首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 385 毫秒
1.
MNEI (monocyte/neutrophil elastase inhibitor) is a 42 kDa serpin superfamily protein characterized initially as a fast-acting inhibitor of neutrophil elastase. Here we show that MNEI has a broader specificity, efficiently inhibiting proteases with elastase- and chymotrypsin-like specificities. Reaction of MNEI with neutrophil proteinase-3, an elastase-like protease, and porcine pancreatic elastase demonstrated rapid inhibition rate constants >10(7) M(-1) s(-1), similar to that observed for neutrophil elastase. Reactions of MNEI with chymotrypsin-like proteases were also rapid: cathepsin G from neutrophils (>10(6) M(-1) s(-1)), mast cell chymase (>10(5) M(-1) s(-1)), chymotrypsin (>10(6) M(-1) s(-1)), and prostate-specific antigen (PSA), which had the slowest rate constant at approximately 10(4) M(-1) s(-1). Inhibition of trypsin-like (plasmin, granzyme A, and thrombin) and caspase-like (granzyme B) serine proteases was not observed or highly inefficient (trypsin), nor was inhibition of proteases from the cysteine (caspase-1 and caspase-3) and metalloprotease (macrophage elastase, MMP-12) families. The stoichiometry of inhibition for all inhibitory reactions was near 1, and inhibitory complexes were resistant to dissociation by SDS, further indicating the specificity of MNEI for elastase- and chymotrypsin-like proteases. Determination of the reactive site of MNEI by N-terminal sequencing and mass analysis of reaction products identified two reactive sites, each with a different specificity. Cys(344), which corresponds to Met(358), the P(1) site of alpha1-antitrypsin, was the inhibitory site for elastase-like proteases and PSA, while the preceding residue, Phe(343), was the inhibitory site for chymotrypsin-like proteases. This study demonstrates that MNEI has two functional reactive sites corresponding to the predicted P(1) and P(2) positions of the reactive center loop. The data suggest that MNEI plays a regulatory role at extravascular sites to limit inflammatory damage due to proteases of cellular origin.  相似文献   

2.
Leukocyte elastase inhibitor (LEI) is a cytosolic component of lung macrophages and blood leukocytes that inhibits neutrophil elastase. LEI is a member of the serpin superfamily, these proteins, mostly protease inhibitors, are thought to undergo a conformational change upon complex formation with proteinase that involves partial insertion of the hinge region of the reactive centre loop into a beta-sheet of the inhibitor. In this work three mutations were produced in the hinge region of elastase inhibitor that abolish the inhibition activity of LEI and transform the protein in a substrate of the elastase. This result demonstrates that the inhibitory mechanism of serpin is common to LEI.  相似文献   

3.
The uncontrolled proteolytic activity in lung secretions during lung inflammatory diseases might be due to the resistance of membrane-bound proteases to inhibition. We have used a new fluorogenic neutrophil elastase substrate to measure the activity of free and membrane-bound human neutrophil elastase (HNE) in the presence of alpha1-protease inhibitor (alpha1-Pi), the main physiological inhibitor of neutrophil serine proteases in lung secretions. Fixed and unfixed neutrophils bore the same amounts of active HNE at their surface. However, the HNE bound to the surface of unfixed neutrophils was fully inhibited by stoichiometric amounts of alpha1-Pi, unlike that of fixed neutrophils. The rate of inhibition of HNE bound to the surface of unfixed neutrophils was the same as that of free HNE. In the presence of alpha1-Pi, membrane-bound elastase is almost entirely removed from the unfixed neutrophil membrane to form soluble irreversible complexes. This was confirmed by flow cytometry using an anti-HNE mAb. HNE activity rapidly reappeared at the surface of HNE-depleted cells when they were triggered with the calcium ionophore A23187, and this activity was fully inhibited by stoichiometric amounts of alpha1-Pi. HNE was not released from the cell surface by oxidized, inactive alpha1-Pi, showing that active inhibitor is required to interact with active protease from the cell surface. We conclude that HNE activity at the surface of human neutrophils is fully controlled by alpha1-Pi when the cells are in suspension. Pericellular proteolysis could be limited to zones of contact between neutrophils and subjacent protease substrates where natural inhibitors cannot penetrate.  相似文献   

