首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared mononucleosomes that were obtained by hydrolysis of chromatin micrococcal nuclease from a number of sources with the length of a nucleosomal repeat 185--245 b. p. long. For hydrolysis of chromatin isolated from nuclei, a series of nucleosomes was formed: MN145 (core particle), MN165, MN175...MN205, MN215, the lengths of their DNAs differing (by approximately 10.n b.p. where n = 1, 2, 3...) by a factor of 10. A feature of hydrolysis of chromatin in nuclei was the appearance of an additional H1-depleted MN155 particle. It is suggested that upon isolation of chromatin from nuclei, its partial decompactization takes place. This decompactization changes the character of nuclease splitting and seems to be connected with rearrangement of histone H1. These observations demonstrate that besides core particles MN145 and chromatosomes MN165, the major particles of digest of nuclei appear to be MN155, and for isolated chromatin--MN175. Unlike this standard picture, mainly MN145, MN155, MN235 and MN245 are formed upon hydrolysis of sea urchin sperm nuclei.  相似文献   

2.
A series of mono- and dinucleosomal DNAs characterized by an about ten-base periodicity in the size were revealed in the micrococcal nuclease digests of Drosophila chromatin which have 180 +/- 5 base pair (bp) nucleosomal repeat. 20, 30, and 40 bp spacers were found to be predominant in chromatin by trimming DNA in dinucleosomes to the core position. Among several identified mononucleosomes (MN), MN170, MN180 and MN190 were isolated from different sources (the figures indicate the DNA length in bp). The presence of the 10, 20, and 30 bp long spacers was shown in these mononucleosomes by crosslinking experiments. The interaction of histone H3 with the spacer in the Drosophila MN180 particle was also shown by the crosslinking /5/. We conclude from these results that the 10 n bp long intercore DNA (n = 2, 3 and 4) is organized by histone H3, in particular, and together with the core DNA forms a continuous superhelix. Taken together, these data suggest that Drosophila chromatin consists of the regularly aligned and tightly packed MN180, as a repeating unit, containing 10 and 20 bp spacers at the ends of 180 bp DNA. Within the asymmetric and randomly oriented in chromatin MN180, the cores occupy two alternative positions spaced by 10 bp.  相似文献   

3.
The chromatin structure of morphologically-similar, but increasingly-malignant erythroleukemia cells was investigated using milk micrococcal nuclease digestion of isolated nuclei. The maximum solubilization of chromatin was unique for each of the three cell types: the least malignant (our Stage II) released 61% of its chromatin DNA, the most malignant (Stage IV), 46%, and the intermediate (Stage III) released 36%. An analysis of the nucleosome oligomers liberated by digestion also demonstrated differences. After 15 minutes of digestion when release was reaching its maximum, a greater proportion of large nucleosomal oligomers (sizes > trinucleosome) was released from Stage II nuclei than from Stage III or IV nuclei. The cell types also differed in the relative amount of H1-depleted mononucleosomes released. Analysis of the size of the double-stranded DNA associated with mononucleosomal particles showed that Stage III mononucleosomes were smaller (148 bp) than Stage IV (167 bp) or Stage II (190 bp). In addition, while the DNA of mononucleosomes depleted in H1 was smaller than that in the H1-containing species, relative size differences among the different cell types were retained. These data suggested that the difference in the mononuocleosome particle size resistant to nuclease digestion was independent of histone H1. Differences in nucleosome repeat length were also noted among the cell types. These studies have demonstrated dramatic differences in chromatin structure associated with malignant potential of an otherwise morphologically identical cell type. These findings may reflect changes in the relative amounts of H2a variants which we have previously described among the different malignant cell types.  相似文献   

4.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

5.
Composition and structural properties of pigeon brain hemisphere neuron chromatin have been studied. In these cells nucleosomal DNA repeat length is about 165 nucleotide pairs. The content of H1 and H2A histones was found to decrease by 18 and 30% respectively in comparison with the chromatin possessing the normal quantity of those histones. At the same time the content of protein uH2A (A-24), being the conjugate of H2A histone and ubiquitine, is increased. Mononucleosomes isolated from neuron chromatin was found to have relatively low electrophoretic mobility in polyacrylamide gel taking into account the size of their DNA fragment. Circular dichroism spectra of nucleosome particles show that the neuron mononucleosomes are more unfolded than the rat thymus ones. Data obtained allow to suggest that the short DNA repeat and accumulation of protein uH2A in neurons are the factors influencing the compactization of neuron chromatin.  相似文献   

