首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We previously demonstrated that GM-CSF/IFN-alpha combination allowed the differentiation of monocytes from HIV-infected patients into dendritic cells (DCs) exhibiting high CD8(+) T cell stimulating abilities. The present study was aimed at characterizing the ability of DCs generated in the presence of GM-CSF and IFN-alpha to induce CD4 T cell responses. DCs were generated from monocytes of HIV-infected patients in the presence of GM-CSF with either IFN-alpha (IFN-DCs) or IL-4 (IL-4-DCs) for 7 days. Eleven patients receiving highly active antiretroviral therapy and exhibiting CD4 cell counts above 400/mm(3) and plasma HIV-RNA <50 copies/ml for at least 1 year were included in the study. Both DC populations were found to be defective in inducing autologous (in response to tuberculin or HIV-p24) or allogeneic CD4 T cell proliferation. Neutralization of IL-10 during the differentiation of IFN-DCs, but not during the DC-T cell coculture, significantly increased their ability to stimulate autologous CD4 T cell proliferation in response to tuberculin and allogeneic CD4 T cell proliferation (4.1-fold and 3.0-fold increases, respectively, at the DC to T cell ratio of 1:10). Moreover, IL-10 neutralization and CD4(+)CD25(+) T cell depletion synergistically act to dramatically increase HIV-p24-specific CD4 T cell responses induced by IFN-DCs (31.7-fold increase) but not responses induced by IL-4-DCs. Taken together, our results indicate that IFN-DCs are more efficient than IL-4-DCs to stimulate CD4(+) T cell proliferation, further supporting their use for immune-based therapy in HIV infection.  相似文献   

2.
Human plasmacytoid precursor dendritic cells (ppDC) are a major source of type I IFN upon exposure to virus and bacteria, yet the stimulus causing their maturation into DCs is unknown. After PBMC activation with immunostimulatory bacterial DNA sequences (CpG-DNA) we found that ppDC are the primary source of IFN-alpha. In fact, either CpG-DNA or dsRNA (poly(I:C)) induced IFN-alpha from purified ppDC. Surprisingly, only CpG-DNA triggered purified ppDC survival, maturation, and production of TNF, GM-CSF, IL-6, and IL-8, but not IL-10 or IL-12. Known DC activators such as CD40 ligation triggered ppDC maturation, but only IL-8 production, while bacterial LPS was negative for all activation criteria. An additional finding was that only CpG-DNA could counteract IL-4-induced apoptosis in ppDC. Therefore, CpG-DNA represents a pathogen-associated molecular pattern for ppDC. In contrast to these finding, CpG-DNA, like LPS, caused TNF, IL-6, and IL-12 release from PBMC and purified monocytes; however, differentiation of monocytes into DCs with GM-CSF and IL-4 unexpectedly resulted in refractoriness to CpG-DNA, but not LPS. Taken together, these results suggest that within a DC subset a multiplicity of responses can be generated by distinct environmental stimuli and that responses to a given stimulus may be dissimilar between DC subsets.  相似文献   

3.
IFN-alpha is an important cytokine for the generation of a protective T cell-mediated immune response to viruses. In this study, we asked whether IFN-alpha can regulate the functional properties of dendritic cells (DCs). We show that monocytes cultured in the presence of GM-CSF and IFN-alpha can differentiate into DCs (IFN-alpha-derived DCs (IFN-DCs)). When compared with DCs generated in the presence of GM-CSF and IL-4 (IL-4-derived DCs), IFN-DCs exhibited a typical DC morphology and expressed, in addition to DC markers CD1a and blood DC Ag 4, a similar level of costimulatory and class II MHC molecules, but a significantly higher level of MHC class I molecules. After maturation with CD40 ligand, IFN-DCs up-regulated costimulatory, class I and II MHC molecules and expressed mature DC markers such as CD83 and DC-lysosome-associated membrane protein. IFN-DCs were endowed with potent functional activities. IFN-DCs secreted large amounts of the inflammatory cytokines IL-6, IL-10, TNF-alpha, IL-1beta, and IL-18, and promoted a Th1 response that was independent of IL-12p70 and IL-18, but substantially inhibited by IFN-alpha neutralization. Furthermore, immature IFN-DCs induced a potent autologous Ag-specific immune response, as evaluated by IFN-gamma secretion and expansion of CD8(+) T cells specific for CMV. Also, IFN-DCs expressed a large number of Toll-like receptors (TLRs), including acquisition of TLR7, which is classically found on the natural type I IFN-producing plasmacytoid DCs. Like plasmacytoid DCs, IFN-DCs could secrete IFN-alpha following viral stimulation or TLR7-specific stimulation. Taken together, these results illustrate the critical role of IFN-alpha at the early steps of immune response to pathogens or in autoimmune diseases.  相似文献   

