首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

2.
Rf1 is a nuclear gene that controls fertility restoration in cases of cytoplasmic male sterility caused by the Owen cytoplasm in sugar beet. In order to isolate the gene by positional cloning, a BAC library was constructed from a restorer line, NK198, with the genotype Rf1Rf1. The library contained 32,180 clones with an average insert size of 97.8 kb, providing 3.4 genome equivalents. Five AFLP markers closely linked to Rf1 were used to screen the library. As a result, we identified eight different BAC clones that were clustered into two contigs. The gap between the two contigs was filled by chromosome walking. To map the Rf1 region in more detail, we developed five cleaved amplified polymorphic sequence (CAPS) markers from the BAC DNAs identified, and carried out genotyping of 509 plants in the mapping population with the Rf1-flanking AFLP and CAPS markers. Thirteen plants in which recombination events had occurred in the vicinity of the Rf1 locus were identified and used to map the molecular markers relative to each other and to Rf1. In this way, we were able to restrict the possible location of the Rf1 gene to a minimum of six BAC clones spanning an interval of approximately 250 kb. The first two authors contributed equally to this work.  相似文献   

3.
The Rf3 gene restores the pollen fertility disturbed by S male sterile cytoplasm. In order to develop molecular markers tightly linked to Rf3, we used amplified fragment length polymorphism (AFLP) technique with near isogenic lines (NILs) and bulk segregant analysis (BSA). A BC1F1 population from a pair of NILs with different Rf3 locus was constructed and 528 primer combinations was screened. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. The closest marker E7P6 was 0.9 cM away from Rf3. Marker E3P1, 2.4 cM from Rf3, and E12M7, 1.8 cM from Rf3, were converted into a codominant CAPS and a dominant SCAR marker, and designated as CAPSE3P1 and SCARE12M7, respectively. These markers are useful for marker-assisted selection and map-based cloning of the Rf3 gene.  相似文献   

4.
AFLP and CAPS linkage maps of Cryptomeria japonica   总被引:7,自引:0,他引:7  
We have used two DNA marker systems, AFLP and CAPS, in a two-way pseudo-testcross strategy applied to an F1 population to construct genetic linkage maps of two local sugi cultivars. The AFLP markers detected about eight polymorphisms per parent per primer combination. Using 38 primer combinations, 612 AFLPs were detected in ’Haara 4’ and ’Kumotooshi’, of which 305 segregated in a 1:1 ratio (P>0.05). A total of 91 markers (83 AFLP and 8 CAPS) in ’Haara 4’ and 132 (123 AFLP and 9 CAPS) in ’Kumotooshi’ were distributed among 19 and 23 linkage groups, respectively, each of which included 2–17 markers. Maps of ’Haara 4’ and ’Kumotooshi’ spanned 1266.1 cM and 1992.3 cM, and covered approximately 50% and 80% of the sugi genome, respectively. Sequences derived from cDNA, which were previously used to construct a sugi linkage map, were also placed on our linkage maps as CAPS markers. Where a ’two-way pseudo-testcross’ is used, more than half of the sugi CAPS developed can be used to construct linkage maps for each parental family. The saturation of mapped markers, and the integration of several linkage maps derived from different mapping populations, is anticipated in the near future. Received: 15 August 1999 / Accepted: 27 August 1999  相似文献   

