首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been proposed that the upper airway compliance should be highest during rapid eye movement (REM) sleep. Evidence suggests that the increased compliance is secondary to an increased retroglossal compliance. To test this hypothesis, we examined the effect of sleep stage on the relationship of retroglossal cross-sectional area (CSA; visualized with a fiber-optic scope) to pharyngeal pressure measured at the level of the oropharynx during eupneic breathing in subjects without significant sleep-disordered breathing. Breaths during REM sleep were divided into phasic (associated with eye movement, PREM) and tonic (not associated with eye movements, TREM). Retroglossal CSA decreased with non-REM (NREM) sleep and decreased further in PREM [wake 156.8 +/- 48.6 mm(2), NREM 104.6 +/- 65.0 mm(2) (P < 0.05 wake vs. NREM), TREM 83.1 +/- 46.4 mm(2) (P = not significant NREM vs. TREM), PREM 73.9 + 39.2 mm(2) (P < 0.05 TREM vs. PREM)]. Retroglossal compliance, defined as the slope of the regression CSA vs. pharyngeal pressure, was the same between all four conditions (wake -0.7 + 2.1 mm(2)/cmH(2)O, NREM 0.6 +/- 3.0 mm(2)/cmH(2)O, TREM -0.2 +/- 3.3 mm(2)/cmH(2)O, PREM -0.6 +/- 5.1 mm(2)/cmH(2)O, P = not significant). We conclude that the intrinsic properties of the airway wall determine retroglossal compliance independent of changes in the neuromuscular activity associated with changes in sleep state.  相似文献   

2.
A model of sleep-disordered breathing in the C57BL/6J mouse.   总被引:4,自引:0,他引:4  
To investigate the pathophysiological sequelae of sleep-disordered breathing (SDB), we have developed a mouse model in which hypoxia was induced during periods of sleep and was removed in response to arousal or wakefulness. An on-line sleep-wake detection system, based on the frequency and amplitude of electroencephalograph and electromyograph recordings, served to trigger intermittent hypoxia during periods of sleep. In adult male C57BL/6J mice (n = 5), the sleep-wake detection system accurately assessed wakefulness (97.2 +/- 1.1%), non-rapid eye movement (NREM) sleep (96.0 +/- 0.9%) and rapid eye movement (REM) sleep (85.6 +/- 5.0%). After 5 consecutive days of SDB, 554 +/- 29 (SE) hypoxic events were recorded over a 24-h period at a rate of 63.6 +/- 2.6 events/h of sleep and with a duration of 28.2 +/- 0.7 s. The mean nadir of fraction of inspired O(2) (FI(O(2))) on day 5 was 13.2 +/- 0.1%, and 137.1 +/- 13.2 of the events had a nadir FI(O(2)) <10% O(2). Arterial blood gases confirmed that hypoxia of this magnitude lead to a significant degree of hypoxemia. Furthermore, 5 days of SDB were associated with decreases in both NREM and REM sleep during the light phase compared with the 24-h postintervention period. We conclude that our murine model of SDB mimics the rate and magnitude of sleep-induced hypoxia, sleep fragmentation, and reduction in total sleep time found in patients with moderate to severe SDB in the clinical setting.  相似文献   

3.
The early literature suggests that hypoventilation in infants with congenital central hypoventilation syndrome (CHS) is less severe during rapid eye movement (REM) than during non-REM (NREM) sleep. However, this supposition has not been rigorously tested, and subjects older than infancy have not been studied. Given the differences in anatomy, physiology, and REM sleep distribution between infants and older children, and the reduced number of limb movements during REM sleep, we hypothesized that older subjects with CHS would have more severe hypoventilation during REM than NREM sleep. Nine subjects with CHS, aged (mean +/- SD) 13 +/- 7 yr, were studied. Spontaneous ventilation was evaluated by briefly disconnecting the ventilator under controlled circumstances. Arousal was common, occurring in 46% of REM vs. 38% of NREM trials [not significant (NS)]. Central apnea occurred during 31% of REM and 54% of NREM trials (NS). Although minute ventilation declined precipitously during both REM and NREM trials, hypoventilation was less severe during REM (drop in minute ventilation of 65 +/- 23%) than NREM (drop of 87 +/- 16%, P = 0.036). Despite large changes in gas exchange during trials, there was no significant change in heart rate during either REM or NREM sleep. We conclude that older patients with CHS frequently have arousal and central apnea, in addition to hypoventilation, when breathing spontaneously during sleep. The hypoventilation in CHS is more severe during NREM than REM sleep. We speculate that this may be due to increased excitatory inputs to the respiratory system during REM sleep.  相似文献   