4.
In the skin, there are unique dendritic cells called Langerhans cells, however, it remains unclear why this particular type of dendritic cell resides in the epidermis. Langerhans cell-like dendritic cells (LCs) can be generated from CD14(+) monocytes in the presence of GM-CSF, IL-4, and TGF-beta1. We compared LCs with monocyte-derived dendritic cells (DCs) generated from CD14(+) monocytes in the presence of GM-CSF and IL-4 and examined the effect of exposure to two distinct bacterial stimuli via Toll-like receptors (TLRs), such as peptidoglycan (PGN) and lipopolysaccharide (LPS) on LCs and DCs. Although stimulation with both ligands induced a marked up-regulation of CD83 expression on DCs, PGN but not LPS elicited up-regulation of expression CD83 on LCs. Consistent with these results, TLR2 and TLR4 were expressed on DCs, whereas only TLR2 was weakly detected on LCs. These findings suggest the actual feature of epidermal Langerhans cells with low-responsiveness to skin commensals.  相似文献   

5.
It is critical to identify the developmental stage of dendritic cells (DCs) that is most efficient at inducing CD8+ T cell responses. Immature DCs can be generated from monocytes with GM-CSF and IL-4, while maturation is accomplished by the addition of stimuli such as monocyte-conditioned medium, CD40 ligand, and LPS. We evaluated the ability of human monocytes and immature and mature DCs to induce CD8+ effector responses to influenza virus Ags from resting memory cells. We studied replicating virus, nonreplicating virus, and the HLA-A*0201-restricted influenza matrix protein peptide. Sensitive and quantitative assays were used to measure influenza A-specific immune responses, including MHC class I tetramer binding assays, enzyme-linked immunospot assays for IFN-gamma production, and generation of cytotoxic T cells. Mature DCs were demonstrated to be superior to immature DC in eliciting IFN-gamma production from CD8+ effector cells. Furthermore, only mature DCs, not immature DCs, could expand and differentiate CTL precursors into cytotoxic effector cells over 7 days. An exception to this was immature DCs infected with live influenza virus, because of the virus's known maturation effect. Finally, mature DCs pulsed with matrix peptide induced CTLs from highly purified CD8+ T cells without requiring CD4+ T cell help. These differences between DC stages were independent of Ag concentrations or the number of immature DCs. In contrast to DCs, monocytes were markedly inferior or completely ineffective stimulators of T cell immunity. Our data with several qualitatively different assays of the memory CD8+ T cell response suggest that mature cells should be considered as immunotherapeutic adjuvants for Ag delivery.  相似文献   

