首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Impact of different levels of elevated CO 2 on the activity of Frankia (Nitrogen-fixing actinomycete) in Casuarina equisetifolia rooted stem cuttings has been studied to understand the relationship between C. equisetifolia, Frankia and CO2. The stem cuttings of C. equietifolia were collected and treated with 2000 ppm of Indole Butyric Acid (IBA) for rooting. Thus vegetative propagated rooted stem cuttings of C. equisetifolia were inoculated with Frankia and placed in the Open top chambers (OTC) with elevated CO2 facilities. These planting stocks were maintained in the OTC for 12 months under different levels of elevated CO2 (ambient control, 600 ppm, 900 ppm). After 12 months, the nodule numbers, bio mass, growth, and photosynthesis of C. equisetifolia rooted stem cuttings inoculated with Frankia were improved under 600 ppm of CO2. The rooted stem cuttings of C. equisetifolia inoculated with Frankia showed a higher number of nodules under 900 ppm of CO2 and cuttings without Frankia inoculation exhibited poor growth. Tissue Nitrogen (N) content was also higher under 900 ppm of CO2 than ambient control and 600 ppm levels. The photosynthetic rate was higher (17.8 μ mol CO2 m?2 s?1) in 900 ppm of CO2 than in 600 ppm (13.2 μ mol CO2 m?2 s?1) and ambient control (8.3 μ mol CO2 m?2 s?1). This study showed that Frankia can improve growth, N fixation and photosynthesis of C. equietifolia rooted stem cuttings under extreme elevated CO2 level conditions (900 ppm).  相似文献   

2.
Two cyanobacterial genes ccaA and FBP/SBPase related to CO2 hydration and Calvin cycle were induced into rice plants. Three homologous transgenic strains were generated with ccaA and FBP/SBPase alone or in combination independently and grown under field conditions. The biochemical, physiological, and leaf anatomic results indicated that stomatal and mesophyll conductance to CO2, net photosynthetic rate, carboxylation efficiency, and other physiological and biochemical parameters increased significantly in the overexpression strains with FBP/SBPase and CcaA + FBP/SBPase but not in the CcaA strain. Leaf anatomy structure showed no significant modifications between the transgenic and wild-type strains. The CcaA protein was shown to be located in the cytoplasm. These results showed that the effect on improving photosynthetic capacity by FBP/SBPase was better than by CcaA, and only when CcaA was co-transformed with FBP/SBPase was the synergistic effect observed. The multigene-stacking approaches and their synergistic action for improving the photosynthetic capacity in rice are discussed.  相似文献   

3.
Jatropha curcas and Jatropha mollissima plants were evaluated under conditions of high (HSM) and low (LSM) soil moisture in a semi-arid environment, as changes in the content and concentration of epicuticular wax and the leaf metabolism which could have a relationship with drought tolerance. Besides epicuticular wax, gas exchange, antioxidant system and biochemical parameters of the photosynthetic metabolism were measured. The epicuticular wax content increased only in J. mollissima leaves 95 % under LSM, when compared with HSM conditions. Therefore, J. curcas invested less in the production of long-chain n-alkanes than did J. mollissima under LSM conditions. J. mollissima plants showed the highest CO2 assimilation rate during the HSM period compared to J. curcas. Both species showed high stability in some leaf biochemistry products, highlighting the highest sugar content, free amino acids, total soluble protein, and photosynthetic pigments in the leaves of J. mollissima plants under both of the soil moisture conditions. Moreover, the stability and performance of the different parameters, such as morphologic variables, seem to allow J. mollissima plants to tolerate semi-arid conditions.  相似文献   

4.

Aims

Despite extensive studies on effects of elevated CO2 concentration ([CO2]e) on plant growth, few studies have investigated the responses of native grassland plant species to [CO2]e in terms of nutrient acquisition.

Methods

The effects of [CO2]e (769 ± 23 ppm) on Artemisia frigida and Stipa krylovii, two dominant species in Inner Mongolia steppe were investigated by growing them for 7 weeks in Open-Top Chambers (OTC).