4.
To determine the independent effects of sleep state, gestational age, and postnatal age on eucapnic ventilation and steady-state CO2 sensitivity, nine premature (146 +/- 3 days) and eight full-term (168 +/- 2 days) monkeys, Macaca nemestrina, from accurately timed conceptions were studied serially over the first 3 wk of life. Minute volume (VE)/kg,tidal volume (VT)/kg, and respiratory frequency were quantitated during rapid-eye-movement sleep (REM) and nonrapid-eye-movement sleep (NREM)in room air and when animals were breathing varied concentrations of cO2 in 21% O2. Eucapnic VE/kg and CO2 sensitivity [(deltaVE/kg)/delta PaCO2] increased progressively with advancing postnatal age during NREM sleep in grouped term and premature animals. CO2 sensitivity was not significantly different between REM and NREM sleep except in full-term animals at the highest postconceptual age studied (189 +/- 2 days) when [(delta VE/kg)/delta PaCO2] was lower in REM sleep than in NREM sleep (209 +/- 54 vs. 301 +/- 71 ml.min-1.kg-1.Torr-1; P less than 0.05, paired-t test). Gestational age had no measurable effect on eucapnic ventilation or CO2 sensitivity. These results support the hypothesis that REM sleep-induced depression of CO2 sensitivity develops in the neonatal monkey with advancing postconceptual age.  相似文献   

5.
Sleep-related reduction in geniohyoid muscular support may lead to increased airway resistance in normal subjects. To test this hypothesis, we studied seven normal men throughout a single night of sleep. We recorded inspiratory supraglottic airway resistance, geniohyoid muscle electromyographic (EMGgh) activity, sleep staging, and ventilatory parameters in these subjects during supine nasal breathing. Mean inspiratory upper airway resistance was significantly (P less than 0.01) increased in these subjects during all stages of sleep compared with wakefulness, reaching highest levels during non-rapid-eye-movement (NREM) sleep [awake 2.5 +/- 0.6 (SE) cmH2O.l-1.s, stage 2 NREM sleep 24.1 +/- 11.1, stage 3/4 NREM sleep 30.2 +/- 12.3, rapid-eye-movement (REM) sleep 13.0 +/- 6.7]. Breath-by-breath linear correlation analyses of upper airway resistance and time-averaged EMGgh amplitude demonstrated a significant (P less than 0.05) negative correlation (r = -0.44 to -0.55) between these parameters in five of seven subjects when data from all states (wakefulness and sleep) were combined. However, we found no clear relationship between normalized upper airway resistance and EMGgh activity during individual states (wakefulness, stage 2 NREM sleep, stage 3/4 NREM sleep, and REM sleep) when data from all subjects were combined. The timing of EMGgh onset relative to the onset of inspiratory airflow did not change significantly during wakefulness, NREM sleep, and REM sleep. Inspiratory augmentation of geniohyoid activity generally preceded the start of inspiratory airflow. The time from onset of inspiratory airflow to peak inspiratory EMGgh activity was significantly increased during sleep compared with wakefulness (awake 0.81 +/- 0.04 s, NREM sleep 1.01 +/- 0.04, REM sleep 1.04 +/- 0.05; P less than 0.05). These data indicate that sleep-related changes in geniohyoid muscle activity may influence upper airway resistance in some subjects. However, the relationship between geniohyoid muscle activity and upper airway resistance was complex and varied among subjects, suggesting that other factors must also be considered to explain sleep influences on upper airway patency.  相似文献   

6.
The purpose of the present study was to determine the relationship between renal sympathetic nerve activity (RSNA) and renal blood flow (RBF) during normal daily activity in conscious, chronically instrumented Wistar rats (n = 8). The animal's behavior was classified as rapid eye movement (REM) sleep, non-REM (NREM) sleep, quiet awake, moving, and grooming states. On average RSNA was lowest during REM sleep, which was decreased by 39.0 +/- 3.2% (P < 0.05) relative to NREM sleep, and rose linearly with an increase in activity level in the order of quiet awake (by 10.9 +/- 1.8%, P < 0.05), moving (by 29.4 +/- 2.9%, P < 0.05), and grooming (by 65.3 +/- 3.9%, P < 0.05) relative to NREM sleep. By contrast, RBF was highest during REM sleep, which was increased by 4.8 +/- 0.7% (P < 0.05) relative to NREM sleep and decreased significantly (P < 0.05) by 5.5 +/- 0.6 and 6.6 +/- 0.5% during moving and grooming states, respectively, relative to NREM sleep. There was a significant (P < 0.05) inverse linear relationship between the percent changes in RSNA and RBF and between those in RSNA and renal vascular conductance. Furthermore, renal denervation (n = 8) abolished the changes in RBF induced by different natural behavioral activities. These results suggest that the changes in RSNA induced by natural behavioral activities had a significant influence on RBF.  相似文献   