5.
Blast resistance in the indica cultivar (cv.) Q61 was inherited as a single dominant gene in two F2 populations, F2-1 and F2-2, derived from crosses between the donor cv. and two susceptible japonica cvs. Aichi Asahi and Lijiangxintuanheigu (LTH), respectively. To rapidly determine the chromosomal location of the resistance (R) gene detected in Q61, random amplified polymorphic DNA (RAPD) analysis was performed in the F2-1 population using bulked-segregant analysis (BSA) in combination with recessive-class analysis (RCA). One of the three linked markers identified, BA1126550, was cloned and sequenced. The R gene locus was roughly mapped on rice chromosome 8 by comparison of the BA1126550 sequence with rice sequences in the databases (chromosome landing). To confirm this finding, seven known markers, including four sequence-tagged-site (STS) markers and three simple-sequence repeat (SSR) markers flanking BA1126550 on chromosome 8, were subjected to linkage analysis in the two F2 populations. The locus was mapped to a 5.8 cM interval bounded by RM5647 and RM8018 on the short arm of chromosome 8. This novel R gene is therefore tentatively designated as Pi36(t). For fine mapping of the Pi36(t) locus, five additional markers including one STS marker and four candidate resistance gene (CRG) markers were developed in the target region, based on the genomic sequence of the corresponding region of the reference japonica cv. Nipponbare. The Pi36(t) locus was finally localized to an interval of about 0.6 cM flanked by the markers RM5647 and CRG2, and co-segregated with the markers CRG3 and CRG4. To physically map this locus, the Pi36(t)-linked markers were mapped by electronic hybridization to bacterial artificial chromosome (BAC) or P1 artificial chromosome (PAC) clones of Nipponbare, and a contig map was constructed in silico through Pairwise BLAST analysis. The Pi36(t) locus was physically delimited to an interval of about 17.0 kb, based on the genomic sequence of Nipponbare.  相似文献   

6.
A pseudo-testcross mapping strategy was used in combination with the random amplified polymorphism DNA (RAPD) and amplified fragment length polymorphism (AFLP) genotyping methods to develop two moderately dense genetic linkage maps for Betula platyphylla Suk. (Asian white birch) and B. pendula Roth (European white birch). Eighty F1 progenies were screened with 291 RAPD markers and 451 AFLP markers. We selected 230 RAPD and 362 AFLP markers with 1:1 segregation and used them for constructing the parent-specific linkage maps. The resultant map for B. platyphylla was composed of 226 markers in 24 linkage groups (LGs), and spanned 2864.5 cM with an average of 14.3 cM between adjacent markers. The linkage map for B. pendula was composed of 226 markers in 23 LGs, covering 2489.7 cM. The average map distance between adjacent markers was 13.1 cM. Clustering of AFLP markers was observed on several LGs. The availability of these white birch linkage maps will contribute to the molecular genetics and the implementation of marker-assisted selection in these important forest species.  相似文献   

7.
Introgressions into wheat from related species have been widely used as a source of agronomically beneficial traits. One such example is the introduction of the potent eyespot resistance gene Pch1 from the wild relative Aegilops ventricosa onto chromosome 7DL of wheat. In common with genes carried on many other such introgressions, the use of Pch1 in commercial wheat varieties has been hindered by linkage drag with yield-limiting traits. Attempts to break this linkage have been frustrated by a lack of co-dominant PCR markers suitable for identifying heterozygotes in F2 populations. We developed conserved orthologous sequence (COS) markers, utilising the Brachypodium distachyon (Brachypodium) genome sequence, to provide co-dominant markers in the Pch1 region. These were supplemented with previously developed sequence-tagged site (STS) markers and simple sequence repeat (SSR) markers. Markers were applied to a panel of varieties and to a BC6 F2 population, segregating between wheat and Ae. ventricosa over the distal portion of 7DL, to identify recombinants in the region of Pch1. By exploiting co-linearity between wheat chromosome 7D, Brachypodium chromosome 1, rice chromosome 6 and sorghum chromosome 10, Pch1 was located to an interval between the flanking markers Xwg7S and Xcos7-9. Furthermore candidate gene regions were identified in Brachypodium (364 Kb), rice (178 Kb) and sorghum (315 Kb) as a prelude to the map-based cloning of the gene. In addition, using homoeologue transferable markers, we obtained evidence that the eyespot resistances Pch1 and Pch2 on chromosomes 7D and 7A, respectively, are potentially homoeoloci. It is anticipated that the COS marker methodology could be used for the identification of recombinants in other introgressions into wheat from wild relatives. This would assist the mapping of genes of interest and the breaking of deleterious linkages to enable greater use of these introgressions in commercial varieties.  相似文献   

8.
We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific F2 population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206–60.3 cM) and 5 small (32.6–10.3 cM) linkage groups covering 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones, and these markers were evenly distributed across the genome. By using 30 primer combinations, we were able to generate 444 AFLP markers in the F2 population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than EcoRI/MseI markers within the linkage groups. Genes for the biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper. Received: 20 October 1999 / Accepted: 3 July 2000  相似文献   