6.
We have digested chicken erythrocyte soluble chromatin, both unstripped and stripped of histones H1 and H5 with either 0.6 M NaCl or DNA-cellulose, with micrococcal nuclease (MNase). Digestion of unstripped chromatin to monomeric particles initially paused at 188 bp DNA; continued digestion resulted in another pause at 177 before the 167 bp chromatosome and 146 bp core particle were obtained. Digestion of stripped chromatin to monomeric particles paused transiently at 177 bp; continued digestion resulted in marked pauses at 167 and 156 before the 146 bp core particle was obtained. These results suggested that 167 bp DNA representing two complete turns are bound to the histone octamer. Histone H1/H5 binds an additional two helical turns of DNA, thereby protecting up to 188 bp DNA against nuclease digestion. Monomeric particles containing 167 bp DNA were isolated from stripped chromatin and found by DNase I digestion to be a homogeneous population with a 10 bp DNA extension to either end relative to the 146 bp core particle. Thermal denaturation and circular dichroism spectroscopy showed stronger histone-DNA interactions and increased DNA winding as the length of DNA attached to the core histone octamer was decreased. Thermal denaturation also showed three classes of histone-DNA interaction: the core particle containing 167 bp DNA had tight binding of ten helical turns of DNA, intermediate binding of two helical turns and looser binding of four helical turns.  相似文献   

7.
We have removed histone H1 specifically from calf thymus nuclei by low pH treatment, and studied the digestion of such nuclei in comparison with undepleted nuclei. By a number of criteria the nuclei do not appear damaged. The DNA repeat-length in nuclear chromatin is found to be the same (192 +/- 4 bp) in the presence or absence of H1. These experiments demonstrate that the core histone complex of H2A, H2B, H3, and H4 can itself protect DNA sequences as long as 168 bp from nuclease. Our interpretation is that this represents an important structural element in chromatin, carrying two full turns of superhelical DNA. Depending on conditions of digestion this 168 bp fragment may be metastable and is normally rapidly converted by exonucleolytic trimming to the well-known "core-particle" containing 145 bp. Larger stable DNA fragments observed indigestion of H-1 depleted nuclei appear to arise from oligomers assembled from 168 bp cores in close contact exhibiting trimming of 0-20 bp at the ends. Electrophorograms of undepleted nuclear digests reveal oligomer bands in several size classes, each corresponding to one or more combinations of 168 bp particles, H1-protected spacers of about 20 bp length, and particles with ends trimmed to varying degrees.  相似文献   

8.
On the occurrence of nucleosome phasing in chromatin.   总被引:15,自引:0,他引:15  
D Lohr  K Tatchell  K E Van Holde 《Cell》1977,12(3):829-836
We have found that DNAase I digestion of yeast, HeLa and chicken erythrocyte nuclei produces a pattern of DNA fragments spaced 10 bases apart and extending to at least 300 bases. This "extended ladder" of DNA fragments is most clearly seen with yeast, and least clearly with chicken erythrocytes. The appearance of regular and discrete bands at sizes much larger than the repeat size shows that the core particles (140 bp of DNA + H2A, H2B, H3 H4) in at least some fraction of chromatin are spaced in a particular fashion, by discrete lengths of spacer DNA, and not randomly. Based on the abundance of small repeats in yeast and from experiments with nucleosome oligomers, we conclude that the extended ladder and nucleosomal phasing probably arise mainly from regions in the chromatin in which nucleosome cores are closely packed or closely spaced (140-160 bp X n). Contributions from less closely packed but still accurately phased nucleosomes, however, cannot be entirely excluded.  相似文献   