Results

Exposure to [CO2]e enhanced shoot and root growth of A. frigida and S. krylovii. Elevated [CO2] increased photosynthetic rates (Pn) by 34 % in A. frigida but decreased Pn by 52 % in S. krylovii. Moreover, root-secreted acid phosphatase activity in A. frigida was stimulated by [CO2]e, while exudation of malate from roots of S. krylovii was suppressed by [CO2]e. Exposure to [CO2]e led to a decrease in P concentration in shoots and roots of A. frigida and S. krylovii, but total amount of P accumulated in shoots and roots of both species was increased by [CO2]e.

Conclusions

The two dominant species in temperate steppes differed in their responses to [CO2]e, such that A. frigida was more adapted to [CO2]e than S. krylovii under low availability of soil P.
  相似文献   

5.
Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.  相似文献   

6.
7.

Key message

The black locust is adapted to elevated [CO 2 ] through changes in nitrogen allocation characteristics in leaves.

Abstract

The black locust (Robinia pseudoacacia L.) is an invasive woody legume within Japan. This prolific species has a high photosynthetic rate and growth rate, and undergoes symbiosis with N2-fixing micro-organisms. To determine the effect of elevated CO2 concentration [CO2] on its photosynthetic characteristics, we studied the chlorophyll (Chl) and leaf nitrogen (N) content, and the leaf structure and N allocation patterns in the leaves and acetylene reduction activity after four growing seasons, in R. pseudoacacia. Our specimens were grown at ambient [CO2] (370 μmol mol?1) and at elevated [CO2] (500 μmol mol?1), using a free air CO2 enrichment (FACE) system. Net photosynthetic rate at growth [CO2] (A growth) and acetylene reduction activity were significantly higher, but maximum carboxylation rate of RuBisCo (V cmax), maximum rate of electron transport driving RUBP regeneration (J max), net photosynthetic rate under enhanced CO2 concentration and light saturation (A max), the N concentration in leaf, and in leaf mass per unit area (LMA) and ribulose-1,5-bisphosphate carboxylase oxygenase (RuBisCo) content were significantly lower grown at elevated [CO2] than at ambient [CO2]. We also found that RuBisCo/N were less at elevated [CO2], whereas Chl/N increased significantly. Allocation characteristics from N in leaves to photosynthetic proteins, NL (Light-harvesting complex: LHC, photosystem I and II: PSI and PSII) and other proteins also changed. When R. pseudoacacia was grown at elevated [CO2], the N allocation to RuBisCo (NR) decreased to a greater extent but NL and N remaining increased relative to specimens grown at ambient [CO2]. We suggest that N remobilization from RuBisCo is more efficient than from proteins of electron transport (NE), and from NL. These physiological responses of the black locust are significant as being an adaptation strategy to global environmental changes.
  相似文献   

8.
In the current scenario of climate change and increasing water scarcity there is an increased need to combine research efforts for the development of abiotic stress resistant crops, specifically plants able to support water deficit (WD). Polyamines (PAs) have been described as being involved in the regulation of many physiological processes and a variety of stress responses in plants. Arginine decarboxylase (ADC) is considered a key enzyme of the polyamine (PA) biosynthetic pathway. In this study, a T2 transgenic homozygous line of Medicago truncatula expressing the oat Adc under the control of CaMV 35S was obtained and was shown to have higher leaf accumulation of putrescine, spermidine and norspermidine compared to wild type plants. The photosynthetic parameters, leaf internal CO2 concentration (Ci), net CO2 assimilation rate (A), transpiration (E) and stomatal conductance (gs) of transformed and untransformed lines during WD and water deficit recovery experiments were measured by IRGA (infrared gas analyzer) and compared over time. Two light intensities were used, growth light intensity (391 μmol m?2 s?1) and saturating light intensity (1044 μmol m?2 s?1). Independently of the light intensity, and under WD, the transgenic line stood out with increased Ci, A, E and gs; suggesting a possible benefit of the augmented PAs under such disturbing environmental conditions. We showed that the constitutive expression of the oat Adc gene improve the physiological responses to WD and that WD recovered transgenic plants had higher seed yield, suggesting a possible benefit of PA metabolism manipulation in legumes.  相似文献   