6.
In the present study we evaluated the role of IFN-alpha in the generation of dendritic cells (IFN-DCs) with priming activity on CD8(+) T lymphocytes directed against human tumor Ags. A 3-day treatment of monocytes, obtained as adherent PBMCs from HLA-A*0201(+) healthy donors, with IFN-alpha and GM-CSF led to the differentiation of DCs displaying a semimature phenotype, but promptly inducing CD8(+) T cell responses after one in vitro sensitization with peptides derived from melanoma (gp100(209-217) and MART-1/Melan-A(27-35)) and adenocarcinoma (CEA(605-613)) Ags. However, these features were lost when IFN-DCs were generated from immunosorted CD14(+) monocytes. The ability of adherent PBMCs to differentiate into IFN-DCs expressing higher levels of costimulatory molecules and exerting efficient T cell priming capacity was associated with the presence of contaminating NK cells, which underwent phenotypic and functional activation upon IFN-alpha treatment. NK cell boost appeared to be mediated by both direct and indirect (i.e., mediated by IFN-DCs) mechanisms. Experiments performed to prove the role of contaminating NK cells in DC differentiation showed that IFN-DCs generated in the absence of NK were phenotypically less mature and could not efficiently prime antitumor CD8(+) lymphocytes. Reciprocally, IFN-DCs raised from immunosorted CD14(+) monocytes regained their T cell priming activity when NK cells were added to the culture before IFN-alpha and GM-CSF treatment. Together, our data suggest that the ability of IFN-DCs to efficiently prime anti-tumor CD8(+) T lymphocytes relied mostly on the positive cross-talk occurring between DCs and NK cells upon stimulation with IFN-alpha.  相似文献   

7.
Human B cells and plasmacytoid dendritic cells recognize CpG motifs within microbial DNA via Toll-like receptor 9. Two functionally distinct types of CpG motif containing oligonucleotides (CpG ODN) have been described, CpG-A and CpG-B. In contrast to CpG-B, CpG-A induces high amounts of type I IFN (IFN-alpha and IFN-beta) in plasmacytoid dendritic cells. In the present study, we examined the effects of CpG-A on human primary monocytes. In PBMC stimulated with CpG-A and GM-CSF, monocytes showed excellent survival, increased in size and granularity, and within 3 days developed a dendritic cell-like phenotype that was characterized by down-regulation of CD14, partial up-regulation of CCR7, and an increased surface expression of costimulatory and Ag-presenting molecules. This effect could be inhibited by a combination of blocking Abs to type I IFN, and no such CpG-A-induced changes were observed in purified monocytes. Although IL-12 production by this dendritic cell-like phenotype required additional stimulation with CD40 ligand, this cell type spontaneously up-regulated IL-15 expression. Consistent with the known effect of IL-15 on effector and memory CD8 T cells, the frequency of CCR7(-)/CD45RA(-) CD8 T cells was selectively increased in allogeneic T cell assays. Furthermore, this dendritic cell type was more potent to support both the generation and the IFN-gamma production of autologous influenza matrix peptide-specific memory CD8 T cells as compared with dendritic cells generated in the presence of GM-CSF and IL-4. In conclusion, monocytes exposed to the cytokine milieu provided by CpG-A rapidly develop a dendritic cell-like phenotype that is well equipped to support CD8 T cell responses.  相似文献   

8.
Many mechanisms involving TNF-alpha, Th1 responses, and Th17 responses are implicated in chronic inflammatory autoimmune disease. Recently, the clinical impact of anti-TNF therapy on disease progression has resulted in re-evaluation of the central role of this cytokine and engendered novel concept of TNF-dependent immunity. However, the overall relationship of TNF-alpha to pathogenesis is unclear. Here, we demonstrate a TNF-dependent differentiation pathway of dendritic cells (DC) evoking Th1 and Th17 responses. CD14(+) monocytes cultured in the presence of TNF-alpha and GM-CSF converted to CD14(+) CD1a(low) adherent cells with little capacity to stimulate T cells. On stimulation by LPS, however, they produced high levels of TNF-alpha, matrix metalloproteinase (MMP)-9, and IL-23 and differentiated either into mature DC or activated macrophages (M phi). The mature DC (CD83(+) CD70(+) HLA-DR (high) CD14(low)) expressed high levels of mRNA for IL-6, IL-15, and IL-23, induced naive CD4 T cells to produce IFN-gamma and TNF-alpha, and stimulated resting CD4 T cells to secret IL-17. Intriguingly, TNF-alpha added to the monocyte culture medium determined the magnitude of LPS-induced maturation and the functions of the derived DC. In contrast, the M phi (CD14(high)CD70(+)CD83(-)HLA-DR(-)) produced large amounts of MMP-9 and TNF-alpha without exogenous TNF stimulation. These results suggest that the TNF priming of monocytes controls Th1 and Th17 responses induced by mature DC, but not inflammation induced by activated M phi. Therefore, additional stimulation of monocytes with TNF-alpha may facilitate TNF-dependent adaptive immunity together with GM-CSF-stimulated M phi-mediated innate immunity.  相似文献   