4.
A structurally-diverse series of carboxylate derivatives based on the 1,2,5-thiadiazolidin-one 1,1 dioxide scaffold were synthesized and used to probe the S′ subsites of human neutrophil elastase (HNE) and neutrophil proteinase 3 (Pr 3). Several compounds are potent inhibitors of HNE but devoid of inhibitory activity toward Pr 3, suggesting that the S′ subsites of HNE exhibit significant plasticity and can, unlike Pr 3, tolerate various large hydrophobic groups. The results provide a promising framework for the design of highly selective inhibitors of the two enzymes.  相似文献   

5.
Physiological inhibitors were tested for their in vitro interaction with neutrophil proteinase 3 (PR3). The major plasma proteinase inhibitor of PR3 is alpha 1AT. We have developed a radioimmunoassay (RIA) for quantitative detection of PR3-alpha 1AT complexes formed in vivo in inflammatory exudates such as synovial fluid and plasma from patients with sepsis. Levels of PR3-alpha 1AT complexes correlated significantly with levels of human neutrophil elastase (HNE)-alpha 1AT complexes. Thus, in vivo alpha 1AT not only protects against excessive HNE activity, but also against excessive PR3 activity.  相似文献   

6.
The biological functions of human neutrophil protease 3 (Pr3) differ from those of neutrophil elastase despite their close structural and functional resemblance. Although both proteases are strongly cationic, their sequences differ mainly in the distribution of charged residues. We have used these differences in electrostatic surface potential in the vicinity of their active site to produce fluorescence resonance energy transfer (FRET) peptide substrates for investigating individual Pr3 subsites. The specificities of subsites S5 to S3' were investigated both kinetically and by molecular dynamic simulations. Subsites S2, S1', and S2' were the main definers of Pr3 specificity. Combinations of results for each subsite were used to deduce a consensus sequence that was complementary to the extended Pr3 active site and was not recognized by elastase. Similar sequences were identified in natural protein substrates such as NFkappaB and p21 that are specifically cleaved by Pr3. FRET peptides derived from these natural sequences were specifically hydrolyzed by Pr3 with specificity constants k(cat)/K(m) in the 10(6) m(-1) s(-1) range. The consensus Pr3 sequence may also be used to predict cleavage sites within putative protein targets like the proform of interleukin-18, or to develop specific Pr3 peptide-derived inhibitors, because none is available for further studies on the physiopathological function of this protease.  相似文献   

7.
The large size of the serpin reactive site loop (RSL) suggests that the role of the RSL in protease inhibition is more complex than that of presenting the reactive site (P1 residue) to the protease. This study examines the effect on inhibition of relocating the reactive site (Leu-358) of the serpin alpha(1)-antichymotrypsin either one residue closer (P2) or further (P1') from the base of the RSL (Glu-342). alpha(1)-Antichymotrypsin variants were produced by mutation within the P4-P2' region; the sequence ITLLSA was changed to ITLSSA to relocate the reactive site to P2 (Leu-357) and to ITITLS to relocate it to P1' (Leu-359). Inhibition of the chymotrypsin-like proteases human chymase and chymotrypsin and the non-target protease human neutrophil elastase (HNE) were analyzed. The P2 variant inhibited chymase and chymotrypsin but not HNE. Relative to P1, interaction at P2 was characterized by greater complex stability, lower inhibition rate constants, and increased stoichiometry of inhibition values. In contrast, the P1' variant inhibited HNE (stoichiometry of inhibition = 4) but not chymase or chymotrypsin. However, inhibition of HNE was by interaction with Ile-357, the P2 residue. The P1' site was recognized by all proteases as a cleavage site. Covalent-complexes resistant to SDS-PAGE were observed in all inhibitory reactions, consistent with the trapping of the protease as a serpin-acyl protease complex. The complete loss in inhibitory activity associated with lengthening the Glu-342-reactive site distance by a single residue and the enhanced stability of complexes associated with shortening this distance by a single residue are compatible with the distorted-protease model of inhibition requiring full insertion of the RSL into the body of the serpin and translocation of the linked protease to the pole opposite from that of encounter.  相似文献   