9.
Mononucleosomes released from Dictyostelium discoideum chromatin by micrococcal nuclease contained two distinctive DNA sizes (166-180 and 146 bp). Two dimensional gel electrophoresis suggested a lysine-rich protein protected the larger mononucleosomes from nuclease digestion. This was confirmed by stripping the protein from chromatin with Dowex resin. Subsequently, only the 146 bp mononucleosome was produced by nuclease digestion. Reconstitution of the stripped chromatin with the purified lysine-rich protein resulted in the reappearance of the larger mononucleosomes. Two-dimensional gel electrophoresis showed the protein was associated with mononucleosomes. Hence, the protein functions as an H1 histone in bringing the two DNA strands together at their exit point from the nucleosome. Trypsin digestion of the lysine-rich protein in nuclei resulted in a limiting peptide of approx. 10 kilodaltons. Trypsin concentrations which degraded the protein to peptides of 12-14 kilodaltons and partially degraded the core histones did not change the DNA digestion patterns obtained with micrococcal nuclease. Thus, the trypsin-resistant domain of the lysine-rich protein is able to maintain chromatosome structure.  相似文献   

10.
The technique of nick translation of nuclei (Levitt, A., Axel, R., and Cedar, H. (1979) Dev. Biol. 69, 496-505) has been used in HeLa cells to label DNase I-sensitive regions. Micrococcal nuclease digestion of the nick translated nuclei was followed by a low ionic strength gel electrophoresis system which separates different types of mononucleosomes. The major label was observed in the vicinity of high mobility group protein containing mononucleosomes. However, further analysis revealed that the particle does not sediment in the position of mononucleosomes on a sucrose gradient. Two alternative explanations are discussed as the possible source of this particle. It is either a high mobility group protein containing nucleosome in some unfolded conformation or the labeled particle originates from discrete DNA fragments, wrapped around some nonhistone proteins, located in a highly DNase I-sensitive region, which is resistant to micrococcal nuclease digestion.  相似文献   

11.
The experiments on reconstruction of chromatin (without H1) from DNA and histone octamer containing either H2B from sea urchin sperm (H2B-S) or H2B from calf thymus are reported. It has been shown that H2B-S affects the mode of interaction of histones with DNA during the reconstitution of nucleosomal particles on one hand and on the other hand H2B-S plays a major role in the interactions of reconstituted mononucleosomes. These interactions result in supranucleosomal structures.  相似文献   

12.
Rat liver chromatin was digested by micrococcal nuclease. Chromatin subunits (or mononucleosomes) were isolated by sucrose density gradient and subsequently fractionated by 6% polyacrylamide gel electrophoresis into two major components. One component (MN1) of the mononucleosomes had a higher mobility, contained histones H2A, H2B, H3, H4, and shorter DNA fragments (140 base pairs) while the other (MN2) contained all five histones and longer DNA fragments (180 base pairs). Both submononucleosomes (MN1 and MN2) were found to contain nonhistone chromatin proteins (NHCP). By electrophoresis in 15% sodium dodecyl sulfate-polyacrylamide gel, 9 and 11 major fractions of NHCP were identified in the submononucleosomes MN1 and MN2, respectively. It was also observed that treatment of mononucleosomes with 0.6 M NaCl removes most of these NHCP and histone H1 except for two major NHCP which remain in the core particles.  相似文献   

13.
Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these ‘proto-chromatosomes’ are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.  相似文献   

14.
Comparison has been made between sea urchin and starfish sperm chromatin. The only protein by which chromatins from these sources differ significantly is histone H2B. Sea urchin sperm H2B is known to contain an elongated N-terminal region enriched in Arg. Analysis of the micrococcal nuclease digests of sea urchin and starfish nuclei in one- and two-dimensional electrophoresis has shown that sperm chromatin of both animals consists of repeated units similar in general features to those of rat thymus or liver. However, DNA repeat length in chromatin of sea urchin sperm (237 bp) is higher than that of starfish sperm (224 bp), while the core DNA length does not differ and is the same as in the chromatin of rat liver or thymus. A suggestion has been made that the N-terminal region of histone H2B is associated with the linker DNA and is responsible for the increased length of sea urchin linker DNA.  相似文献   