9.
Reports indicate that Annona emarginata is tolerant to drought and is also used as an alternative rootstock for atemoya under drought conditions. The photosynthetic process can be adjusted after rehydration, resulting on total or partial recovery. The aim of this study was to determine if A. emarginata shows adjusts in gas exchange and the chlorophyll a fluorescence pattern after rehydration. During water deficits, the gas exchange and water content in the leaf decreased. However, after 5 days of rehydration, the water content in the leaf recovered and rehydrated plants presented the water use efficiency better than irrigated plants. Further remaining gas exchange parameters were lower in relation to irrigated plants. In chlorophyll a fluorescence, the rehydrated plants showed higher dissipation of light energy as heat, maintaining high activity of photoprotection. After rehydration, A. emarginata shows a positive correlation between transpiration and CO2 assimilation rate, which optimize the water use efficiency. Thus, A. emarginata presents adjustments in gas exchange and photochemical process, resulting on a possible long-term photosynthetic acclimation to water deficiency.  相似文献   

10.
Peatlands are a critical carbon store comprising 30% of the Earth’s terrestrial soil carbon. Sphagnum mosses comprise up to 90% of peat in the northern hemisphere but impacts of climate change on Sphagnum mosses are poorly understood, limiting development of sustainable peatland management and restoration. This study investigates the effects of elevated atmospheric CO2 (eCO2) (800 ppm) and hydrology on the growth of Sphagnum fallax, Sphagnum capillifolium and Sphagnum papillosum and greenhouse gas fluxes from moss–peat mesocosms. Elevated CO2 levels increased Sphagnum height and dry weight but the magnitude of the response differed among species. The most responsive species, S. fallax, yielded the most biomass compared to S. papillosum and S. capillifolium. Water levels and the CO2 treatment were found to interact, with the highest water level (1 cm below the surface) seeing the largest increase in dry weight under eCO2 compared to ambient (400 ppm) concentrations. Initially, CO2 flux rates were similar between CO2 treatments. After week 9 there was a consistent three-fold increase of the CO2 sink strength under eCO2. At the end of the experiment, S. papillosum and S. fallax were greater sinks of CO2 than S. capillifolium and the ? 7 cm water level treatment showed the strongest CO2 sink strength. The mesocosms were net sources of CH4 but the source strength varied with species, specifically S. fallax produced more CH4 than S. papillosum and S. capillifolium. Our findings demonstrate the importance of species selection on the outcomes of peatland restoration with regards to Sphagnum’s growth and GHG exchange.  相似文献   

11.
12.
Plantago ovata Forsk is an annual herb with immense medicinal importance, the seed and husk of which is used in the treatment of chronic constipation, irritable bowel syndrome, diarrhea since ancient times. Zinc, an essential metal, is required by plants as they form important components of zinc finger proteins and also aid in synthesis of photosynthetic pigments such as chlorophyll. However, in excess amount Zn causes chlorosis of leaf and shoot tissues and generate reactive oxygen species. The present study is aimed at investigating the changes in expression levels of MT2 gene in Plantago ovata under zinc stress. Data show up to 1.66 fold increase in expression of PoMT2 in 1000 µM ZnSO4·7H2O treated sample. Our study also describes alteration of MT2 gene expressions in Plantago ovata as observed through Real time PCR (qPCR) done by \(2^{{ - \Delta \Delta}} C_T\) method. In this study we have observed an upregulation (or induction) in the PoMT2 gene expression level in 500 and 800 µM ZnSO4·7H2O treated samples but found saturation on further increasing the dose to 1000 µM of ZnSO4·7H2O. Determination of the phenotypic and biochemical changes in Plantago ovata due to exposure to zinc stress of concentrations 500, 800 and 1000 µM revealed oxidative stress. The enhanced expression of MT2 gene in Plantago ovata has a correlation with the increased total antioxidant activity and increased DPPH radical scavenging activity.  相似文献   