9.
Our earlier study showed that GM-CSF has the potential not only to prevent, but also to suppress, experimental autoimmune thyroiditis (EAT). GM-CSF-induced EAT suppression in mice was accompanied by an increase in the frequency of CD4(+)CD25(+) regulatory T cells that could suppress mouse thyroglobulin (mTg)-specific T cell responses in vitro, but the underlying mechanism of this suppression was not elucidated. In this study we show that GM-CSF can induce dendritic cells (DCs) with a semimature phenotype, an important characteristic of DCs, which are known to play a critical role in the induction and maintenance of regulatory T cells. Adoptive transfer of CD4(+)CD25(+) T cells from GM-CSF-treated and mTg-primed donors into untreated, but mTg-primed, recipients resulted in decreased mTg-specific T cell responses. Furthermore, lymphocytes obtained from these donors and recipients after adoptive transfer produced significantly higher levels of IL-10 compared with mTg-primed, untreated, control mice. Administration of anti-IL-10R Ab into GM-CSF-treated mice abrogated GM-CSF-induced suppression of EAT, as indicated by increased mTg-specific T cell responses, thyroid lymphocyte infiltration, and follicular destruction. Interestingly, in vivo blockade of IL-10R did not affect GM-CSF-induced expansion of CD4(+)CD25(+) T cells. However, IL-10-induced immunosuppression was due to its direct effects on mTg-specific effector T cells. Taken together, these results indicated that IL-10, produced by CD4(+)CD25(+) T cells that were probably induced by semimature DCs, is essential for disease suppression in GM-CSF-treated mice.  相似文献   

10.
Differential regulation of human blood dendritic cell subsets by IFNs   总被引:29,自引:0,他引:29  
Based on the relative expression of CD11c and CD1a, we previously identified subsets of dendritic cells (DCs) or DC precursors in human peripheral blood. A CD1a(+)/CD11c(+) population (CD11c(+) DCs), also called myeloid DCs, is an immediate precursor of Langerhans cells, whereas a CD1a(-)/CD11c(-) population (CD11c(-) DCs), sometimes called lymphoid DCs but better known as plasmacytoid DCs, is composed of type I IFN (IFN-alpha beta)-producing cells. Here, we investigate the effects of IFN-alpha beta and IFN-gamma as well as other cytokines on CD11c(+) and CD11c(-) DC subsets, directly isolated from the peripheral blood, instead of in vitro-generated DCs. IFN-gamma and IFN-alpha, rather than GM-CSF, were the most potent cytokines for enhancing the maturation of CD11c(+) DCs. Incubation of CD11c(+) DCs with IFN-gamma also resulted in increased IL-12 production, and this IL-12 allowed DCs to increase Th1 responses by alloreactive T cells. In contrast, IFN-alpha did not induce IL-12 but, rather, augmented IL-10 production. IFN-alpha-primed matured CD11c(+) DCs induced IL-10-producing regulatory T cells; however, this process was independent of the DC-derived IL-10. On the other hand, IFN-alpha by itself neither matured CD11c(-) DCs nor altered the polarization of responding T cells, although this cytokine was a potent survival factor for CD11c(-) DCs. Unlike IFN-alpha, IL-3 was a potent survival factor and induced the maturation of CD11c(-) DCs. The IL-3-primed CD11c(-) DCs activated T cells to produce IL-10, IFN-gamma, and IL-4. Thus, CD11c(+) and CD11c(-) DC subsets play distinct roles in the cytokine network, especially their responses to IFNs.  相似文献   