15.
Reconstitution of mononucleosomes from DNA and core histones was carried out to study the positioning of histone octamers on the DNA. Using random DNA molecules in the 200 to 250 bp size range we found that the reconstitution products consisted of a mixture of three different types of particles that could be separated by low ionic strength gel electrophoresis. In one particle, DNA was complexed with histones along its entire length indicating the binding of more than one histone octamer. The second particle contained only one histone core that was always associated, however, with the terminal 145 bp of the DNA regardless of its sequence which can be ascribed to a DNA end effect. Only the third particle consisted of histone octamers bound at internal positions of the DNA and is therefore the only particle suitable for investigating the influence of the DNA sequence on the positioning of the histone cores. A defined 154 bp pBR 322 restriction fragment that contains three BspRI restriction sites was also reconstituted with core histones. The accessibility of these sites to BspRI was measured in order to delineate the utility of restriction nucleases as probes for the structure of chromatin. Two sites located close to the center of the DNA were less susceptible by at least a factor of 1000 as compared to free DNA while the susceptibility of the third site in the terminal section of the DNA decreased about 50 fold after reconstitution.  相似文献   

16.
Histone H 1-depleted chromatin made from acid extracted, intact nuclei was exposed to various ionic strengths. NaCl concentrations above 0.3 M sufficed to generate novel oligonucleosomes formerly characterized as "compact oligomers" and "spacerless dinucleosomes". Such particles could not be identified within H 1-depleted nuclei or chromatin at low ionic strengths. Their formation, proceeding within days at 0 degrees C, was accelerated by increasing ionic strengths. The data was discussed in terms of a salt-induced motion of nucleosomal core particles along the DNA to form compact oligomers.  相似文献   

17.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

18.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

19.
DNA lengths in the structural repeat units of Chinese hamster ovary (CHO) and chicken erythrocyte chromatin were compared by analyzing the sizes of DNA fragments produced after treatment of nuclei with staphylococcal nuclease. The repeat length of CHO chromatin (173 +- 4 BP) is about 20 base pairs (BP) smaller than that of chicken erythrocyte chromatin (194 +- 8 BP). Repeat lengths of rat liver and calf thymus chromatin were found to be about 10 BP shorter than that of chicken erythrocyte chromatin. Thus significant variations occur in repeat units of chromatin of higher eukaryotes. These variations occur in the lengths of "spacer" (or "internucleosomal") DNA segments, not in "core particle" (or "nucleosomal") DNA lengths. The concept of spacer regions and the possible influence of H1 histones is discussed.  相似文献   

20.
Nucleosomes and subnucleosomes: heterogeneity and composition   总被引:1,自引:0,他引:1  
Previous studies (Varshavsky, Bakayev and Georgiev, 1976a) have shown that chromatin subunits (mononucleosomes) and their oligomers in a mild staphylococcal nuclease digest of chromatin display a heterogeneous content of histone H1. We now report that a mild staphylococcal nuclease digest of either chromatin or nuclei from mouse Ehrlich tumor cells contains mononucleosomes of three discrete kinds. The smallest mononucleosome (MN1) contains all histones except H1 and a DNA fragment 140 base pairs (bp) long. The intermediate mononucleosome (MN2) contains all five histones and a DNA fragment 170 bp long. The third mononucleosome (MN3) also contains all five histones, but its DNA fragment is longer and more heterogeneous in size (180–200 bp). Most of the MN3 particles are rapidly converted by nuclease into mononucleosomes MN1 and MN2 There exists, however, a relatively nuclease-resistant subpopulation of the MN3 mononucleosomes. These 200 bp MN1 particles contain not only histones but also nonhistone proteins, and are significantly more resistant to nuclease than the bulk of MN3 particles and the smaller mononucleosomes MN1 and MN2.There are eight major kinds of staphylococcal nuclease-produced soluble subnucleosomes (SN). The SN1 is a set of naked double-stranded DNA fragments ~20 bp long. The SN2 is a complex of a specific basic nonhistone protein (molecular weight ~16,000 daltons) and a DNA fragment ~27 bp long. The SN3 contains histone H4, the above-mentioned specific nonhistone protein and a DNA fragment ~27 bp long. The SN4 contains histones H2a, H2b, H4 and a DNA fragment ~45 bp long. The SN5 contains histones H2a, H2b, H3 and a DNA fragment ~55 bp long. The SN6 is a complex of histone H1 and a DNA fragment ~35 bp long. Subnucleosomes SN7 and SN8 each contain all the histones except H1, and DNA fragments ~100 and ~120 bp long, respectively.Nuclease digestion of isolated mono- or dinucleosomes does not produce some of the subnucleosomes. These and related findings indicate that the cleavage required to generate these subnucleosomes result from some aspect of chromatin structure which is lost upon digestion to mono- and dinucleosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号