13.
Cement plants account for significant emissions of CO2 and other pollutants into the atmosphere. As a means for its mitigation, we tested the effect of a cement industry-based flue gas simulation (FGS — 18% CO2, 9% O2, 300 ppm NO2, 140 ppm SO2) on the green alga, Chlorella sorokiniana. Culture pH, cell density, cell viability and productivity, specific growth rates, photosynthetic performance, and biochemical composition were monitored. The treatments consisted of different FGS volumes (0.1, 0.3, 0.8, 1.5, 6, and 48 L day?1) that were applied in a series of laboratory-scale semi-continuous batch cultures under controlled conditions. Controls were exposed to 18% CO2 enriched air. Cell density showed that C. sorokiniana was able to grow in all treatments, but compared to the controls, low pH (~ 5.0) caused by 48 L FGS day?1 led to 27% decrease in specific growth rate. Increasing FGS exposure decreased maximum and operational quantum yields obtained by pulse amplitude modulated fluorometry, while photochemical quenching remained constant (~ 0.93). The α and rETR max parameters calculated from rapid light curves decreased with increasing FGS exposure. Total proteins and carbohydrates (per cell basis) increased after 6 and 48 L FGS day?1, which can be advantageous for biotechnological applications, but cell productivity (cells L?1 day?1) decreased. Despite the effects in physiology, C. sorokiniana could withstand a pH range of 6.0–5.0 imposed by 48 L FGS day?1. Overall, C. sorokiniana can be considered a robust species in flue gas bioremediation.  相似文献   

14.
Abelmoschus manihot, an ornamental plant, was examined for phytoremediation purposes in accordance with the ability to accumulate cadmium and physiological mechanisms of cadmium tolerance. A net photosynthetic rate (A N) glasshouse experiment for 60 days was conducted to investigate the influence of different cadmium amounts (0–100 mg kg?1) on the growth, biomass, photosynthetic performance, reactive oxygen species (ROS) production, antioxidative enzyme activities, Cd uptake and accumulation of A. manihot. Exposure to cadmium enhanced plant growth even at 100 mg kg?1, without showing symptoms of visible damage. The cadmium concentration of shoots (stems or leaves) and roots was more than the critical value of 100 mg kg?1 and reached 126.17, 185.26 and 210.24 mg kg?1, respectively. BCF values of A. manihot plants exceeded the reference value 1.0 for all the Cd treatments, and TF values were greater than 1 at 15–60 mg kg?1 Cd treatment. The results also showed that cadmium concentrations of 60 mg kg?1 or less induced a significant enhancement in plant net photosynthetic rate (A N), stomatal conductance (G s), transpiration rate (T r), photosynthetic pigments and F v/F m. These parameters were slightly decreased at the higher concentration (100 mg kg?1). The ROS production (O2 ?, H2O2) and antioxidative response including SOD, CAT and POD were significantly enhanced by increasing cadmium. These results suggest that A. manihot can be considered as a Cd-hyperaccumulator and the hormetic effects may be taken into consideration in remediation of Cd contamination soil.  相似文献   

15.
16.
Under CO2-limited conditions such as during stomatal closure, photorespiration is suggested to act as a sink for excess light energy and protect photosystem I (PSI) by oxidizing its reaction center chlorophyll P700. In this study, this issue was directly examined with rice (Oryza sativa L.) plants via genetic manipulation of the amount of Rubisco, which can be a limiting factor for photorespiration. At low [CO2] of 5 Pa that mimicked stomatal closure condition, the activity of photorespiration in transgenic plants with decreased Rubisco content (RBCS-antisense plants) markedly decreased, whereas the activity in transgenic plants with overproduction of Rubisco (RBCS-sense plants) was similar to that in wild-type plants. Oxidation of P700 was enhanced at [CO2] of 5 Pa in wild-type and RBCS-sense plants. PSI was not damaged by excess light stress induced by repetitive saturated pulse-light (rSP) in the presence of strong steady-state light. On the other hand, P700 was strongly reduced in RBCS-antisense plants at [CO2] of 5 Pa. PSI was also damaged by rSP illumination. These results indicate that oxidation of P700 and the robustness of PSI against excess light stress are hampered by the decreased activity of photorespiration as a result of genetic manipulation of Rubisco content. It is also suggested that overproduction of Rubisco does not enhance photorespiration as well as CO2 assimilation probably due to partial deactivation of Rubisco.  相似文献   

