首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Snout glabrous skin (rhinarium) of the cat is innervated not only by typical simple lamellar corpuscles but also glomerular formations. In contrast to simple lamellar corpuscles, glomerular nerve formations are located away the dermal papillae. In cross sections, glomerular nerve formation consists of several axonal profiles enveloped by 1-2 cytoplasmic lamellae of Schwann cells. The space among them is filled by collagenous microfibrils and the basal lamina-like material. Capsule was composed from fibroblast-like cells without definite basal lamina. An electron-dense reaction product due to non-specific cholinesterase activity was associated with Schwann cells and their processes surrounding unmyelinated terminal portion of the sensory axons. Abundant reaction product was bound to the collagenous microfibrils and was deposited in extracellular matrix between Schwann cell processes. These results are further evidence for the presence of the non-specific cholinesterase molecules as integral component of the extracellular matrix in sensory corpuscles. On the basis of histochemical study two possible explanation are considered for functional involving of this enzyme in sensory nerve formations.  相似文献   

2.
The ultrastructure of sensory nerve endings was examined in the snout skin in 3 adult hedgehogs (Erinaceus europaeus). The material was taken intravitally under total anaesthesia and processed in a usual way for the electron microscopy. The corpuscles were evaluated in the individual sections and series sections made through the whole corpuscle. In the superficial layers of the dermis simple sensory corpuscles and free endings were found. The simple sensory corpuscles can be divided into three types. a) Corpuscles containing a greater number of lamellae in the inner core, the lamellae are arranged regularly and are separated by two opposite clefts. The capsule is formed by only several lamellae undoubtedly of fibrocytic origin. b) Corpuscles containing a smaller number of wider lamellae in the inner core situated often at random. The clefts are also irregular and are often closed in the superficial layers of the inner core. The capsule is quite simple mostly formed by a single lamella of fibrocyte which often fails to form a continuous coat of the corpuscle. c) The third type is typical of its inner core being formed by few lamellae arranged irregularly. These corpuscles have no connective tissue capsule and are separated from the environments only by the basement membrane of superficial lamellae of the inner core. The corpuscles of the second type resemble considerably the developmental stages of simple sensory corpuscles as described in the literature in the cat. They are the same in size or smaller than the corpuscles of the first type. The free nerve endings occurred in two forms. a) Flattened (lanciform) nerve terminals. The axon is rich in mitochondria. The sides of the flattened terminal is lined with one to three wide lamellae while the axon reaches as far as the surface of the formation which is covered only with the basement membrane. b) Typical free endings rich in mitochondria which are embedded in the cytoplasm of Schwann cells or occasionally are covered only with the basement membrane. The lanciform endings which are not linked up with the hairs here may represent a transition from free endings to simple sensory corpuscles.  相似文献   

3.
Axonally transported protein labeled many trigeminal nerve endings in subepithelial regions of the anterior hard palate of the rat. Sensory endings were most numerous in the lamina propria near the tips of the palatal rugae where large connective tissue and epithelial papillae interdigitated. Two kinds of sensory ending were found there: “free” endings, and a variety of corpuscular endings. The “free” sensory endings consisted of bundles of unmyelinated axons separated from the connective tissue by relatively unspecialized Schwann cells covering part or all of their surface and a completely continuous basal lamina; they were commonly found running parallel to the epithelium or near corpuscular endings. The corpuscular sensory endings all had a specialized nerve form, specialized Schwann cells, and axonal fingers projecting into the corpuscular basal lamina or connective tissue. There were at least four distinct types of corpuscular ending: Ruffini-like endings were found among dense collagen bundles, and they had a flattened nerve ending with a flattened Schwann lamella on either side. Meissner endings had an ordered stack of flattened nerve terminals with flattened Schwann cells and much basal lamina within and around the corpuscle. Simple corpuscles were single nerve endings surrounded by several layers of concentric lamellar Schwann processes. Glomerular endings were found in lamina propria papillae or encircling epithelial papillae; they were a tangle of varied neural forms each of which had apposed flattened Schwann cells, and a layer of basal lamina of varied thickness. Fibroblasts often formed incomplete partitions around Meissner and simple corpuscles.

