatively small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor for the family had a relatively small genome (1C = 0.85 pg). Genome evolution in Vitaceae has been characterized by a trend towards genome size reduction, with just one episode of apparent DNA accumulation in the Cayratieae lineage. Such contrasting patterns of genome size evolution probably resulted from transposable elements and chromosome rearrangements, while neopolyploidization seems to contribute to recent genome increase in some species at the tips in the family tree.  相似文献   

8.
Topical literature and Web site databases provide genome sizes for approximately 4,000 animal species, invertebrates and vertebrates, 330 of which are mammals. We provide the genome size for 67 mammalian species, including 51 never reported before. Knowledge of genome size facilitates sequencing projects. The data presented here encompassed 5 Metatheria (order Didelphimorphia) and 62 Eutheria: 15 Xenarthra, 24 Euarchontoglires (Rodentia), as well as 23 Laurasiatheria (22 Chiroptera and 1 species from Perissodactyla). Already available karyotypes supplement the haploid nuclear DNA contents of the respective species. Thus, we established the first comprehensive set of genome size measurements for 15 Xenarthra species (armadillos) and for 12 house-mouse species; each group was previously represented by only one species. The Xenarthra exhibited much larger genomes than the modal 3 pg DNA known for mammals. Within the genus Mus, genome sizes varied between 2.98 pg and 3.68 pg. The 22 bat species we measured support the low 2.63 pg modal value for Chiroptera. In general, the genomes of Euarchontoglires and Laurasiatheria were found being smaller than those of (Afrotheria and) Xenarthra. Interspecific variation in genome sizes is discussed with particular attention to repetitive elements, which probably promoted the adaptation of extant mammals to their environment.  相似文献   

9.

Background

The amount of DNA comprising the genome of an organism (its genome size) varies a remarkable 40 000-fold across eukaryotes, yet most groups are characterized by much narrower ranges (e.g. 14-fold in gymnosperms, 3- to 4-fold in mammals). Angiosperms stand out as one of the most variable groups with genome sizes varying nearly 2000-fold. Nevertheless within angiosperms the majority of families are characterized by genomes which are small and vary little. Species with large genomes are mostly restricted to a few monocots families including Orchidaceae.

Scope

A survey of the literature revealed that genome size data for Orchidaceae are comparatively rare representing just 327 species. Nevertheless they reveal that Orchidaceae are currently the most variable angiosperm family with genome sizes ranging 168-fold (1C = 0·33–55·4 pg). Analysing the data provided insights into the distribution, evolution and possible consequences to the plant of this genome size diversity.

Conclusions

Superimposing the data onto the increasingly robust phylogenetic tree of Orchidaceae revealed how different subfamilies were characterized by distinct genome size profiles. Epidendroideae possessed the greatest range of genome sizes, although the majority of species had small genomes. In contrast, the largest genomes were found in subfamilies Cypripedioideae and Vanilloideae. Genome size evolution within this subfamily was analysed as this is the only one with reasonable representation of data. This approach highlighted striking differences in genome size and karyotype evolution between the closely related Cypripedium, Paphiopedilum and Phragmipedium. As to the consequences of genome size diversity, various studies revealed that this has both practical (e.g. application of genetic fingerprinting techniques) and biological consequences (e.g. affecting where and when an orchid may grow) and emphasizes the importance of obtaining further genome size data given the considerable phylogenetic gaps which have been highlighted by the current study.Key words: AFLP, C-value, chromosome, evolution, genome size, guard cell size, Orchidaceae, Robertsonian fission, Robertsonian fusion  相似文献   

10.
On the evolution of genome size of birds   总被引:5,自引:0,他引:5  
We measured genome size (nuclear DNA content) by fluorescence flow cytometry in 55 species of birds representing 12 different orders. Similar studies were performed in approximately 100 species by laboratories using absorption cytophotometry of Feulgen-stained nuclei. Although there have been apparent discrepancies in the assigned values for the species used as a reference, the values obtained in the different laboratories are generally in agreement. When the data are standardized in relation to a diploid (2C) value of 2.5 picograms (pg) of DNA for the domestic chicken (Gallus gallus domesticus), the mean for DNA content in 135 species representing 17 orders is 2.82 +/- 0.33 (SD) pg with a range of 2.0-3.8 pg. Thus the genome size of birds is the most conservative of any vertebrate class and, all values considered, is smaller and more uniform in size than previous estimates would indicate. This could be explained by a previously unexplored hypothesis: that the genome of birds has evolved from a small ancestral genome that was reduced before emergence of the protoavian.  相似文献   

