首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
An efficient in vitro plant regeneration system was established through somatic embryogenesis for Anoectochilus elatus Lindley, an endangered jewel orchid. Direct somatic embryogenesis was achieved from nodal explants (17.4 embryos per explant with 63.4% response) on Mitra medium supplemented with Morel vitamins, thidiazuron (4.54 µM) and ∞-naphthaleneacetic acid (2.69 µM). Simultaneously, a protocol was developed for indirect somatic embryogenesis from internodal explant, produced embryogenic calli and embryos (31.3 embryos with 76.4% response) on same medium amended with 50 mg/L peptone and 5% coconut water. Both types of embryogenic pathways, produced morphologically similar globular embryos in the form of protocorm like bodies and successfully germinated on hormone free Mitra medium supplemented with Morel vitamins. Morpho-histological investigation of the embryo revealed the initiation and developmental features of somatic embryos. In vitro regenerated plantlets were successfully established from heterotrophic to a photoautotrophic stage by reducing the nutrient content in culture media, adjusting temperature and humidity through three step method. During the process, no morphological and physiological abnormalities were observed. Hardened plantlets were successfully acclimatized at poly tunnel chamber with 95% of survival rate. Further, inter simple sequence repeats (ISSRs) molecular markers were used to analyse the genetic homogeneity of regenerated plants. Analysis with this method showed that the homogeneity is comparatively higher in direct somatic embryo regenerated plants (94.22%) as compared to plants elevated from an indirect somatic embryo (93.05%). The present study provides morpho-histological and genetically stable plants for germplasm conservation and further utility of this endangered jewel orchid.  相似文献   

2.
An effective chromosome doubling protocol was established in essential garden crop of cucumber (Cucumis sativus L.) Cv. Hi Power. The different concentrations of colchicine (0, 250, 500, 750, and 1500 mg/L), oryzalin (0, 5, 15, 25, 50, 75, and 150 mg/L) and trifluralin (0, 5, 15, 25, 50, 75, and 150 mg/L) were applied on parthenogenesis-induced haploid nodal and shoot tip explants of cucumber for 18 and 38 h in three independent factorial experiments. Increasing concentrations of applied antimitotic agents led to the significant reduction in the survival rate of both shoot tip and nodal explants, especially in longer exposure duration. Three ploidy levels including haploid, mixoploid, and doubled haploid were regenerated form both explant types treated with colchicine, oryzalin, and trifluralin. Flow cytometry analysis proved successful chromosome doubling of haploid plants. Based on the results obtained, the highest number of regenerated doubled haploid plants (92.31%) and fruit set (86.21%) were related to immersion of nodal explants in 50 mg/L oryzalin for 18 h. The highest doubled haploid regeneration for colchicine and trifluralin antimitotic agents were 58.33 and 83.33%, respectively. The leaf size of doubled haploid plants was larger than their correspond haploids. The optimized chromosome doubling protocol would be applicable for doubled haploid production in garden crops of Cucurbitaceae family, which is recalcitrant to the spontaneous doubling, and also for in vitro polyploidy induction studies.  相似文献   

3.
Melia azedazach, a plant for forestation, is popular in many countries. Development of triploid M. azedazach varieties will provide additional advantages, such as faster growth, higher biomass, and; therefore, increased productivity. In this study, we aimed to develop triploid M. azedarach L. by immature endosperm tissue culture. After 22 days of initiation of cultures, calli of the endosperm were visible. After 50 days cultured on Murashige and Skoog (MS) medium supplemented with 2.0 mg/l NAA and 1.0 mg/l BAP, maximum of callus induction rate from the immature endosperm with seed coat was obtained at 55.9%. The highest frequency of shoot induction from endosperm-derived callus was 98% and average of 16.7 shoots per explant on the medium supplemented with 1.5 mg/l BAP and 0.5 mg/l NAA after 42 days. A single shoot was detached from the multi-shoots and transferred to the rooting medium supplemented with 0.5 mg IBA, inducing root formation with 96.6% and with average of 5.8 roots per plantlet after 28 days. The plantlets transferred to polythene hycotrays containing soil and sand (mixture 1:1) in greenhouse showed 100% survival after transplantation. The endosperm-derived plantlets were 100% triploids as evidenced by flow cytometry analysis. Creating triploid M. azedazach plants by regenerating directly from endosperm (3n) described in this work required only 5 months whereas the traditional method of generating triploids through crossing between tetraploid (4n) and diploid (2n) plants could take up to 12 years.  相似文献   