The axoplasm of all kinds of subepithelial sensory endings contained numerous mitochondria and vesicles, as well as occasional multivesicular bodies and lysosomes; the axoplasm of all endings was pale with few microtubules and neurofilaments. The specialized lamellar Schwann cells had much pinocytotic activity. Four kinds of junctions were found between the corpuscular sensory endings and the lamellar Schwann cells: (1) symmetric densities that resemble desmosomes; (2) asymmetric densities with either the neuronal or glial membrane more dense; (3) neural membrane densities adjacent to Schwann parallel inner and outer membrane densities; and (4) sites of apparent Schwann endocytosis associated with neural blebs. The “free” sensory endings only made occasional desmosome-like junctions with their Schwann cells.

These observations are discussed in relation to possible mechanosensory transduction mechanisms, with particular attention to axoplasmic structure, axonal fingers, and neural and nonneural cell associations.  相似文献   

4.
The sensory nerve formations (or corpuscles) of normal human glabrous skin from hand and fingers, obtained by punch biopsies, were studied by the streptavidin-biotin method using monoclonal antibodies directed against neurofilament protein (NFP), S-100 protein, glial fibrillary acidic protein (GFAP), cytokeratins, and vimentin. NFP immunoreactivity (IR) was observed in the central axons of most sensory formations, while S-100 protein IR was restricted to non-neuronal cells forming the so-called inner cells core or lamellar cells. Furthermore, vimentin IR was found in the same cells of Meissner's and glomerular corpuscles. None of the sensory nerve formations were stained for GFAP or keratin. The present results suggest that the main nature of the intermediate filaments of the non-neuronal cells of sensory nerve formations from human glabrous skin is represented by vimentin and not by GFAP. Thus, our findings suggest that lamellar and inner core cells of SNF are modified and specialized Schwann cells and not epithelial or perineurial derived cells.  相似文献   

5.
The Meissner corpuscle is a rapidly-adapting mechanoreceptor in the dermal papillae of digital skin. For an analysis of how the sensory endings detect tissue deformations, an examination of their fine structure and relationships with dermal collagen was carried out in the Japanese monkey, Macaca fuscata, using a combination of three methods: SEM of cell architecture denuded by 6N sodium hydroxide maceration, SEM of collagen networks exposed by a mild alkaline corrosion, and TEM according to a conventional procedure. Observations showed the sensory corpuscles to be represented by a stack of discoid components consisting of flattened axon terminals sandwiched between Schwann cell lamellae, as reported previously. Each corpuscle was entirely covered by a connective tissue capsule, which was linked with the basal aspect of the epidermis by dermal collagen fibers. Margins of the discoid components of the corpuscles were serrated with numerous fine projections of lamellar Schwann cells, which tightly held collagen trabeculae on the inner aspect of the pericorpuscular capsule. Central portions of the discoids, on the other hand, displayed extremely smooth surfaces, which were covered by a thick layer of basal lamina-like matrix. The former portions of the discoids appear susceptible to mechanical deformations of surrounding tissues, while the latter may follow the tissue movements rather slowly because of their indirect linkage with the dermal collagen network. The resulting distortions of the axon endings during dynamic phases of the tissue deformations will be in favor of the generation of rapidly adapting receptor potentials in the sensory corpuscle.  相似文献   

6.
Summary In the present study we describe the application of the non-specific cholinesterase (nChE) histochemical method for the detection of encapsulated sensory nerve endings prior to immunofluorescence staining of the sensory nerve fibres. The nChE staining of Schwann-derived structures surrounding sensory terminals allowed us to identify unequivocally the sensory corpuscles in the skin and the muscle proprioceptors (muscle spindles and Golgi tendon organs) in longitudinal sections of muscle tissue. The nChE staining of sensory nerve endings and immunofluorescence-labelled nerve fibres and their terminals could be viewed and photographed in the same section using appropriate filters. Since nChE activity persists in terminal Schwann cells for a long time after loss of the sensory axons, this combined enzyme- and immunohistochemical approach is also useful for experimental studies involving denervation and re-innervation of sensory nerve endings.  相似文献   

7.
Using filipin as a cytochemical probe to reveal the distribution of cholesterol, myelinated peripheral nerve fibers were examined in freeze-fracture replicas. Filipin-sterol complexes were most abundant in the Schwann cell and axonal plasma membranes. In the Schwann cell plasma membrane there was no heterogeneity in complex distribution in relation to the subjacent cytoplasmic network. In myelin lamellae there was a decrease in complexes from outer to inner lamellae and some aggregation of complexes in individual lamellae. The density of complexes in cytoplasmic organelles varied from absent in mitochondria to high in lysosome-like bodies. The results are interpreted in terms of the related biochemical composition and biophysical properties of cell membranes, with particular reference to the myelinated nerve fiber. The influence of diffusion barriers and gradients on the formation of complexes by filipin is considered.  相似文献   