9.
Melon necrotic spot virus (MNSV) is a member of the genus Carmovirus, which produces severe yield losses in melon and cucumber crops. The nsv gene is the only known natural source of resistance against MNSV in melon, and confers protection against all widespread strains of this virus. nsv has been previously mapped in melon linkage group 11, in a region spanning 5.9 cM, saturated with RAPD and AFLP markers. To identify the nsv gene by positional cloning, we started construction of a high-resolution map for this locus. On the basis of the two mapping populations, F2 and BC1, which share the same resistant parent PI 161375 (nsv/nsv), and using more than 3,000 offspring, a high-resolution genetic map has been constructed in the region around the nsv locus, spanning 3.2 cM between CAPS markers M29 and M132. The availability of two melon BAC libraries allowed for screening and the identification of new markers closer to the resistance gene, by means of BAC-end sequencing and mapping. We constructed a BAC contig in this region and identified the marker 52K20sp6, which co-segregates with nsv in 408 F2 and 2.727 BC1 individuals in both mapping populations. We also identified a single 100 kb BAC that physically contains the resistance gene and covers a genetic distance of 0.73 cM between both BAC ends. These are the basis for the isolation of the nsv recessive-resistance gene.  相似文献   

10.
 By using 25 primer combinations, 563 AFLP markers segregating in a recombinant inbred population (103 lines, F9) derived from L94/Vada were generated. The 38 AFLP markers in common to the existing AFLP/RFLP combined Proctor/Nudinka map, one STS marker, and four phenotypic markers with known map positions, were used to assign present AFLP linkage groups to barley chromosomes. The constructed high-density molecular map contains 561 AFLP markers, three morphological markers, one disease resistance gene and one STS marker, and covers a 1062-cM genetic distance, corresponding to an average of one marker per 1.9 cM. However, extremely uneven distributions of AFLP markers and strong clustering of markers around the centromere were identified in the present AFLP map. Around the centromeric region, 289 markers cover a genetic distance of 155 cM, corresponding to one marker per 0.5 cM; on the distal parts, 906 cM were covered by 277 markers, corresponding to one marker per 3.3 cM. Three gaps larger than 20 cM still exist on chromosomes 1, 3 and 5. A skeletal map with a uniform distribution of markers can be extracted from the high-density map, and can be applied to detect and map loci underlying quantitative traits. However, the application of this map is restricted to barley species since hardly any marker in common to a closely related Triticum species could be identified. Received: 16 June 1997 / Accepted: 9 October 1997  相似文献   

11.
Velvetbean (Mucuna sp., n=11), a self-pollinated species, is an important legume used in tropical agricultural systems in rotation with other crops for nematode management and/or soil improvement. A genetic map of velvetbean was constructed in order to identify potential molecular markers linked to important morphological and agronomic traits that would be particularly useful for developing and improving the species. Traits such as seed coat color, pod color, and pod pubescence were among the main parameters observed in a process of genetic diversity estimation. Two slightly divergent velvetbean accessions, PI364362 and Edgar Farm White, a land race from Alabama, were used to make an intraspecific F1 hybrid. Amplified fragment length polymorphism analysis (AFLP) detected an average of six polymorphic fragments per primer pair between the two parents. As expected for dominant markers, the sum of all AFLP bands from both parents was generally observed to be present in the AFLP profiles of the F1 progeny, indicating full penetrance and the dominant nature of AFLP markers. An F2 population was generated by self-pollinating a single F1 plant. Using 37 AFLP primer pairs, we detected 233 polymorphic markers of which 164 (70.4%) segregated in 3:1 Mendelian ratios, while the remaining 69 (29.6%) both segregated and were scorable. The genetic linkage map constructed from this population comprised 166 markers, including two morphological traits (pod color and pod pubescence). Twenty linkage groups were found with an average distance between markers of 34.4 cM, covering a total of 687.9 cM. The linkage groups contained from 2 to 12 loci each and the distance between two consecutive loci ranged from 0 to 21.8 cM. The newly designated morphological traits pod color (pdc) and pod pubescence (pdp) co-segregated with each other at a distance of 4.2 cM. Two DNA markers designated ACGCAG2 and ACTCTG1 were located in the same group as pdc and pdp. The AFLP linkage map provides opportunities for use in marker-assisted selection and in the detection of loci controlling morphologically important traits.Communicated by J. Dvorak  相似文献   