4.
An efficient protocol for a complete plant regeneration by somatic embryogenesis was developed with Smooth Cayenne pineapple (Ananas comosus L.). Previous works showed that this species is responsive to somatic embryogenesis. In the present work the influence of components of culture medium in the induction, development and conversion of somatic embryos was investigate in order to establish a somatic embryogenesis protocol. Nodular callus (83.67%) was initiated from leaf explants of young plants on CIM3 medium. The highest frequency (37.6%) of embryogenic callus induction was obtained from 4-week-old calluses on EIM3 medium supplemented with 3.0 mg/l picloram. The highly organized callus induction and the development of somatic embryos were achieved after the transfer of callus clumps onto EIM3 medium containing 1.0 mg/l BAP + 0.1 mg/l NAA. The frequency of somatic embryo formation was of 39.5?±?2.45 embryos per callus. Up to 97% of the somatic embryos were converted into complete plants within 4 week on MSB medium with 1.0 mg/l BAP + 0.05 mg/l GA3 + 500 mg/l glutamine. The continuation of the elongation of the shoots occurred on this medium). Shoots obtained from all the above methods were rooted in MSB medium with activated charcoal. Complete plantlets were transferred onto specially made polyethylene bags containing soil mixture and transferred to the greenhouse. Survival rate of the plantlets under ex vitro conditions was 98% and maximum average number of plantlets (80?±?0.6). The well-developed plantlets were transferred to an open field where the plants produced normal fruits.  相似文献   

5.
Unfertilized ovary culture constitutes an effective method for haploid breeding and can greatly shorten the breeding time. This method has been successfully used for breeding in many species, but reports of this method for breeding watermelon are scarce. Therefore, we performed an experiment to induce haploid plantlets. We evaluated the effects of several important factors on unfertilized ovary cultures of watermelon, including genotype, medium, the duration of induction and the development stage of the ovaries. The results revealed that the genotype of donor plants was a key factor for in vitro gynogenesis. The induction rate of eight watermelon cultivars varied from 0.00 to 15.14 ELSs per100 ovary slices. The most effective induction medium and maturation medium were MS medium supplemented with 3 mg L??1 2,4-D, 2 mg L??1 BAP, 0.5 mg L?1 NAA and MS supplemented with 0.8 mg L??1 BAP and 0.2 mg L??1 NAA, respectively. The duration of induction significantly influenced ELS formation. The optimum duration was 13 days, and unfertilized ovaries collected at anthesis had the higher induction rate. We obtained more than 100 plantlets and used chromosome counting and flow cytometry to determine the ploidy levels of 50 of them, among which 48 were haploid and 2 were diploid. Our results demonstrated that in vitro gynogenesis can be induced in watermelon by unfertilized ovaries culture.  相似文献   

6.
Somatic embryogenesis is an important in vitro technique used to obtain Citrus sinensis (L.) Osbeck (sweet orange) plantlets for conservation, sanitation, propagation, and breeding. The induction of somatic embryogenesis from adult tissues of sweet orange could be an alternative to in vitro organogenesis from epicotyl segments, especially in seedless cultivars, where the latter is not feasible. The aim of this study was to obtain plantlets from ovary-derived somatic embryos of sweet orange cv. ‘Washington Navel’, an important seedless cultivar for citrus fresh fruit production. The explants used were pistils from flower buds, pre-anthesis, from 20-y-old plants cultivated in the field. Forty plantlets from 47 somatic embryos were obtained, in vitro-grafted, and acclimatized in greenhouse conditions. Ploidy evaluation through flow cytometric analysis, as well as the results of target region amplification polymorphism (TRAP) molecular markers confirmed the somatic origin of embryos as genetically similar to donor plants. This technique could be used for obtaining embryogenic cell suspension cultures or regenerated plants from mature tissues other than seed-derived tissues, especially for seedless genotypes.  相似文献   