17.
In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50–125 µmol photons m?2 s?1) or high light (HL, 875–1000 µmol photons m?2 s?1) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740). We also compared the light-induced oxidation of P700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin?+?Antheraxantin?+?Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.  相似文献   

18.
The effects of the exogenous application of nitric oxide (NO, in the form of sodium nitroprusside, SNP) on the diurnal variation in photosynthesis, chlorophyll content, chlorophyll fluorescence, light response curve and the net assimilation of CO2 against intercellular CO2 concentration (A-Ci) curve parameters were investigated in the leaves of bamboo (Indocalamus barbatus McClure) exposed to simulated acid rain (SAR, pH 3.0) stress. According to the results of the diurnal variation in photosynthesis, foliar applications of 100–400 mg/L SNP effectively inhibited the decrease in net photosynthetic rate (Pn) as a result of non-stomatal factors, and mitigated midday depression under acid rain stress. The mitigating effect was most pronounced at 400 mg/L SNP. However, at higher concentrations of SNP (700 and 1000 mg/L), the mitigating effect became weak and even counterproductive. The results of the chlorophyll content, light response and A-Ci curve parameters suggested that the regulating role of NO against acid rain in the photosynthetic processes occurs through improving not only the efficiency of the light-harvesting and the activity of photosynthetic apparatus, but also the absorption of CO2 and the availability of CO2 for photosynthesis. The results of the chlorophyll fluorescence investigation further indicated that NO protected PSII activity from the damage of acid rain toxicity by enhancing the electron transport activity and photochemical efficiency, especially concerning the increase in the proportion of PSII open reaction centers. Furthermore, NO induced an increase in photorespiration (Rp), rather than an increase in non-photochemical quenching (NPQ), to dissipate the excessive excitation energy, which provided some protection to the photosynthetic apparatus under acid rain stress.  相似文献   

19.
20.
The cuticle, composed primarily of wax and cutin, covers most plant aerial surfaces and plays a vital role in interactions between plants and their environment. Some ATP-binding cassette G subfamily (ABCG) members are involved in cuticular lipid molecule exportation to outside in the plant surface. Thellungiella salsugineum, a relative of Arabidopsis thaliana with a heavy cuticle, has extreme stress tolerance. TsABCG11, an ABCG transporter was cloned (GenBank accession number JQ389853), and its structure was studied. qRT-PCR showed that TsABCG11 expression varied in different organs of T. salsugineum and was upregulated under ABA, NaCl, drought and cold conditions. The rosette leaves from 4-week-old TsABCG11 overexpressed (OE) Arabidopsis plants displayed lower rates of water loss and decreased chlorophyll-extracted rates compared to wild-type plants. TsABCG11-OE plants also exhibited significantly increased total cuticular wax and cutin monomer amounts, mainly due to prominent changes in the C29, C31, and C33 alkanes in the wax and C18:2 dioic in cutin monomers, respectively. TsABCG11-OE seedlings exhibit lower root growth inhibition under 100 mM of NaCl or 1 µM of ABA than the wild type. Four-week-old TsABCG11-OE plants exhibited higher photosynthetic rates and water-use efficiency under cold stress (4 °C) than control plants. These results indicate that TsABCG11 plays an important role in cuticle lipid exportation and is involved in abiotic stresses, probably having a close relationship with extreme stress tolerance in T. salsugineum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号