8.
A series of mechanism-based inhibitors designed to interact with the S′ subsites of serine proteases was synthesized and their inhibitory activity toward the closely-related serine proteases human neutrophil elastase (HNE) and proteinase 3 (PR 3) was investigated. The compounds were found to be time-dependent inhibitors of HNE and were devoid of any inhibitory activity toward PR 3. The results suggest that highly selective inhibitors of serine proteases whose primary substrate specificity and active sites are similar can be identified by exploiting differences in their S′ subsites. The best inhibitor (compound 16) had a kinact/KI value of 4580 M?1 s?1.  相似文献   

9.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

10.
It is now clear that NSPs (neutrophil serine proteases), including elastase, Pr3 (proteinase 3) and CatG (cathepsin G) are major pathogenic determinants in chronic inflammatory disorders of the lungs. Two unglycosylated natural protease inhibitors, SLPI (secretory leucocyte protease inhibitor) and elafin, and its precursor trappin-2 that are found in the lungs, have therapeutic potential for reducing the protease-induced inflammatory response. This review examines the multifaceted roles of SLPI and elafin/trappin-2 in the context of their possible use as inhaled drugs for treating chronic lung diseases such as CF (cystic fibrosis) and COPD (chronic obstructive pulmonary disease).  相似文献   

11.
The ability of plasma proteinase inhibitors to inactivate human chymase, a chymotrypsin-like proteinase stored within mast cell secretory granules, was investigated. Incubation with plasma resulted in over 80% inhibition of chymase hydrolytic activity for small substrates, suggesting that inhibitors other than alpha 2-macroglobulin were primarily responsible for chymase inactivation. Depletion of specific inhibitors from plasma by immunoadsorption using antisera against individual inhibitors established that alpha 1-antichymotrypsin (alpha 1-AC) and alpha 1-proteinase inhibitor (alpha 1-PI) were responsible for the inactivation. Characterization of the reaction between chymase and each inhibitor demonstrated in both cases the presence of two concurrent reactions proceeding at fixed relative rates. One reaction, which led to inhibitor inactivation, was about 3.5 and 4.0-fold faster than the other, which led to chymase inactivation. This was demonstrated in linear titrations of proteinase activity which exhibited endpoint stoichiometries of 4.5 (alpha 1-AC) and 5.0 (alpha 1-PI) instead of unity, and SDS gels of reaction products which exhibited a banding pattern indicative of both an SDS-stable proteinase-inhibitor complex and two lower Mr inhibitor degradation products which appear to have formed by hydrolysis within the reactive loop of each inhibitor. At inhibitor concentrations approaching those in plasma where inhibitor to chymase concentration ratios were in far excess of 4.5 and 5.0, the rate of chymase inactivation by both serpin inhibitors appeared to follow pseudo-first order kinetics. The "apparent" second order rate constants of inactivation determined from these data were about 3000-fold lower than the rate constants reported for human neutrophil cathepsin G and elastase with alpha 1-AC and alpha 1-PI, respectively. This suggests that chymase would be inhibited about 650-fold more slowly than these proteinases when released into plasma. These studies demonstrate that although chymase is inactivated by serpin inhibitors of plasma, both inhibitors are better substrates for the proteinase than they are inhibitors. This finding along with the slow rates of inactivation indicates that regulation of human chymase activity may not be a primary function of plasma.  相似文献   