7.
Kelussia odoratissima Mozaff. (or Kelus) is a medicinal plant native to the Zagros Mountains in Iran. This plant is widely used as a food flavoring and for its health-promoting properties. It has been considered an endangered species by the United Nations Development Programme. In this study, a somatic embryogenesis (SE) method was developed for mass propagation of Kelus. The green globular embryogenic callus was induced on cotyledonary leaves using the Murashige and Skoog (MS) medium supplemented with 1 mg/l 2,4-dichlorophenoxyaceticacid (2,4-D) and 0.25 mg/l Kinetin. Different treatments were assayed for proliferation of the embryogenic callus. The calli remained embryogenic in an MS medium containing 2,4-D (1 mg/l). The light treatments and carbon source showed significant effects (P?≤?0.05) on the proliferation and development of somatic embryos. These treatments improved the conversion rate of the cotyledonary-stage embryos by 100%. The average numbers of embryos in the globular, heart, torpedo, and cotyledonary stages decreased by the addition of 3 g/l case in hydrolisate. The genetic stability among tissue culture-derived plants and the mother plant were assessed using the amplification fragment length polymorphism. No polymorphic band was observed among all the plants, exhibiting the genetic stability during in vitro multiplication. This research provides a promising approach for true-to-type plant multiplication of K. odoratissima through SE.  相似文献   

8.
Developmental deficiency of somatic embryos and regeneration to plantlets, especially in the case of transformation, are major problems of somatic embryo regeneration in alfalfa. One of the ways to overcome these problems is the use of natural plant regulators and nutrients in the culture medium of somatic embryos. For investigating the influence of Cuscuta campestris extract on the efficiency of plant regeneration and transformation, chimeric tissue type plasminogen activator was transferred to explants using Agrobacterium tumefaciens, and transgenic plants were recovered using medium supplemented with different concentration of the extract. Transgenic plants were analyzed by PCR and RT-PCR. Somatic embryos of Medicago sativa L. developed into plantlets at high frequency level (52 %) in the maturation medium supplemented with 50 mg 1?1 C. campestris extract as compared to the medium without extract (26 %). Transformation efficiency was 29.3 and 15.2 % for medium supplemented with dodder extract and without the extract, respectively. HPLC and GC/MS analysis of the extract indicated high level of ABA and some compounds such as Phytol, which can affect the somatic embryo maturation. The antibacterial assay showed that the extract was effective against some strains of A. tumefaciens. These results have provided a scientific basis for using of C. campestris extract as a good natural source of antimicrobial agents and plant growth regulator as well, that can be used in tissue culture of transgenic plants.  相似文献   

9.
Somatic embryogenesis and organogenesis in Dendrocalamus hamiltonii   总被引:1,自引:0,他引:1  
In this study, mature zygotic embryos, plant growth regulators, and various media were tested with the aim of developing an efficient regeneration system for plantlets of the bamboo species Dendrocalamus hamiltonii. Callus formation was induced in explants cultured in Murashige and Skoog (MS) medium supplemented with 1.0–3.0 mg/l 2,4-dichlorophenoxyacetic acid. Optimal shoot differentiation and subsequent shoot growth were also obtained in MS medium supplemented with 2 mg/l benzyladenine, 1 mg/l kinetin, and 1 mg/l naphthaleneacetic acid. Root induction was enhanced by the addition of 5 mg/l indole-3-butyric acid to the culture medium. Histological analysis revealed that both somatic embryogenesis and organogenesis were induced during callus initiation, shoot differentiation, and the development of plantlets from the mature zygotic embryos. Our data provide a useful basis for developing culture protocols for the regeneration of bamboo plants.  相似文献   