11.
Genome evolution in the genus Sorghum (Poaceae)   总被引:3,自引:0,他引:3  
BACKGROUND AND AIMS: The roles of variation in DNA content in plant evolution and adaptation remain a major biological enigma. Chromosome number and 2C DNA content were determined for 21 of the 25 species of the genus Sorghum and analysed from a phylogenetic perspective. METHODS: DNA content was determined by flow cytometry. A Sorghum phylogeny was constructed based on combined nuclear ITS and chloroplast ndhF DNA sequences. KEY RESULTS: Chromosome counts (2n = 10, 20, 30, 40) were, with few exceptions, concordant with published numbers. New chromosome numbers were obtained for S. amplum (2n = 30) and S. leiocladum (2n = 10). 2C DNA content varies 8.1-fold (1.27-10.30 pg) among the 21 Sorghum species. 2C DNA content varies 3.6-fold from 1.27 pg to 4.60 pg among the 2n = 10 species and 5.8-fold (1.52-8.79 pg) among the 2n = 20 species. The x = 5 genome size varies over an 8.8-fold range from 0.26 pg to 2.30 pg. The mean 2C DNA content of perennial species (6.20 pg) is significantly greater than the mean (2.92 pg) of the annuals. Among the 21 species studied, the mean x = 5 genome size of annuals (1.15 pg) and of perennials (1.29 pg) is not significantly different. Statistical analysis of Australian species showed: (a) mean 2C DNA content of annual (2.89 pg) and perennial (7.73 pg) species is significantly different; (b) mean x = 5 genome size of perennials (1.66 pg) is significantly greater than that of the annuals (1.09 pg); (c) the mean maximum latitude at which perennial species grow (-25.4 degrees) is significantly greater than the mean maximum latitude (-17.6) at which annual species grow. CONCLUSIONS: The DNA sequence phylogeny splits Sorghum into two lineages, one comprising the 2n = 10 species with large genomes and their polyploid relatives, and the other with the 2n = 20, 40 species with relatively small genomes. An apparent phylogenetic reduction in genome size has occurred in the 2n = 10 lineage. Genome size evolution in the genus Sorghum apparently did not involve a 'one way ticket to genomic obesity' as has been proposed for the grasses.  相似文献   

12.
Butterflies have been of great interest to naturalists for centuries, and the study of butterflies has been an integral part of ecology and evolution ever since Darwin proposed his theory of natural selection in 1859. There are > 18 000 butterfly species worldwide, showing great diversity in morphological traits and ecological niches. Compared with butterfly diversity, however, patterns of genome size variation in butterflies remain poorly understood, especially in a phylogenetic context. Here, we sequenced and assembled the mitogenomes of 68 butterflies and measured the genome sizes (C-values) of 67 of them. We also assembled 10 mitogenomes using reads from GenBank. Among the assembled 78 mitogenomes, those from 59 species, 23 genera and one subfamily are reported for the first time. Combining with published data of mitogenomes and genome size, we explored the patterns in genome size variation for 106 butterfly species in a phylogenetic context based on analyses of mitogenomes from 264 species covering six families. Our results show that the genome size of butterflies has a 6.4-fold variation ranging from 0.203 pg (199 Mb) (Nymphalidae: Heliconius xanthocles) to 1.287 pg (1253 Mb) (Papilionidae: Parnassius orleans). Within families, the largest variation was found in Papilionidae (5.9-fold: 0.22–1.29 pg), followed by Nymphalidae (4.8-fold: 0.2–0.95 pg), Pieridae (4.4-fold: 0.22–0.97 pg), Hesperiidae (2.2-fold: 0.3–0.66 pg), Lycaenidae (2.6-fold: 0.39–1.02 pg) and Rioidinidae (1.8-fold: 0.48–0.87 pg). Our data also suggest that butterflies have an ancestral genome size of c. 0.5 pg, and some ancestral genome size increase or decrease events along different subfamilies or tribes produce the diversity of genome size variation in diverse butterflies. Our data provide novel insights into patterns of genome size variation in butterflies and are an important reference for future genome sequencing programmes.  相似文献   