7.
We examined the initial effect of sleeping at a simulated moderate altitude of 2,650 m on the frequency of apneas and hypopneas, as well as on the heart rate and blood oxygen saturation from pulse oximetry (SpO2) during rapid eye movement (REM) and non-rapid eye movement (NREM) sleep of 17 trained cyclists. Pulse oximetry revealed that sleeping at simulated altitude significantly increased heart rate (3 +/- 1 beats/min; means +/- SE) and decreased SpO2 (-6 +/- 1%) compared with baseline data collected near sea level. In response to simulated altitude, 15 of the 17 subjects increased the combined frequency of apneas plus hypopneas from baseline levels. On exposure to simulated altitude, the increase in apnea was significant from baseline for both sleep states (2.0 +/- 1.3 events/h for REM, 9.9 +/- 6.2 events/h for NREM), but the difference between the two states was not significantly different. Hypopnea frequency was significantly elevated from baseline to simulated altitude exposure in both sleep states, and under hypoxic conditions it was greater in REM than in NREM sleep (7.9 +/- 1.8 vs. 4.2 +/- 1.3 events/h, respectively). Periodic breathing episodes during sleep were identified in four subjects, making this the first study to show periodic breathing in healthy adults at a level of hypoxia equivalent to 2,650-m altitude. These results indicate that simulated moderate hypoxia of a level typically chosen by coaches and elite athletes for simulated altitude programs can cause substantial respiratory events during sleep.  相似文献   

8.
Several investigators have observed that irregular breathing occurs during rapid-eye-movement (REM) sleep in healthy subjects, with ventilatory suppression being prominent during active eye movements [phasic REM (PREM) sleep] as opposed to tonic REM (TREM) sleep, when ocular activity is absent and ventilation more regular. Inasmuch as considerable data suggest that rapid eye movements are a manifestation of sleep-induced neural events that may importantly influence respiratory neurons, we hypothesized that upper airway dilator muscle activation may also be suppressed during periods of active eye movements in REM sleep. We studied six normal men during single nocturnal sleep studies. Standard sleep-staging parameters, ventilation, and genioglossus and alae nasi electromyograms (EMG) were continuously recorded during the study. There were no significant differences in minute ventilation, tidal volume, or any index of genioglossus or alae nasi EMG amplitude between non-REM (NREM) and REM sleep, when REM was analyzed as a single sleep stage. Each breath during REM sleep was scored as "phasic" or "tonic," depending on its proximity to REM deflections on the electrooculogram. Comparison of all three sleep states (NREM, PREM, and TREM) revealed that peak inspiratory genioglossus and alae nasi EMG activities were significantly decreased during PREM sleep compared with TREM sleep [genioglossus (arbitrary units): NREM 49 +/- 12 (mean +/- SE), TREM 49 +/- 5, PREM 20 +/- 5 (P less than 0.05, PREM different from TREM and NREM); alae nasi: NREM 16 +/- 4, TREM 38 +/- 7, PREM 10 +/- 4 (P less than 0.05, PREM different from TREM)]. We also observed, as have others, that ventilation, tidal volume, and mean inspiratory airflow were significantly decreased and respiratory frequency was increased during PREM sleep compared with both TREM and NREM sleep. We conclude that hypoventilation occurs in concert with reduced upper airway dilator muscle activation during PREM sleep by mechanisms that remain to be established.  相似文献   

9.
Acute intermittent hypoxia (AIH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). Here, we tested four hypotheses in unanesthetized, spontaneously breathing rats using radiotelemetry for EEG and diaphragm electromyography (Dia EMG) activity: 1) AIH induces LTF in Dia EMG activity; 2) diaphragm LTF (Dia LTF) is more robust during sleep vs. wakefulness; 3) AIH (or repetitive AIH) disrupts natural sleep-wake architecture; and 4) preconditioning with daily AIH (dAIH) for 7 days enhances Dia LTF. Sleep-wake states and Dia EMG were monitored before (60 min), during, and after (60 min) AIH (10, 5-min hypoxic episodes, 5-min normoxic intervals; n = 9), time control (continuous normoxia, n = 8), and AIH following dAIH preconditioning for 7 days (n = 7). Dia EMG activities during quiet wakefulness (QW), rapid eye movement (REM), and non-REM (NREM) sleep were analyzed and normalized to pre-AIH values in the same state. During NREM sleep, diaphragm amplitude (25.1 ± 4.6%), frequency (16.4 ± 4.7%), and minute diaphragm activity (amplitude × frequency; 45.2 ± 6.6%) increased above baseline 0-60 min post-AIH (all P < 0.05). This Dia LTF was less robust during QW and insignificant during REM sleep. dAIH preconditioning had no effect on LTF (P > 0.05). We conclude that 1) AIH induces Dia LTF during NREM sleep and wakefulness; 2) Dia LTF is greater in NREM sleep vs. QW and is abolished during REM sleep; 3) AIH and repetitive AIH disrupt natural sleep patterns; and 4) Dia LTF is unaffected by dAIH. The capacity for plasticity in spinal pump muscles during sleep and wakefulness suggests an important role in the neural control of breathing.  相似文献   