10.
Somatic embryos were induced from internodal segment derived callus of Oldenlandia umbellata L., in MS medium supplemented with different concentrations of 2,4-Dichlorophenoxy acetic acid (2,4-D). Initially calli were developed from internodes of microshoots inoculated in 2.5 µM NAA supplemented medium. Then calli were transferred to 2,4-D added medium for somatic embryogenesis. Nutritional stress coupled with higher concentration of 2,4-D triggered somatic embryogenesis. Nutritional stress was induced by culturing callus in a fixed amount of medium for a period up to 20 weeks without any external supply of nutrients. Addition of 2.5 µM 2,4-D gave 100% embryogenesis within 16 weeks of incubation. Callus mass bearing somatic embryos were transferred to germination medium facilitated production of in vitro plantlets. MS medium supplemented with 2.5 µM benzyl adenine and 0.5 µM α-naphthalene acetic acid produced 15.33 plants per culture within 4 weeks of culture. Somatic embryo germinated plants were then hardened and transferred to green house.  相似文献   

11.
A protocol for the regeneration of a large number of plantlets via indirect shoot organogenesis and somatic embryogenesis has been developed from the stem and leaf explants of Justicia gendarussa Burm. f. The callus was efficiently induced from the explants using Murashige and Skoog (MS) medium supplemented with α-Naphthalene acetic acid (NAA) + Benzyl amino purine (BAP) (1.0?+?0.1 mg/l). The highest number of plantlets through indirect shoot organogenesis was obtained when the callus was subcultured to MS medium with BAP + NAA (0.1?+?1.0 mg/l). The maximum number of plantlets via somatic embryos was obtained in the medium with BAP + NAA (1.0?+?0.1 mg/l) for stem derived calli and Kinetin (Kn) + NAA (2.0?+?0.1 mg/l) for leaf derived calli. The in vitro developed shoots were rooted well in half strength MS medium supplemented with 0.5 mg/l of Indole-3-acetic acid (IAA). The in vitro regenerated plantlets were hardened using a mixture of sterile sand:soil:manure (1:1:1). The present study is the first report on the regeneration of plants through somatic embryogenesis from stem and leaf derived calli of J. gendarussa.  相似文献   

12.
The Mongolian medicinal plant Zygophyllum potaninii has been assessed as an endangered species with regional status. We applied the somatic embryogenesis technique using aseptic in vitro germinants of the plant as an effective propagation technology. The seed germination rate in vitro was 16.5% after 2 weeks of culture. Embryonic calli (EC) and somatic embryos (SEs) were induced using the cotyledon or hypocotyl segments of the germinants. Calli were effectively induced on MS medium supplemented with 0.1 mg/L 2, 4-dichlorophenoxy acetic acid (2, 4-d) and 0.5 mg/L 6-benzylamino purine (BA). The callus was composed of pale yellow or pale green friable cells. SE formed from EC only on Murashige and Skoog medium (MS) with 0.5 mg/L abscisic acid (ABA). Other concentrations of ABA failed to induce SE formation. All SEs germinated in MS medium with different salt levels. However, normal plant conversion was achieved only on half-strength MS medium. The converted plantlets were effectively acclimatized in vitro in sand and transferred to a mixture of sand and perlite (1:1 v/v) in the greenhouse. After 8 weeks of culture, 55.4% of the plants survived. This is a first report of propagating the medicinal desert plant Z. potaninii via somatic embryogenesis and plant regeneration.  相似文献   