8.
Distribution of neurofilament-immunoreactive nerve fibers in human skin   总被引:1,自引:0,他引:1  
Neurofilament immunoreactive nerve fibers were demonstrated in human skin using indirect immunohistochemical technique with antibodies to neurofilament polypeptides. Neurofilament-positive fibers were seen as free nerve endings in the epidermis and in dermal papilla, in Meissner's corpuscles and as fibers crossing in the dermis. Strongly fluorescent nerve fibers were also seen around hair follicles, sweat gland ducts and sometimes in relation to blood vessels. From the distribution pattern it was concluded that predominantly sensory nerve fibers were labelled and that this technique may be used to study reinnervation of cutaneous sensory nerves following traumatic injuries and surgical procedures.  相似文献   

9.
Summary Neurofilament immunoreactive nerve fibers were demonstrated in human skin using indirect immunohistochemical technique with antibodies to neurofilament polypeptides. Neurofilament-positive fibers were seen as free nerve endings in the epidermis and in dermal papilla, in Meissner's corpuscles and as fibers crousing in the dermis. Strongly fluorescent nerve fibers were also seen around hair follicles, sweat gland ducts and sometimes in relation to blood vessels. From the distribution pattern it was concluded that predominantly sensory nerve fibers were labelled and that this technique may be used to study reinnervation of cutaneous sensory nerved following tramatic injuries and surgical procedures.  相似文献   

10.
T Rettig  Z Halata 《Acta anatomica》1990,137(3):189-201
The sensory innervation of the anal canal of the pig was investigated by light and electron microscopy. The distribution of the different types of sensory nerve endings correlates with the histology of different zones: (1) After the rectal mucosa there was a zone lined with nonkeratinized stratified squamous epithelium. (2) A middle zone was lined with keratinized stratified squamous epithelium. Here the dermis already showed a papillary and reticular layer. (3) The last zone showed hairy skin with a high hair density. The following nerve endings were found: Free nerve endings reached the stratum superficiale in nonkeratinized squamous epithelium and the stratum granulosum in the keratinized squamous epithelium. Dermal free nerve endings were found in all zones near the epithelium and two different types were identified as those derived from C-fibers and those from A-delta-fibers. Merkel nerve endings showed different features depending on their location. Few Merkel-like cells were found in the epithelium of the anal crypts. Typical Merkel Tastscheiben were located at the base of epithelial ridges or pegs in zones 2 and 3. The number of Merkel cells varied up to 200. The myelinated afferent fiber supplied 10-15 Merkel cells. Merkel cells were also found regularly in the outermost layer of the external rooth sheath of hair follicles at about the same level as perifollicular nerve endings. Lamellated corpuscles were found in the dermis of all zones except the cranial part of zone 1, where the anal crypts are located. Generally they consisted of a central nerve terminal which may be branched. Each terminal was surrounded by an inner core of concentrically arranged lamellae of the terminal Schwann cell and one or several inner cores were included in a capsule of perineural cells. The size of the corpuscle, the regularity of the inner core and the number of capsular layers depended on the location of the corpuscle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The laminar nerve endings are distributed in the laryngeal mucosa, and described as sensory receptors evoked by laryngeal pressure changes. The present study aimed to determine detailed morphological characteristics of the laryngeal laminar endings of the rat. Immunohistochemistry for Na(+)-K(+)-ATPase, α(3) subunit, showed that laminar endings were distributed in the entire laryngeal surface of the epiglottis. The parent axons of the endings were thick in diameter, and they were branched and continued to the endings. In some cases, several endings from different parent axons fused into a large complex structure of 500 μm in width. The laminar endings were also immunoreactive for vesicular glutamate transporter 1 (vGLUT1) and vGLUT2, but not for P2X(3) purinoceptor. Around the laminar endings, terminal Schwann cells with immunoreactivity for S-100 protein were closely associated with axon terminals. Use of scanning electron microscopy with alkaline maceration method showed that the terminal Schwann cells consisted of a rounded perinuclear region and lamellar cytoplasmic processes. Ultrastructurally, axon terminals with numerous mitochondria were partly covered with Schwann cell sheath, and some terminals intruded into the epithelial layer. Clear vesicles of 50 nm in diameter were also observed especially in small cytoplasmic processes of 400 nm to 1 μm in size. The results in the present study suggested that the laminar endings in epiglottic mucosa have morphological characteristics of slowly adapting mechanoreceptors and contribute to sensation of laryngeal pressure via mucosal tension.  相似文献   