12.
White rust, caused by Albugo candida, is a very serious disease in crucifers. In Indian mustard (Brassica juncea), it can cause a yield loss to the extent of 89.9%. The locus Ac2(t) controlling resistance to white rust in BEC-144, an exotic accession of mustard, was mapped using RAPD markers. In the present study, we developed: (1) a more tightly linked marker for the white rust resistance gene, using AFLP in conjunction with bulk segregant analysis, and (2) a PCR-based cleaved amplified polymorphic sequence (CAPS) marker for the closely linked RAPD marker, OPB061000. The data obtained on 94 RILs revealed that the CAPS marker for OPB061000 and the AFLP marker E-ACC/M-CAA350 flank the Ac2(t) gene at 3.8 cM and 6.7 cM, respectively. Validation of the CAPS marker in two different F2 populations of crosses Varuna × BEC-144 and Varuna × BEC-286 was also undertaken, which established its utility in marker-assisted selection (MAS) for white rust resistance. The use of both flanking markers in MAS would allow only 0.25% misclassification and thus provide greater efficiency to selection.Communicated by C. Möllers  相似文献   

13.
In pepper, the TMV resistance locus L is syntenic to the tomato I2 and the potato R3 loci on chromosome 11. In this report, we identified pepper bacterial artificial chromosome (BAC) clones corresponding to the I2 and R3 loci and developed L-linked markers using the BAC sequence information. A BAC library was screened using the tomato I2C-1 gene as a probe. The resulting clones were sorted further by PCR screening, sequencing, and genetic mapping. A linkage analysis revealed that BAC clone 082F03 could be anchored to the target region near TG36 on chromosome 11. Using the 082F03 sequence, more BAC clones were identified and a BAC contig spanning 224 kb was constructed. Gene prediction analysis showed that there were at least three I2/R3 R gene analogs (RGAs) in the BAC contig. Three DNA markers closely linked (about 1.2 cM) to the L 4 gene were developed by using the BAC contig sequence. The single nucleotide polymorphism marker 087H3T7 developed in this study was subjected to linkage analysis in L 4 - and L 3 -segregating populations together with previously developed markers. The 189D23M marker, which is known to co-segregate with L 3 , was located on the opposite side of 087H3T7, about 0.7 cM away from L 4 . This supports the idea that L 3 and L 4 may be different genes closely linked within the region instead of different alleles at the same locus. Finally, use of flanking markers in molecular breeding program for introgression of L 4 to elite germplasm against most aggressive tobamoviruses pathotype P1,2,3 is discussed.  相似文献   

14.
We have identified, genetically mapped and physically delimited the chromosomal location of a new blast resistance gene from a broad spectrum resistant genotype ‘DHR9’. The segregation analysis of an F2 progeny of a cross between a susceptible cv. ‘HPU741’ and the resistant genotype ‘DHR9’ suggested that the resistance was conditioned by a single dominant gene. A RAPD marker, OPA82000, linked to the resistance gene was identified by the linkage analysis of 109 F2 individuals. By chromosomal landing of the sequence of RAPD marker on the sequence of reference cv. Nipponbare, the gene was mapped onto rice chromosome 12. Further linkage analysis with two polymorphic simple sequence repeat (SSR) markers, RM2529 and RM1337 of chromosome 12, confirmed the chromosomal localization of the resistance gene. Based on linkage analysis of 521 susceptible F2 plants and comparative haplotype structure analysis of the parental genotypes with SSR and sequence tagged site (STS) markers developed from the Nipponbare PAC/BAC clones of chromosome 12, the resistance gene was delimited within a 2 cM interval defined by STS marker, STS5, on the telomeric side and SSR marker, RRS6 on the centromeric side. By aligning the sequences of linked markers on the sequence of cv. Nipponbare, a ~4.18 Mb cross-over cold region near the centromere of chromosome 12 was delineated as the region of blast resistance gene. In this region, six putatively expressed NBS-LRR genes were identified by surveying the equivalent genomic region of cv. Nipponbare in the TIGR Whole Genome Annotation Database (http://www.tigr.org). NBS-LRR locus, LOC_Os12g18374 situated in BAC clone OJ1115_G02 (Ac. No. AL772419) was short-listed as a potential candidate for the resistance gene identified from DHR9. The new gene was tentatively designated as Pi-42(t). The markers tightly linked to gene will facilitate marker-assisted gene pyramiding and cloning of the resistance gene.  相似文献   