11.
12.
Differentiation of CD34(+) haematopoietic stem cells into functional dendritic cells (DC) was investigated using the mAb CMRF-44 and other mAb against DC-associated markers. GM-CSF mobilized peripheral blood stem cells were obtained from healthy donors by leukapheresis. CD34(+) cells were purified using CD34(+)-positive selection,and subsequent immunomagnetic depletion of CD14 and CD2 cells. CD34(+) cells were cultured in medium supplemented with one or more of GM-CSF,TNF-alpha, IL-4 or IL-6. CMRF-44 Ag expression was monitored by flow cytometry, and DC function by allogeneic MLR and tetanus toxoid(TT) presentation assays. CD34(+) cells quickly acquired the CMRF-44 Ag when cultured in the presence of TNF-alpha.By day 3, more than 50% of the cells were double-positive for CD34 and CMRF-44. CD34 expression was gradually lost, so that by day 9, the majority of the cells were CD34(-)/CMRF-44(+).GM-CSF and TNF-alpha also induced CD40 expression, and up-regulation of CD54 and MHC class II on CD34(+) cells; their expression was correlated to the CMRF-44 Ag. Day 3 CD34(+)/CMRF-44(+) cells,but not CD34(+)/CMRF-44(-) cells, become potent APC when cultured further with GM-CSF plus TNF-alpha. These CMRF-44(+) cells were potent inducers of Th1-type immune response in the primary allogeneic MLR and present TT to autologous CD4(+) T cells. TNF-alpha alone is sufficient to induce CMRF-44 expression on CD34(+) cells, but in combination with GM-CSF expands the CMRF-44(+) population. CMRF-44 expression correlates with DC function and may be a useful early marker for commitment of CD34(+) cells to the DC differentiation pathway.  相似文献   

13.
Mature dendritic cells (DCs) are central to the development of optimal T cell immune responses. CD40 ligand (CD40L, CD154) is one of the most potent maturation stimuli for immature DCs. We studied the role of three signaling pathways, p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and phosphoinositide-3-OH kinase (PI3K), in CD40L-induced monocyte-derived DC activation, survival, and expansion of virus-specific CD8(+) T cell responses. p38 MAPK pathway was critical for CD40L-mediated up-regulation of CD83, a marker of DC maturation. CD40L-induced monocyte-derived DC IL-12 production was mediated by both the p38 MAPK and PI3K pathways. CD40L-mediated DC survival was mostly mediated by the PI3K pathway, with smaller contributions by p38 MAPK and ERK pathways. Finally, the p38 MAPK pathway was most important in mediating CD40L-stimulated DCs to induce strong allogeneic responses as well as expanding virus-specific memory CD8(+) T cell responses. Thus, although the p38 MAPK, PI3K, and ERK pathways independently affect various parameters of DC maturation induced by CD40L, the p38 MAPK pathway within CD40L-conditioned DCs is the most important pathway to maximally elicit T cell immune responses. This pathway should be exploited in vivo to either completely suppress or enhance CD8(+) T cell immune responses.  相似文献   

14.
CD8(+)CD60(+) T cells (80-98% CD45RO(+); 20% CD23(+)) are significantly increased in the blood of serum IgE(+) ragweed-sensitized (RS) compared with serum IgE-nonatopic humans (p = 0.001). CD8(+)CD60(+) T cells of the RS patients produced IL-2, IL-4, IL-10, IL-12, IFN-alpha. and IFN-gamma, but not IL-6 or IL-13. When their PBMC were cultured with ragweed Ag (RA), peak IgE responses occurred on day 10; none was induced with non-cross-reacting or without Ag; nonatopic PBMC did not respond to any stimulant. When either CD4(+) or CD8(+)CD60(+) T cells were depleted from RS PBMC before culture with RA, no IgE responses were induced. If purified CD4(+) T cells or low numbers of CD8(+)CD60(+) T cells were added back to the depleted PBMC, IgE responses were restored. However, higher numbers of CD8(+)CD60(+) T cells totally suppressed IgE responses. Total suppression also was obtained when RS PBMC were cultured with RA and either anti-IL-2, IL-4, IL-10, IL-12, IFN-gamma (all concentrations), or IFN-alpha (low concentrations), but not anti-IL-6 or IL-13. Higher concentrations of anti-IFN-alpha potentiated IgE responses.  相似文献   