10.
Recent epidemiological, clinical, and experimental studies have demonstrated important links between sleep duration and architecture, circadian rhythms, and metabolism, although the genetic pathways that interconnect these processes are not well understood. Leptin is a circulating hormone and major adiposity signal involved in long-term energy homeostasis. In this study, we tested the hypothesis that leptin deficiency leads to impairments in sleep-wake regulation. Male ob/ob mice, a genetic model of leptin deficiency, had significantly disrupted sleep architecture with an elevated number of arousals from sleep [wild-type (WT) mice, 108.2 +/- 7.2 vs. ob/ob mice, 148.4 +/- 4.5, P < 0.001] and increased stage shifts (WT, 519.1 +/- 25.2 vs. ob/ob, 748.0 +/- 38.8, P < 0.001) compared with WT mice. Ob/ob mice also had more frequent, but shorter-lasting sleep bouts compared with WT mice, indicating impaired sleep consolidation. Interestingly, ob/ob mice showed changes in sleep time, with increased amounts of 24-h non-rapid eye movement (NREM) sleep (WT, 601.5 +/- 10.8 vs. ob/ob, 669.2 +/- 13.4 min, P < 0.001). Ob/ob mice had overall lower body temperature (WT, 35.1 +/- 0.2 vs. ob/ob, 33.4 +/- 0.2 degrees C, P < 0.001) and locomotor activity counts (WT, 25125 +/- 2137 vs. ob/ob, 5219 +/- 1759, P < 0.001). Ob/ob mice displayed an attenuated diurnal rhythm of sleep-wake stages, NREM delta power, and locomotor activity. Following sleep deprivation, ob/ob mice had smaller amounts of NREM and REM recovery sleep, both in terms of the magnitude and the duration of the recovery response. In combination, these results indicate that leptin deficiency disrupts the regulation of sleep architecture and diurnal rhythmicity.  相似文献   

11.
The effect of phasic eye movement activity on ventilation during rapid-eye-movement (REM) sleep was studied in seven healthy young adults by use of the respiratory inductive plethysmograph. Mean ventilation (VE) and ventilatory components during REM sleep were not significantly different from that seen in either stages 1-2 or 3-4 sleep. The percent of rib cage contribution to ventilation in REM sleep, 29.3 +/- 5.1%, was reduced compared with 54.4 +/- 5.8% in stage 1-2 and 52.2 +/- 4.3% in stage 3-4 sleep (P less than 0.005). When one separated breaths by the degree of associated phasic eye movement activity, it became apparent that breathing during REM sleep is very heterogeneous. Increasing eye movement activity was associated with inhibition of ventilation with a reduction in VE from 5.1 +/- 0.3 to 3.8 +/- 0.3 l/min. Tidal volume and frequency both fell, whereas inspiratory duration was unchanged. Compartmental ventilation was also affected, with the fall in the rib cage contribution from 37.8 +/- 6.4 to 15.3 +/- 5.6%. Chest wall and abdominal movement became more asynchronous as phasic-eye-movement activity increased and frank paradoxical breathing was seen.  相似文献   