12.
Macrophage inflammatory protein-1alpha (MIP-1alpha) is a chemokine that leads to leukocyte recruitment and activation at sites of infection. Controlling chemokine activity at sites of infection is important, since excess accumulation of leukocytes may contribute to localized tissue damage. Neutrophil-derived serine proteases modulate the bioactivity of chemokine and cytokine networks through proteolytic cleavage. Because MIP-1alpha is temporally expressed with neutrophils at sites of infection, we examined proteolysis of MIP-1alpha in vitro by the neutrophil-derived serine proteases: cathepsin G, elastase, and proteinase 3. Recombinant human MIP-1alpha isoforms LD78beta and LD78alpha were expressed and purified, and the protease cleavage sites were analyzed by mass spectrometry and peptide sequencing. Chemotactic activities of parent and cleavage molecules were also compared. Both LD78beta and LD78alpha were cleaved by neutrophil lysates at Thr16-Ser17, Phe24-Ile25, Tyr28-Phe29, and Thr31-Ser32. This degradation was inhibited by serine protease inhibitors phenylmethylsulfonyl fluoride and 4-(2-aminoethyl)-benzenesulfonyl fluoride. Incubation of the substrates with individual proteases revealed that cathepsin G preferentially cleaved at Phe24-Ile25 and Tyr28-Phe29, whereas elastase and proteinase 3 cleaved at Thr16-Ser17 and Thr31-Ser32. Proteolysis of LD78beta resulted in loss of chemotactic activity. The role of these proteases in LD78beta and LD78alpha degradation was confirmed by incubation with neutrophil lysates from Papillon-Lefevre syndrome patients, demonstrating that the cell lysates containing inactivated serine proteases could not degrade LD78beta and LD78alpha. These findings suggest that severe periodontal tissue destruction in Papillon-Lefevre syndrome may be related to excess accumulation of LD78beta and LD78alpha and dysregulation of the microbial-induced inflammatory response in the periodontium.  相似文献   

13.
Elafin and its precursor trappin-2 (also called pre-elafin) are potent protein inhibitors of neutrophil serine proteases such as leukocyte elastase and proteinase 3. Trappin-2 has unique conserved sequence motifs rich in Gln and Lys residues. These motifs are substrates for transglutaminases that may enable trappin-2 to be cross-linked to extracellular matrix proteins, thus anchoring the inhibitor at its site of action. We have used Western blotting and ELISA-based assays to demonstrate that both elafin and trappin-2 can be conjugated to various extracellular matrix proteins in vitro by a type 2 transglutaminase. Cross-linked elafin and trappin-2 still inhibited their target proteases. Surface plasmon resonance studies allowed the determination of the kinetic constants governing the interaction of fibronectin-bound elafin and trappin-2 with neutrophil elastase and proteinase 3. Both inhibitors were potent inhibitors when cross-linked to fibronectin by transglutamination, with equilibrium dissociation constants K(i) for their interaction with target proteases of 0.3 nM (elastase-elafin), 20 nM (proteinase 3-elafin), 0.3 nM (elastase-trappin-2), and 12 nM (proteinase 3-trappin-2). The conjugated inhibitors reacted more slowly with their target enzymes than did the soluble inhibitors, perhaps due to their immobilization, with association rate constants of 2-7 x 10(5) M(-)(1) s(-)(1) for elastase and 1-4 x 10(4) M(-)(1) s(-)(1) for proteinase 3. We believe this is the first demonstration that transglutaminase-mediated cross-linking of serine protease inhibitors to proteins preserves their inhibitory capacities.  相似文献   