13.
Due to recalcitrant nature of chickpea (Cicer arietinum L.) to androgenesis, the production of double haploid plants has been only reported by Grewal et al. (Plant Cell Rep 28:1289–1299, 2009) using some physical stresses such as anther centrifugation and electrical shock. In the present study, we successfully obtained haploid plants from cultured anthers of two chickpea cultivars, Bivanij and Arman, using high 2,4-D and silver nitrate containing media without applying of these time and labor consuming stresses. For induction of androgenesis, different concentrations of 2, 4-D (0, 2, 5 and 10 mg/l) and silver nitrate (0, 5, 10, 15, 25 and 50 mg/l) were used in embryo development medium. In Bivanij cultivar, anther induction medium containing 10 mg/l 2,4-D and 15 mg/l silver nitrate produced the highest number of embryos (0.188) and regenerated plants (0.1) per each cultured anther, while the highest frequencies of embryos (0.1) and regenerated plants (0.075 and 0.063) were obtained from Arman cultivar when 10 mg/l 2,4-D was combined with 15 and 50 mg/l silver nitrate in anther culture medium, respectively. In second part of this study, different cold (4 °C for 4 and 7 days) and heat (30 °C for 10 days, 32 °C for 2 days and 35 °C for 8 h) pretreatments were applied on cultured anthers of Bivanij cultivar. Incubation of cultured anthers at 32 °C for 2 days significantly enhanced the rate of embryo formation up to 0.222 embryos per each anther, while the highest number of regenerated plants/anther (0.0332) was obtained when cold treated anthers at 4 °C for 7 days incubated at 30 °C for 10 days. Taken together, these results provide a good basis for large-scale generation of DH plants in this important legume species.  相似文献   

14.
The genus Tribulus is the source of a number of steroidal saponins and other bioactive compounds which are of medicinal and pharmaceutical importance and plant regeneration of Tribulus terrestris has been reported. The objective of this study was to evaluate the potential of immature zygotic embryos of Tribulus terrestris as an explant for plant regeneration. Embryos were cultured on MS medium supplemented with 1-naphthaleneacetic acid (NAA), 2,4-dichlorophenoxyacetic acid (2,4-D) and thidiazuron (TDZ), alone or in combination and callus and shoot or embryo formation evaluated. With 2.5 mg/l NAA or 2,4-D, callus formation frequency was 100% but 57% with 2.5 mg/l TDZ. The combination of 2.5 mg/l TDZ and NAA or 2,4-D also elicited callus formation frequency of 100%. The callus formation frequency was lower with lower levels of these growth regulators. On a medium with 0.5 mg/l TDZ, 17.4% of the 2,4-D-derived callus (2.5 mg/l), developed embryo-like structures and this increased to 37.3 and 41.4% respectively, when TDZ was combined with 0.5 mg/l indole-3-butyric acid (IBA) or 2,4-D. Both shoot formation and embryo-like structures developed in cultures with 2.5 mg/l TDZ, alone or in combination with 0.5 mg/l IBA or 2,4-D. The optimum sucrose level for morphogenetic response of embryo-derived callus was between 5.0 and 7.5%. Embryo-like structures were also observed when the 2,4-D-derived callus was cultured in a liquid containing benzyladenine (BA) and IBA. Plants were regenerated from both embryo-like structures and shoot buds on solid MS medium containing 0.2 mg/l IBA and rooted plantlets were transferred to soil.  相似文献   

15.
The present paper reports the results of the culture of unfertilized ovaries of rice in vitro. The inducting medium was N6 supplemented with 2 mg/L 2,4-D, 500 mg/L casien hydrolysate and sucrose was 4%. The differentiated medium was N6 supplemented with 2 mg/L Kinetin, 500 mg/L casein hydrolysate and the concentration of the sucrose was 3%. The 4 cultivars and 2 crossed combinations were used as the experimental materials. The experiments were shown the differentiation of the callus occurred amony various cultivars. The induced frequency in the crossed combinations was higher than that in the cultivars. Now 12 green plants and 3 albino plantlets have been obtained. The chromasomes of 11 green plantlets have been examined. Among them, 6 plantlets were haploid (n =12 ) and 5 plantlets were diploid. The embryoids were located in the micropylar end. Some of them possessed the suspensor, similar as zygote embryos. The callus was found from different origin. One of them was originated from haploid tissue derived from the nuclear in the embryo sac. Another was originated from the diploid tissue in the integument or ovary wall. The origin of the callus from the unfertilized ovary was discussed.  相似文献   