15.
Ma H  Chen S  Yang J  Chen S  Liu H 《Molecular biology reports》2011,38(7):4749-4764
Barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) are two economically important marine fish species for aquaculture in China, Korea and Japan. Construction of genetic linkage maps is an interesting issue for molecular marker-assisted selection (MAS) and for better understanding the genome structure. In the present study, we constructed genetic linkage maps for both fish species using AFLP and microsatellite markers based on an interspecific F1 hybrid family (female V. moseri and male V. variegatus). The female genetic map comprised 98 markers (58 AFLP markers and 40 microsatellite markers), distributing in 27 linkage groups, and spanning 637 cM with an average resolution of 8.9 cM. Whereas the male genetic map consisted of 86 markers (48 AFLP and 38 microsatellite markers) in 24 linkage groups, covering a length of 625 cM with an average marker spacing of 10 cM. The expected genome length was 1,128 cM in female and 1,115 cM in male, and the estimated coverage of genome was 56% for both genetic maps. Moreover, five microsatellite markers were observed to be common to both genetic maps. This is the first time to report the genetic linkage maps of V. moseri and V. variegatus that could serve as the basis for genetic improvement and selective breeding, candidate genes cloning, and genome structure research.  相似文献   

16.
Resistance to submergence stress is an important breeding objective in areas where rice cultivars are subjected to complete inundation for a week or more. The present study was conducted to develop a high-resolution map of the region surrounding the submergence tolerance gene Sub1 in rice, which derives from the Indian cultivar FR13A. Submergence screening of 8-day-old plants of F3 families kept for 14 days submerged in 60 cm of water allowed an accurate classification of Sub1 phenotypes. Bulked segregant analysis was used to identify AFLP markers linked to Sub1. A population of 2950 F2 plants segregating for Sub1 was screened with two RFLP markers flanking the Sub1 locus, 2.4 and 4.9 cM away. Submergence tolerance was measured in the recombinant plants, and AFLP markers closely linked to Sub1 were mapped. Two AFLP markers cosegregated with Sub1 in this large population, and other markers were localized within 0.2 cM of Sub1. The high-resolution map should serve as the basis for map-based cloning of this important locus, as it will permit the identification of BAC clones spanning the region. Received: 15 December 1999 / Accepted: 18 February 2000  相似文献   

17.
结合SSR标记和STS标记对家蚕无鳞毛翅基因的定位   总被引:3,自引:0,他引:3  
家蚕突变表型无鳞毛翅(non-lepis wing, nlw)由隐性基因nlw控制。由于家蚕雌性不发生交换, 文章采用有鳞毛翅品系P50和无鳞毛翅品系U06两个品系组配F1代及BC1回交群体, (U06×P50)×U06和U06×(U06×P50)分别记作BC1F和BC1M, 根据已经构建的家蚕SSR分子标记连锁图谱及已经发表的有关序列对nlw基因进行了连锁及定位分析。得到8个与nlw基因连锁的SSR(Simple sequence repeat)标记和1个STS(Sequence-tagged sites)标记。BC1F群中的所有正常翅个体均表现出与(U06×P50)F1相同的杂合带型; 而所有无鳞毛个体带型与亲本U06一致, 为纯合型。利用BC1M群体构建了关于nlw基因的遗传连锁图, 连锁图的遗传距离为125.7 cM, 与nlw基因最近的引物为STS标记cash2p, 图距为11.4 cM。  相似文献   