14.
The secretory leukocyte protease inhibitor (SLPI), elafin, and its biologically active precursor trappin‐2 are endogeneous low‐molecular weight inhibitors of the chelonianin family that control the enzymatic activity of neutrophil serine proteases (NSPs) like elastase, proteinase 3, and cathepsin G. These inhibitors may be of therapeutic value, since unregulated NSP activities are linked to inflammatory lung diseases. However SLPI inhibits elastase and cathepsin G but not proteinase 3, while elafin targets elastase and proteinase 3 but not cathepsin G. We have used two strategies to design polyvalent inhibitors of NSPs that target all three NSPs and may be used in the aerosol‐based treatment of inflammatory lung diseases. First, we fused the elafin domain with the second inhibitory domain of SLPI to produce recombinant chimeras that had the inhibitory properties of both parent molecules. Second, we generated the trappin‐2 variant, trappin‐2 A62L, in which the P1 residue Ala is replaced by Leu, as in the corresponding position in SLPI domain 2. The chimera inhibitors and trappin‐2 A62L are tight‐binding inhibitors of all three NSPs with subnanomolar Kis, similar to those of the parent molecules for their respective target proteases. We have also shown that these molecules inhibit the neutrophil membrane‐bound forms of all three NSPs. The trappin‐2 A62L and elafin‐SLPI chimeras, like wild‐type elafin and trappin‐2, can be covalently cross‐linked to fibronectin or elastin by a tissue transglutaminase, while retaining their polypotent inhibition of NSPs. Therefore, the inhibitors described herein have the appropriate properties to be further evaluated as therapeutic anti‐inflammatory agents.  相似文献   

15.
Ovalbumin is an elastase substrate   总被引:1,自引:0,他引:1  
Ovalbumin is partially homologous in sequence with the proteinase inhibitors alpha 1-proteinase inhibitor and anti-thrombin III. The region of sequence in ovalbumin which corresponds to the reactive sites of these proteinase inhibitors is susceptible to attack by subtilisin, elastase, thermolysin, bromelain, and Bacillus cereus protease. The esterase activity of elastase is not inhibited by ovalbumin, but ovalbumin is efficiently cleaved by elastase. In contrast with these proteases, trypsin does not cleave ovalbumin.  相似文献   

16.
The interaction of a series of 1,2,5-thiadiazolidin-3-one 1,1 dioxide-based sulfonamides with neutrophil-derived serine proteases was investigated. The nature of the amino acid component, believed to be oriented toward the S' subsites, had a profound effect on enzyme selectivity. This series of compounds were found to be potent, time-dependent inhibitors of human neutrophil elastase (HNE) and were devoid of any inhibitory activity toward neutrophil proteinase 3 (PR 3) and cathepsin G (Cat G). The results of these studies demonstrate that exploitation of differences in the S' subsites of HNE and PR 3 can lead to highly selective inhibitors of HNE.  相似文献   

17.
The function of neutrophil protease 3 (PR3) is poorly understood despite of its role in autoimmune vasculitides and its possible involvement in cell apoptosis. This makes it different from its structural homologue neutrophil elastase (HNE). Endogenous inhibitors of human neutrophil serine proteases preferentially inhibit HNE and to a lesser extent, PR3. We constructed a single-residue mutant PR3 (I217R) to investigate the S4 subsite preferences of PR3 and HNE and used the best peptide substrate sequences to develop selective phosphonate inhibitors with the structure Ac-peptidylP(O-C6H4-4-Cl)2. The combination of a prolyl residue at P4 and an aspartyl residue at P2 was totally selective for PR3. We then synthesized N-terminally biotinylated peptidyl phosphonates to identify the PR3 in complex biological samples. These inhibitors resisted proteolytic degradation and rapidly inactivated PR3 in biological fluids such as inflammatory lung secretions and the urine of patients with bladder cancer. One of these inhibitors revealed intracellular PR3 in permeabilized neutrophils and on the surface of activated cells. They hardly inhibited PR3 bound to the surface of stimulated neutrophils despite their low molecular mass, suggesting that the conformation and reactivity of membrane-bound PR3 is altered. This finding is relevant for autoantibody binding and the subsequent activation of neutrophils in granulomatosis with polyangiitis (formerly Wegener disease). These are the first inhibitors that can be used as probes to monitor, detect, and control PR3 activity in a variety of inflammatory diseases.  相似文献   