16.
Melatonin (MEL) and serotonin (SER) are important indoleamines that are involved in neural transmission in mammalian cells. They are also known to be present in various genera of plants. The role (s) of these indoleamines in plants are not well known. In this study, the effects of SER, MEL, calcium, and calcium ionophore (A23187), a calcium channel activator, on somatic embryogenesis in Coffea canephora have been investigated. Adding 100 μM of either SER or MEL to ½ strength Murashige and Skoog (MS) medium and 0.93 μM kinetin (KN) has resulted in enhanced induction of somatic embryogenesis, 85 ± 3 and 62 ± 6 embryos/callus, respectively. In the presence of either 5 mM calcium or 100 μM calcium ionophore A23187, number of somatic embryos/callus is also increased, with 56 ± 4 and 118 ± 10 somatic embryos/callus, respectively, compared to 25 ± 3 embryos/callus for control. The presence of 5 mM calcium chloride along with either 100 μM SER or 100 μM MEL, respectively, have also promoted somatic embryogenesis with induction of 105 ± 6 and 78 ± 2 somatic embryos/callus. While, addition of calcium ionophore A23187 along with either 100 μM SER or 100 μM MEL have produced 155 ± 12 or 135 ± 8 embryos/callus, respectively. In contrast, addition of such indoleamine inhibitors as 40 μM p-chlorophenylalanine (p-CPA), 20 μM fluoexitine hydrochloride (prozac), 1 mM verapamil hydrochloride (calcium channel blocker), and 1 mM ethylene glycol-bis (β-amino ethylether)-N, N, N′, N′-tetra acetic acid (EGTA) (a calcium chelator) individually, has inhibited induction of somatic embryos while reducing levels of endogenous pools of SER, MEL and indole-3-acetic acid (IAA) levels. Calcium imaging by laser scanning confocal microscopy (LSCM) has revealed high fluorescence intensity in callus treated with calcium and calcium ionophore A23187. Immunolocalization of SER in different tissues of C. canephora has revealed that it is localized in vascular tissues of stems, roots, and somatic embryos, as well as in endocarps (husks) of immature fruits.  相似文献   

17.
The effects of plant growth regulators (PGRs) and organic elicitors (OEs) on in vitro propagation of Eucomis autumnalis was established. Three-year-old ex vitro grown plants from organogenesis of E. autumnalis and somatic embryogenesis (previously reported protocol) of Drimia robusta were investigated for antibacterial activity. In vitro propagation from leaf explants of E. autumnalis was established using different PGRs and OE treatments for mass propagation, biomass production and bioactivity analysis to supplement the use of wild plant material. Prolific shoots (16.0?±?0.94 shoots per explant) were obtained with MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium containing 100 mg l?1 haemoglobin (HB), 10 µM benzyladenine (BA) and 2 µM naphthaleneacetic acid (NAA). The shoots were rooted effectively with a combination of 2.5 µM indole-3-acetic acid and 5.0 µM indole-3-butyric acid. The plantlets were successfully acclimatized in a vermiculite-soil mixture (1:1 v/v) in the greenhouse. Three-year-old ex vitro-grown E. autumnalis and D. robusta plants derived via organogenesis and somatic embryogenesis respectively exhibited antibacterial activity and varied with PGR and OE treatments, plant parts and bacteria. The leaves of E. autumnalis ex vitro-derived from a combination of HB, BA and NAA followed by the individual treatments of BA and HB gave the best antibacterial activities (<?1 mg ml?1: minimum inhibitory concentration from 0.098 to 0.78 mg ml?1) against all tested pathogenic bacteria (Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). The bulbs of D. robusta ex vitro-derived from solid culture with 10 µM picloram, 1 µM thidiazuron and 20 µM glutamine exhibited good antibacterial activity against E. faecalis, M. luteus and S. aureus when compared with other treatments and mother plants. The ex vitro-grown E. autumnalis and D. robusta biomass produced with PGRs along with OE treatments confirmed a good potent bioresource and can be used as antibacterial agents. The in vitro plant regeneration of E. autumnalis and D. robusta protocols and ex vitro plants could be used for conservation strategies, bioactivity and traditional medicinal use.  相似文献   