15.
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.  相似文献   

16.
Dendritic cells (DCs) are capable of capturing exogenous Ag for the generation of MHC class I/peptide complexes. For efficient activation of memory CD8(+) T cells to occur via a cross-presentation pathway, DCs must receive helper signals from CD4(+) T cells. Using an in vitro system that reflects physiologic recall memory responses, we have evaluated signals that influence helper-dependent cross-priming, while focusing on the source and cellular target of such effector molecules. Concerning the interaction between CD4(+) T cells and DCs, we tested the hypothesis that CD40 engagement on DCs is critical for IL-12p70 (IL-12) production and subsequent stimulation of IFN-gamma release by CD8(+) T cells. Although CD40 engagement on DCs, or addition of exogenous IL-12 are both sufficient to overcome the lack of help, neither is essential. We next evaluated cytokines and chemokines produced during CD4(+) T cell/DC cross talk and observed high levels of IL-2 produced within the first 18-24 h of Ag-specific T cell engagement. Functional studies using blocking Abs to CD25 completely abrogated IFN-gamma production by the CD8(+) T cells. Although required, addition of exogenous IL-2 did not itself confer signals sufficient to overcome the lack of CD4(+) T cell help. Thus, these data support a combined role for Ag-specific, cognate interactions at the CD4(+) T cell/DC as well as the DC/CD8(+) T cell interface, with the helper effect mediated by soluble noncognate signals.  相似文献   

17.
We have established a system for directed differentiation of human embryonic stem (hES) cells into myeloid dendritic cells (DCs). As a first step, we induced hemopoietic differentiation by coculture of hES cells with OP9 stromal cells, and then, expanded myeloid cells with GM-CSF using a feeder-free culture system. Myeloid cells had a CD4+CD11b+CD11c+CD16+CD123(low)HLA-DR- phenotype, expressed myeloperoxidase, and included a population of M-CSFR+ monocyte-lineage committed cells. Further culture of myeloid cells in serum-free medium with GM-CSF and IL-4 generated cells that had typical dendritic morphology; expressed high levels of MHC class I and II molecules, CD1a, CD11c, CD80, CD86, DC-SIGN, and CD40; and were capable of Ag processing, triggering naive T cells in MLR, and presenting Ags to specific T cell clones through the MHC class I pathway. Incubation of DCs with A23187 calcium ionophore for 48 h induced an expression of mature DC markers CD83 and fascin. The combination of GM-CSF with IL-4 provided the best conditions for DC differentiation. DCs obtained with GM-CSF and TNF-alpha coexpressed a high level of CD14, and had low stimulatory capacity in MLR. These data clearly demonstrate that hES cells can be used as a novel and unique source of hemopoietic and DC precursors as well as DCs at different stages of maturation to address essential questions of DC development and biology. In addition, because ES cells can be expanded without limit, they can be seen as a potential scalable source of cells for DC vaccines or DC-mediated induction of immune tolerance.  相似文献   