18.
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor (serpin) which is thought to be a physiological regulator of activated protein C (APC). The residues F353-R354-S355 (P2-P1-P1′) constitute part of the reactive site loop of PCI with the R-S peptide bond being cleaved by the proteinase. Changing the reactive site P1 and P2 residues to those of either proteinase nexin-1, α1-proteinase inhibitor or heparin cofactor II resulted in a decrease in inhibitory activity towards thrombin and APC. Changing the P2 residue F353 → P generated a rPCI which was a better thrombin inhibitor, but was 10-fold less active with APC. While these results support the concept that the P1 and P2 residues are important in the specificity of PCI, they suggest that the reactive site residues are not the only determinant of serpin specificity. Kinetic analysis of the rPCI variants was consistent with PCI operating by a mechanism similar to that proposed for other serpins. In this model an intermediary complex forms between inhibitor and proteinase that can proceed to either cleavage of the inhibitor as substrate or formation of an inactive complex.  相似文献   

19.
Serpins such as antithrombin, heparin cofactor II, plasminogen activator inhibitor, antitrypsin, antichymotrypsin, and neuroserpin are involved in important biological processes by inhibiting specific serine proteases. Initially, the protease recognizes the mobile reactive loop of the serpin eliciting conformational changes, where the cleaved loop together with the protease inserts into β-sheet A, translocating the protease to the opposite side of inhibitor leading to its inactivation. Serpin interaction with proteases is governed mainly by the reactive center loop residues (RCL). However, in some inhibitory serpins, exosite residues apart from RCL have been shown to confer protease specificity. Further, this forms the basis of multi-specificity of some serpins, but the residues and their dimension at interface in serpin-protease complexes remain elusive. Here, we present a comprehensive structural analysis of the serpin-protease interfaces using bio COmplexes COntact MAPS (COCOMAPS), PRotein Interface Conservation and Energetics (PRICE), and ProFace programs. We have carried out interface, burial, and evolutionary analysis of different serpin-protease complexes. Among the studied complexes, non-inhibitory serpins exhibit larger interface region with greater number of residue involvement as compared to the inhibitory serpins. On comparing the multi-specific serpins (antithrombin and antitrypsin), a difference in the interface area and residue number was observed, suggestive of a differential mechanism of action of these serpins in regulating their different target proteases. Further, detailed study of these multi-specific serpins listed few essential residues (common in all the complexes) and certain specificity (unique to each complex) determining residues at their interfaces. Structural mapping of interface residues suggested that individual patches with evolutionary conserved residues in specific serpins determine their specificity towards a particular protease.  相似文献   

20.
Horse leukocyte elastase inhibitor rapidly forms stable, equimolar complexes with both human leukocyte elastase and cathepsin G, porcine pancreatic elastase, and bovine alpha-chymotrypsin. Formation of the inhibitor-pancreatic elastase complex results in peptide bond cleavage at the reactive site of the inhibitor so that a small peptide fragment representing the carboxyl-terminal sequence of the inhibitor is released. Sequence analysis of both this peptide, as well as that of an overlapping peptide obtained by enzymatic inactivation of native inhibitor with either Staphylococcus aureus metalloproteinase, Pseudomonas aeruginosa elastase, or cathepsin B, yields data which indicate that the reactive site encompasses a P1-P1' Ala-Met sequence. However, unlike the human endothelial plasminogen activator inhibitor, which also has a Met residue in the P1' position, oxidation of the horse inhibitor only slightly reduces its association rate constant with either of the elastolytic enzymes tested or with chymotrypsin. Comparison of the amino acid sequence at or near the reactive site of the horse inhibitor (P2-P18') with members of the serpin superfamily of proteinase inhibitors indicates that it not only belongs in this class but also represents the first example of a functionally active intracellular serpin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号