12.
Explants of fetal rat sensory ganglia, cultured under conditions allowing axon and Schwann cell outgrowth in the absence of fibroblasts, occasionally develop nerve fascicles that are partially suspended in culture medium above the collagen substrate. In these suspended regions, fascicles are abnormal in that Schwann cells are decreased in number, are confined to occasional clusters along the fascicle, provide ensheathment for only a few axons at the fascicle periphery, and do not form myelin. When these fascicles are presented with a substrate of reconstituted rat-tail collagen, Schwann cell numbers increase, ensheathment of small nerve fibers occurs normally, and larger axons are myelinated. We conclude that, for normal development, Schwann cells require contact with extracellular matrix as well as axons. The Schwann cell abnormalities in suspended fascicles are similar to those observed in nerve roots of dystrophic mice.  相似文献   

13.
Electron microscopy of the photoreceptors in the marine nematode, Deontostoma californicum, revealed numerous lamellated inclusions in the Schwann cells ensheathing the lateral cephalic nerves. Immediately after the axons from the modified bipolar neurons of the photoreceptors enter the lateral nerves, these spherical-to-oval lamellated bodies are observed in the surrounding Schwann cell cytoplasm. These previously undescribed Schwann cell inclusions, approximately 500 nm long and 320 nm in diameter, are lamellated and characterized by the presence of an electron-dense stalk-like process, 80-280 nm long. The lamellated inclusions are bound by a single limiting membrane, 6-7 nm thick, which shows occasional interruptions. The internal structure of the inclusions is characterized by the presence of electron-dense lamellae or bands, 11-16 nm thick, which assume various complex patterns ranging from arrays of parallel linear densities to a reticulate appearance. In addition, the nematode Schwann cell cytoplasm contains the usual organelles, gliosome- and lysosome-like inclusions. Their relationship with lipofuscin pigments is briefly discussed.  相似文献   

14.
Summary In the bulbus olfactorius of man numerous myelinated nerve cell bodies occur in the stratum plexiforme internum and stratum granulosum internum. In many respects they resemble the neighbouring granule cells: small chromatin clumps border on more than half of the circumference of the nucleus, the thin cytoplasmic rim contains abundant polysomes and sometimes pigment complexes with numerous light vacuoles, the cells often show a process which extends up to the stratum glomerulosum, the perikarya are devoid of synaptic contacts whereas the proximal segment of the peripheral processes display rare contacts. The myelin sheath varies in thickness, consisting of 2 to 24 lamellae with distances between the major dense lines ranging from 9.3 to 11.3 nm. The myelin sheath may enclose the cell body completely or partially and accompany the proximal segment of the process arising from the perikaryon. On partially enveloped perikarya, the myelin lamellae end in formations like those of the node of Ranvier, though often less regularly. Within the compact myelin sheath all of its lamellae may be distended for a short distance by glial cytoplasm as in the Schmidt-Lanterman incisures of peripheral nerve fibres. Adjacent to the outermost myelin lamella myelinated axons and cell bodies, tentatively identified as oligodendrocytes, as well as granule cells may be closely joined.Supported by the Deutsche Forschungsgemeinschaft (Br. 634/1)  相似文献   

15.
The capsulated corpuscles of the skin have been studied by pancreatin corrosion methods. With this corrosion, Meissner's corpuscles disappear while those, whose fundamental structure is collagenous, remain intact. We have observed structural differences in these collagenous corpuscles, some being formed as a fine reticulum or with longitudinal or concentric sheaths. Within the corpuscle, there is a totally vascular compartment, the 'vascular hill', which is easily differentiated from the other laminar or reticular segment which is the 'nerve hill'. We conclude that the connective tissue arrangement and the vascular content of the corpuscles contribute to the regulation of the different degrees of sensations perceived by these corpuscles. The tendency that these corpuscles show to unite may be caused because the places, where they are grouped, are the points of greatest sensory perception.  相似文献   