18.
Coffee leaf rust due to Hemileia vastatrix is one of the most serious diseases in Arabica coffee (Coffea arabica). A resistance gene (SH3) has been transferred from C. liberica into C. arabica. The present work aimed at developing sequence-characterized genetic markers for leaf rust resistance. Linkage between markers and leaf rust resistance was tested by analysing two segregating populations, one F2 population of 101 individuals and one backcross (BC2) population of 43 individuals, derived from a cross between a susceptible and a SH3-introgressed resistant genotype. A total of ten sequence-characterized genetic markers closely associated with the SH3 leaf rust resistance gene were generated. These included simple sequence repeats (SSR) markers, sequence-characterised amplified regions (SCAR) markers resulting from the conversion of amplified fragment length polymorphism (AFLP) markers previously identified and SCAR markers derived from end-sequences of bacterial artificial chromosome (BAC) clones. Those BAC clones were identified by screening of C. arabica genomic BAC library using a cloned AFLP-marker as probe. The markers we developed are easy and inexpensive to run, requiring one PCR step followed by gel separation. While three markers were linked in repulsion with the SH3 gene, seven markers were clustered in coupling around the SH3 gene. Notably, two markers appeared to co-segregate perfectly with the SH3 gene in the two plant populations analyzed. These markers are suitable for marker-assisted selection for leaf rust resistance and to facilitate pyramiding of the SH3 gene with other leaf rust resistance genes.  相似文献   

19.
Brown planthopper (BPH) is a destructive insect pest of rice in Asia. Identification and the incorporation of new BPH resistance genes into modern rice cultivars are important breeding strategies to control the damage caused by new biotypes of BPH. In this study, a major resistance gene, Bph18(t), has been identified in an introgression line (IR65482-7-216-1-2) that has inherited the gene from the wild species Oryza australiensis. Genetic analysis revealed the dominant nature of the Bph18(t) gene and identified it as non-allelic to another gene, Bph10 that was earlier introgressed from O. australiensis. After linkage analysis using MapMaker followed by single-locus ANOVA on quantitatively expressed resistance levels of the progenies from an F2 mapping population identified with marker allele types, the Bph18(t) gene was initially located on the subterminal region of the long arm of chromosome 12 flanked by the SSR marker RM463 and the STS marker S15552. The corresponding physical region was identified in the Nipponbare genome pseudomolecule 3 through electronic chromosome landing (e-landing), in which 15 BAC clones covered 1.612 Mb. Eleven DNA markers tagging the BAC clones were used to construct a high-resolution genetic map of the target region. The Bph18(t) locus was further localized within a 0.843-Mb physical interval that includes three BAC clones between the markers R10289S and RM6869 by means of single-locus ANOVA of resistance levels of mapping population and marker-gene association analysis on 86 susceptible F2 progenies based on six time-point phenotyping. Using gene annotation information of TIGR, a putative resistance gene was identified in the BAC clone OSJNBa0028L05 and the sequence information was used to generate STS marker 7312.T4A. The marker allele of 1,078 bp completely co-segregated with the BPH resistance phenotype. STS marker 7312.T4A was validated using BC2F2 progenies derived from two temperate japonica backgrounds. Some 97 resistant BC2F2 individuals out of 433 screened completely co-segregated with the resistance-specific marker allele (1,078 bp) in either homozygous or heterozygous state. This further confirmed a major gene-controlled resistance to the BPH biotype of Korea. Identification of Bph18(t) enlarges the BPH resistance gene pool to help develop improved rice cultivars, and the PCR marker (7312.T4A) for the Bph18(t) gene should be readily applicable for marker-assisted selection (MAS). K. K. Jena and J. U. Jeung contributed equally to this study.  相似文献   

20.
The pepper (Capsicum annuum) Bs3 gene confers resistance to avrBs3-expressing strains of the bacterial spot pathogen Xanthomonas campestris pv. vesicatoria. To physically delimit Bs3, a pepper YAC library was screened with two flanking DNA markers that are separated from Bs3 by 1.0 and 1.2 cM, respectively resulting in the identification of three YAC clones. Genetic mapping of the corresponding YACends revealed however, that these YACs do not cover Bs3 and subsequent screens with newly developed YACend markers failed to identify new YAC clones. Marker saturation at the Bs3 locus was carried out by amplified fragment length polymorphism (AFLP). The analysis of 1,024 primer combinations resulted in the identification of 47 new Bs3-linked AFLPs. High-resolution linkage mapping of Bs3 was accomplished by inspecting more than 4,000 F2 segregants resulting in a genetic resolution of 0.01 cM. Using tightly Bs3-linked YACend- and AFLP-derived markers we established a Bs3-spanning BAC contig and physically delimited the target gene within one BAC clone. The analysis of the Bs3-containing genomic region revealed substantial local variation in the correlation of genetic and physical distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号