18.
Endothelial cells play a critical role in monocyte differentiation. Platelets also affect terminal maturation of monocytes in vitro. P-selectin is an important adhesion molecule expressed on both endothelial cells and activated platelets. We investigated its effects on human peripheral blood monocyte differentiation under the influence of different cytokines. Generation of dendritic-like cells (DLCs) from peripheral blood monocytes was promoted by immobilized P-selectin in the presence of M-CSF and IL-4 as judged by dendritic cell (DC) morphology; increased expression of CD1a, a DC marker; low phagocytic activity; and high alloreactivity to naive T cells. In contrast to typical DCs, DLCs expressed CD14 and FcgammaRIII (CD16). These features link the possible identity of DLCs to that of an uncommon CD14(+)CD16(+)CD64(-) monocyte subset found to be expanded in a variety of pathological conditions. Functionally, DLCs generated by P-selectin in combination with M-CSF plus IL-4 primed naive allogeneic CD4(+) T cells to produce significantly less IFN-gamma than cells generated by BSA in the presence of M-CSF and IL-4. P-selectin effects on enhancing CD14(+)CD16(+) DLC generation were completely abrogated by pretreatment of cells with the protein kinase C delta inhibitor rottlerin, but not by classical protein kinase C inhibitor G?6976. Immobilized P-selectin also inhibited macrophage differentiation in response to M-CSF alone as demonstrated by morphology, phenotype, and phagocytosis analysis. The effects of P-selectin on macrophage differentiation were neutralized by pretreatment of monocytes with Ab against P-selectin glycoprotein ligand 1. These results suggest a novel role for P-selectin in regulating monocyte fate determination.  相似文献   

19.
The central role of T cells in the induction of immunological tolerance against i.v. Ags has been well documented. However, the role of dendritic cells (DCs), the most potent APCs, in this process is not clear. In the present study, we addressed this issue by examining the involvement of two different DC subsets, CD11c(+)CD11b(+) and CD11c(+)CD8(+) DCs, in the induction of i.v. tolerance. We found that mice injected i.v. with an autoantigen peptide of myelin oligodendrocyte glycoprotein (MOG) developed less severe experimental autoimmune encephalomyelitis (EAE) following immunization with MOG peptide but presented with more CD11c(+)CD11b(+) DCs in the CNS and spleen. Upon coculturing with T cells or LPS, these DCs exhibited immunoregulatory characteristics, including increased production of IL-10 and TGF-beta but reduced IL-12 and NO; they were also capable of inhibiting the proliferation of MOG-specific T cells and enhancing the generation of Th2 cells and CD4(+)CD25(+)Foxp3(+) regulatory T cells. Furthermore, these DCs significantly suppressed ongoing EAE upon adoptive transfer. These results indicate that CD11c(+)CD11b(+) DCs, which are abundant in the CNS of tolerized animals, play a crucial role in i.v. tolerance and EAE and may be a candidate cell population for immunotherapy of autoimmune diseases.  相似文献   

20.
It is clear that dendritic cells (DCs) are essential for priming of T cell responses against tumors. However, the distinct roles DC subsets play in regulation of T cell responses in vivo are largely undefined. In this study, we investigated the capacity of OVA-presenting CD4-8-, CD4+8-, or CD4-8+ DCs (OVA-pulsed DC (DC(OVA))) in stimulation of OVA-specific T cell responses. Our data show that each DC subset stimulated proliferation of allogeneic and autologous OVA-specific CD4+ and CD8+ T cells in vitro, but that the CD4-8- DCs did so only weakly. Both CD4+8- and CD4-8+ DC(OVA) induced strong tumor-specific CD4+ Th1 responses and fully protective CD8+ CTL-mediated antitumor immunity, whereas CD4-8- DC(OVA), which were less mature and secreted substantial TGF-beta upon coculture with TCR-transgenic OT II CD4+ T cells, induced the development of IL-10-secreting CD4+ T regulatory 1 (Tr1) cells. Transfer of these Tr1 cells, but not T cells from cocultures of CD4-8- DC(OVA) and IL-10-/- OT II CD4+ T cells, into CD4-8+ DC(OVA)-immunized animals abrogated otherwise inevitable development of antitumor immunity. Taken together, CD4-8- DCs stimulate development of IL-10-secreting CD4+ Tr1 cells that mediated immune suppression, whereas both CD4+8- and CD4-8+ DCs effectively primed animals for protective CD8+ CTL-mediated antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号