13.
昆虫基因组及其大小   总被引:5,自引:0,他引:5  
薛建  程家安  张传溪 《昆虫学报》2009,52(8):901-906
昆虫基因组大小是由于基因组各种重复序列在扩增、缺失和分化过程中所致的数量差异造成的。这些差异使得昆虫不同类群间、种间和同种的不同种群间表现出基因组大小的不同。目前有59种昆虫已经列入基因组测序计划, 其中6种昆虫(黑腹果蝇Drosophila melanogaster、冈比亚按蚊Anopheles gambiae、家蚕Bombyx mori、意大利蜜蜂Apis mellifera、埃及伊蚊Aedes aegypti和赤拟谷盗Tribolium castaneum)的全基因组序列已经报道。有725种昆虫的基因组大小得到了估计, 大小在0.09~16.93 pg (88~16 558 Mb)之间。本文还介绍了昆虫基因组大小的估计方法, 讨论了昆虫基因组大小的变化及其意义。  相似文献   

14.
As for most other organisms, genome size in zooplankton differs widely. This may have a range of consequences for growth rate, development, and life history strategies, yet the causes of this pronounced variability are not settled. Here we propose that small genome size may be an evolutionary consequence of phosphorus (P) allocation from DNA to RNA under P deficiency. To test this hypothesis we have compared the two major groups of zooplankton, copepods and cladocerans, that have overlapping niches and body size. Relative to the cladocerans, copepods have a more complex life history and a lower mass-specific P content, while cladocerans tend to have higher P and RNA contents and higher specific growth rates and frequently experience P-limited growth, likely due to a shortage of P for ribosome synthesis. Cladocerans also generally have smaller genomes than copepods (1C = 0.17-0.63 pg DNA.cell-1 vs. 1C = 0.10-10 pg DNA.cell-1). Furthermore, cladocerans have a higher slope of the relationship of body size with DNA content (1.5 vs. 0.28 in copepods) and present almost 15-fold higher RNA:DNA ratios (24.8 in cladocerans vs. 1.6 in copepods). Hence, small genome size in cladocerans could reflect an evolutionary pressure towards "efficient" genomes to conserve a key element needed to maximize growth rate. We do not claim that this is a universal cause of genome size variability, but propose that streamlining of genomes could be related to P conservation rather than energy conservation. This could be relevant for a range of organisms that may suffer P-limited growth rates.  相似文献   

15.
The suborder Ixodida includes many tick species of medical and veterinary importance, but little is known about the genomic characteristics of these ticks. We report the first study to determine genome size in two species of Argasidae (soft ticks) and seven species of Ixodidae (hard ticks) using flow cytometry analysis of fluorescent stained nuclei. Our results indicate a large haploid genome size (1C>1000 Mbp) for all Ixodida with a mean of 1281 Mbp (1.31+/-0.07 pg) for the Argasidae and 2671 Mbp (2.73+/-0.04 pg) for the Ixodidae. The haploid genome size of Ixodes scapularis was determined to be 2262 Mbp. We observed inter- and intra-familial variation in genome size as well as variation between strains of the same species. We explore the implications of these results for tick genome evolution and tick genomics research.  相似文献   

16.
Salamanders (Urodela) have among the largest vertebrate genomes, ranging in size from 10 to 120 pg. Although changes in genome size often occur randomly and in the absence of selection pressure, nonrandom patterns of genome size variation are evident among specific vertebrate lineages. Several reports suggest a relationship between species richness and genome size, but the exact nature of that relationship remains unclear both within and across different taxonomic groups. Here, we report (a) a negative relationship between haploid genome size (C‐value) and species richness at the family taxonomic level in salamander clades; (b) a correlation of C‐value and species richness with clade crown age but not with diversification rates; (c) strong associations between C‐value and both geographic area and climatic‐niche rate. Finally, we report a relationship between C‐value diversity and species diversity at both the family‐ and genus‐level clades in urodeles.  相似文献   