18.
Platycladus orientalis is a widespread conifer, which is native in eastern Asia, and has recently attracted much attention due to its ornamental value for landscape and gardens. However, native P. orientalis populations have been in decline over the past century. Here, we established an in vitro propagation and cryopreservation system for P. orientalis via somatic embryogenesis (SE). Whole megagametophytes with four development stages (Early embryogeny: E1 and late embryogeny: L1, L2, and L3) of zygotic embryos from immature P. orientalis cones were used as initial explants and cultured on three different basal media such as initiation medium (IM), Litvay (LV), and Schenk and Hildebrandt (SH). Both the developmental stage of zygotic embryos and kind of basal medium had a significant effect on embryogenesis induction with IM (P?<?0.001, respectively). The highest frequency of embryogenic callus induction was obtained in megagametophytes with zygotic embryos at L2 stage, which ranged as high as 30%. The maturation medium containing IM basal salts, vitamins and amino acids, 15 g l?1 abscisic acid (ABA), 50 g l?1 maltose, and 100 g l?1 polyethylene glycol 4000 (PEG) was found to be the suitable medium for production of somatic embryos. The frequency of somatic embryo formation from both non-cryopreserved and cryopreserved cell lines was also tested. There were no statistical differences on the production of somatic embryos between non-cryopreserved and cryopreserved cells (P?=?0.523). Genetic fidelity of the plantlets regenerated from non-cryopreserved and cryopreserved embryogenic cell lines was assessed by both random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analysis. There was no genetic instability in the regenerated plantlets from cryopreserved embryogenic cell lines. Both the SE protocol and cryopreservation protocols described here have the potential to contribute the conservation and clonal propagation of P. orientalis germplasm.  相似文献   

19.
The present study describes the plant propagation via indirect organogenesis from in vitro derived leaf and internode explants of Plectranthus bourneae, an endemic plant to south India. Leaf and internodal explants successfully callused on Murashige and Skoog medium (MS) supplemented with different concentrations of auxins [2,4-D (2,4-dichlorophenoxyacetic acid), NAA (α-naphthalene acetic acid), IAA (indole-3 acetic acid), IBA (indole-3-butyric acid) and PIC (Picloram); 0.1–2.0 mg/l] in combination with BA (6-benzyladenine) (0.5 mg/l). Maximum callus induction (98 %) was achieved from leaf explant followed by internodal explant (89 %) at 1.0 mg/l NAA, 0.5 mg/l BA. Leaf derived callus showed better shoot regeneration (29.71 shoots) on MS medium containing 1.0 mg/l KN (kinetin), 0.7 mg/l NAA, and 50 mg/l CH (casein hydrolysate) followed by internodal callus (19.71). A maximum of 19.14 roots/shoot was observed at 1.0 mg/l IBA. The rooted plantlets were successfully hardened and transferred to greenhouse condition with 80 % survival. This system could be utilized for large-scale multiplication of P. bourneae by tissue culture.  相似文献   

20.
A rapid and efficient method for in vitro direct plant regeneration from immature leaf roll explants of Saccharum officinarum L. (sugarcane) cv. Co 86032 was developed by the application of exogenous polyamines (PA). The effect of explant source from apical meristems and pre-culture of explants in the dark on shoot regeneration was studied. Adventitious shoot regeneration occurred on the proximal regions of immature leaf roll explants when pre-incubated in the dark for 2 wk and the regeneration response was decreased from the middle to distal end. A higher number of direct shoots (130 primary shoots explant?1) and multiple shoots (657 secondary shoots explant?1), were obtained with a combination of spermidine (103.27 μM), spermine (49.42 μM), and putrescine (31.04 μM) along with plant growth regulators. Shoot induction was increased up to twofold and multiplication was increased up to threefold in the medium supplemented with PA. Profuse rooting was observed in putrescine (93.12 μM), spermidine (68.84 μM), and spermine (24.71 μM), with mean number of 57 roots. A twofold increase in the number of roots was observed in medium supplemented with PA with respect to control cultures, which facilitated the successful transplantation and acclimatization process of in vitro propagated sugarcane plants. Histology and scanning electron microscopy analyses supported adventitious direct shoot regeneration from immature leaf roll explants. The genetic stability of in vitro regenerated plants was confirmed using start codon targeted polymorphism marker system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号