16.
The applied immunogold cytochemical technique in investigating the cytologic distribution of the laminin (LAM) molecule in the capsulated Pacinian and Herbst mechanoreceptors shows the presence of LAM around most elements of the receptor structures. The LAM immunoreactivity (LAM-IR) is best expressed in the vicinity of the perineural capsule cells of both receptor types, where it is primarily concentrated around the perinuclear regions as well as the cytoplasmic lamellae. Such a localization overlaps with the already known ultrastructural localization of a basal lamina (BL) around these cells. Laminin immunoreactivity is less well expressed around the modified Schwann cells. Even in these cells, however, there is an apparent immunoreaction around the cytoplasmic lamellae regardless of the lamellar location. In both receptor types, there is no LAM-IR in the cells of the subcapsular space. Of particular significance we consider the localization of gold particles (respectively the presence of a BL) between the innermost lamellae of the modified Schwann cells and the non-myelinated part of the receptor nerve fiber and their endings, as well as around the axoplasmic protrusions of the nerve endings. We discuss the role of the BL and LAM in the investigated rapidly adapting mechanoreceptors and their trophic influence upon the sensory regions. We also assume the arresting and selective effect of these membranes in building up the ion channels of the axolemma which probably has a certain importance in mechanotransduction.  相似文献   

17.
The ultrastructure of sensory nerve endings was examined in joint capsules of large limb joints in three adult frogs (Rana temporaria). The joint receptors are represented by the only one kind of sensory nerve endings--by free nerve endings. The unmyelinized preterminal desintegrates into single terminals. This branching is bound on the most peripheral cell of the Schwann cell by means of mesaxons, they pass from the pericaryum of the Schwann cell peripherally. The branches of the nerve terminal are surrounded by a cover of 1...3 cytoplasmatic processes of the Schwann cell. The surface lamella is covered by a distinct basal membrane. Bundles of collagenous fibrils pass along the branches of the nerve terminal. Quite naked nerve endings were not observed. The axoplasma of the nerve terminal contains strikingly few cell organels. Besides axially passing neurofilaments and neurotubules only sporadic mitochondria and clear vesicles were observed. The accumulation of mitochondria, characteristic for the axoplasma of nerve terminals, was observed in no case. Free nerve endings which were found in the joint capsules of the frog belong among so called "free penicillate nerve endings".  相似文献   

18.
Ji ZG  Ito S  Honjoh T  Ohta H  Ishizuka T  Fukazawa Y  Yawo H 《PloS one》2012,7(3):e32699
In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG) neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2) transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.  相似文献   

19.
The applied immunogold cytochemical technique in investigating the cytologic distribution of the laminin (LAM) molecule in the capsulated Pacinian and Herbst mechanoreceptors shows the presence of LAM around most elements of the receptor structures. The LAM immunoreactivity (LAM-IR) is best expressed in the vicinity of the perineural capsule cells of both receptor types, where it is primarily concentrated around the perinuclear regions as well as the cytoplasmic lamellae. Such a localization overlaps with the already known ultrastructural localization of a basal lamina (BL) around these cells. Laminin immunoreactivity is less well expressed around the modified Schwann cells. Even in these cells, however, there is an apparent immunoreaction around the cytoplasmic lamellae regardless of the lamellar location. In both receptor types, there is no LAM-IR in the cells of the subcapsular space. Of particular significance we consider the localization of gold particles (respectively the presence of a BL) between the innermost lamellae of the modified Schwann cells and the non-myelinated part of the receptor nerve fiber and their endings, as well as around the axoplasmic protrusions of the nerve endings. We discuss the role of the BL and LAM in the investigated rapidly adapting mechanoreceptors and their trophic influence upon the sensory regions. We also assume the arresting and selective effect of these membranes in building up the ion channels of the axolemma which probably has a certain importance in mechanotransduction.  相似文献   

20.
Various morphological features of the Schwann cells of myelinated fibres in the lizard thoracic spinal roots were studied, and, when possible, quantified using morphometric methods. About 0.8% of the Schwann cells are binucleate and some display clusters of microvilli along the internodes. The percentages of the cytoplasmic area of the Schwann cell occupied by the following cytoplasmic components were determined: mitochondria, Golgi apparatus, granular endoplasmic reticulum, smooth endoplasmic reticulum, multivesicular bodies, dense bodies, autophagic vacuoles, peroxisome-like bodies, lipofuscin granules and lipid droplets. Linear relationships were found between the sectional areas of the mitochondria and granular endoplasmic reticulum of the Schwann cell and both the length of the profile of the Schwann cell plasma membrane and the size of the related axon. The results obtained are compatible both with the hypothesis that the mitochondria and granular endoplasmic reticulum of the Schwann cell are involved in the production and storage of proteins for the plasma membrane of this cell, and with the hypothesis that these organelles are involved in the production and storage of protein metabolites which are subsequently transferred to the related axons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号