17.
基因组大小在被子植物物种之间存在着巨大的变异, 但目前对不同生活型被子植物功能性状与基因组大小的关系缺乏统一的认识。本研究基于被子植物245科2,226属11,215个物种的基因组大小数据, 探讨了不同生活型物种种子重量、最大植株高度和叶片氮、磷含量4个功能性状与基因组大小之间的关系。结果表明, 被子植物最大植株高度和种子重量与基因组大小间的关系在草本和木本植物中存在显著差异。草本植物最大植株高度与基因组大小的关系不显著, 但种子重量与其呈极显著的正相关关系。木本植物最大植株高度与基因组大小显著负相关, 但种子重量与其关系不显著。木本植物叶片氮含量与基因组大小呈显著正相关, 但其他生活型植物的叶片氮、磷含量与基因组大小均无显著相关性。本研究表明被子植物功能性状与基因组大小的相关性在不同生活型间存在差异, 这为深入研究植物多种功能性状和植物生活型与基因组大小的权衡关系在植物演化和生态适应中的作用提供了重要依据。  相似文献   

18.
Summary The DNAs of two diploid species of Gossypium, G. herbaceum var. africanum (A1 genome) and G. raimondii (D5 genome), and the allotetraploid species, G. hirsutum (Ah and Dh genomes), were characterized by kinetic analyses of single copy and repetitive sequences. Estimated haploid genome sizes of A1 and D5 were 1.04 pg and 0.68 pg, respectively, in approximate agreement with cytological observations that A genome chromosomes are about twice the size of D genome chromosomes. This differences in genome size was accounted for entirely by differences in the major repetitive fraction (0.56 pg versus 0.20 pg), as single copy fractions of the two genomes were essentially identical (0.41 pg for A1 and 0.43 pg for D5). Kinetic analyses and thermal denaturation measurements of single copy duplexes from reciprocal intergenomic hybridizations showed considerable sequence similarity between A1 and D5 genomes (77% duplex formation with an average thermal depression of 6 °C). Moreover, little sequence divergence was detectable between diploid single copy sequences and their corresponding genomes in the allotetraploid, consistent with previous chromosome pairing observations in interspecific F1 hybrids.Journal paper No. 4461 of the Arizona Agricultural Experiment Station  相似文献   

19.
The genus Coffea, mainly native to Africa and to the Indian Ocean islands (Mascarocoffea), accounts for 124 species. Genome size data are available for 23 African species. The aim of this study was to assess the genome size of 44 Mascarocoffea species and to investigate possible association with species geographic distribution, stomata traits, and species relationships. 2?C values were measured using flow cytometry. A lyophilization procedure for leaves was tested. The 2?C nuclear DNA content of Mascarocoffea species ranged from 0.96 to 1.41?pg. Coffea mauritiana and Coffea humblotiana have the smallest genomes and Coffea millotii has the largest. Mean 2?C DNA for Mascarocoffea and Africa is 1.19 and 1.43?pg, respectively. The overall DNA values corresponded to two partially overlapped normal distributions: one harboring species from east Africa Mascarocoffea, the other harboring species from west/central Africa. Plotted on a geographical map according to the native origin of species, these values showed a gradient in Madagascar and Africa. Genome sizes increased following a north to southeast gradient in Madagascar and an east to west gradient in Africa. None, or only weak correlations were noted between genome size and stomata parameters. Genetically close species could be highly distinctive in their genome size while divergent species could be similarly sized. The non-random geographic distribution and habitat of species, and the absence of correlation between genome size and genetic relationships, suggest that during Coffea genome evolution, both DNA content increase and/or decrease occurred independently in Africa and in the Indian Ocean Islands.  相似文献   

20.
Histone gene number in relation to C-value in amphibians.   总被引:2,自引:2,他引:0       下载免费PDF全文
We have compared the number of copies of sequences complementary to a cloned Xenopus histone H4 coding sequence in the genomes of Xenopus, Triturus and Ambystoma, amphibian species with widely different C-values (3, 23 and 38pg DNA/haploid genome respectively). Quantitative autoradiography indicates that H4 sequence constitute a greater proportion of the genome the larger that genome is. Measurement of the absolute copy-number by reassociation kinetic analysis indicated 47 +/- 10, 636 +/- 21 2685 +/- 349 copies per haploid genome each in Xenopus, Triturus and Ambystoma respectively. Whilst this confirms a trend of increasing copy-number with increasing C-value, the two are not directly proportional and some other factors must contribute to determining the number of copies of these genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号