12.
Periodic breathing is commonly observed in chronic heart failure (CHF) when pulmonary capillary wedge pressure is abnormally high and there is usually concomitant tachypneic hyperventilation. We hypothesized that acute pulmonary hypertension at pressures encountered in CHF and involving all of the lungs and pulmonary vessels would predispose to apnea/unstable breathing during sleep. We tested this in a chronically instrumented, unanesthetized dog model during non-rapid eye movement (NREM) sleep. Pulmonary hypertension was created by partial occlusion of the left atrium by means of an implanted balloon catheter in the atrial lumen. Raising mean left atrial pressure by 5.7 +/- 1.1 Torr resulted immediately in tachypneic hyperventilation [breathing frequency increased significantly from 13.8 to 19.9 breaths/min; end-tidal P(CO2) (P(ET(CO2))) fell significantly from 38.5 to 35.9 Torr]. This tachypneic hyperventilation was present during wakefulness, NREM sleep, and rapid eye movement sleep. In NREM sleep, this increase in left atrial pressure increased the gain of the ventilatory response to CO2 below eupnea (1.3 to 2.2 l.min(-1).Torr(-1)) and thereby narrowed the CO2 reserve [P(ET(CO2)) (apneic threshold) - P(ET(CO2)) (eupnea)], despite the decreased plant gain resulting from the hyperventilation. We conclude that acute pulmonary hypertension during sleep results in a narrowed CO2 reserve and thus predisposes toward apnea/unstable breathing and may, therefore, contribute to the breathing instability observed in CHF.  相似文献   

13.
Sleep is generally considered to be a recovery from prior wakefulness. The architecture of sleep not only depends on the duration of wakefulness but also on its quality in terms of specific experiences. In the present experiment, we studied the effects of restraint stress on sleep architecture and sleep electroencephalography (EEG) in different strains of mice (C57BL/6J and BALB/cJ). One objective was to determine if the rapid eye movement (REM) sleep-promoting effects of restraint stress previously reported for rats would also occur in mice. In addition, we examined whether the effects of restraint stress on sleep are different from effects of social defeat stress, which was found to have a non-REM (NREM) sleep-promoting effect. We further measured corticosterone and prolactin levels as possible mediators of restraint stress-induced changes in sleep. Adult male C57BL/6J and BALB/cJ mice were subjected to 1 h of restraint stress in the middle of the light phase. To control for possible effects of sleep loss per se, the animals were also kept awake for 1 h by gentle handling. Restraint stress resulted in a mild increase in NREM sleep compared with baseline, but, overall, this effect was not significantly different from sleep deprivation by gentle handling. In contrast, restraint stress caused a significant increase in REM sleep compared with handling in the C57BL/6J mice but not in BALB/cJ mice. Corticosterone levels were significantly and similarly elevated after restraint in both strains, but prolactin was increased only in the C57BL/6J mice. In conclusion, this study shows that the restraint stress-induced increase in REM sleep in mice is strongly strain dependent. The concomitant increases in prolactin and REM sleep in the C57BL/6J mice, but not in BALB/cJ mice, suggest prolactin may be involved in the mechanism underlying restraint stress-induced REM sleep. Furthermore, this study confirms that different stressors differentially affect NREM and REM sleep. Whereas restraint stress promotes REM sleep in C57BL/6J mice, we previously found that in the same strain, social defeat stress promotes NREM sleep. As such, studying the consequences of specific stressful stimuli may be an important tool to unravel both the mechanism and function of different sleep stages.  相似文献   

14.
Respiratory and arousal state control are heritable traits in mice. B6.V-Lep(ob) (ob) mice are leptin deficient and differ from C57BL/6J (B6) mice by a variation in the gene coding for leptin. The ob mouse has morbid obesity and disordered breathing that is homologous to breathing of obese humans. This study tested the hypothesis that microinjecting neostigmine into the pontine reticular nucleus, oral part (PnO), of B6 and ob mice alters sleep and breathing. In B6 and ob mice, neostigmine caused a concentration-dependent increase (P < 0.0001) in percentage of time spent in a rapid eye movement (REM) sleeplike state (REM-Neo). Relative to saline (control), higher concentrations of neostigmine increased REM-Neo duration and the number of REM-Neo episodes in B6 and ob mice and decreased percent wake, percent non-REM, and latency to onset of REM-Neo (P < 0.001). In B6 and ob mice, REM sleep enhancement by neostigmine was blocked by atropine. Differences in control amounts of sleep and wakefulness between B6 and the congenic ob mice also were identified. After PnO injection of saline, ob mice spent significantly (P < 0.05) more time awake and less time in non-REM sleep. B6 mice displayed more (P < 0.01) baseline locomotor activity than ob mice, and PnO neostigmine decreased locomotion (P < 0.0001) in B6 and ob mice. Whole body plethysmography showed that PnO neostigmine depressed breathing (P < 0.001) in B6 and ob mice and caused greater respiratory depression in B6 than ob mice (P < 0.05). Western blot analysis identified greater (P < 0.05) expression of M2 muscarinic receptor protein in ob than B6 mice for cortex, midbrain, cerebellum, and pons, but not medulla. Considered together, these data provide the first evidence that pontine cholinergic control of sleep and breathing varies between mice known to differ by a spontaneous mutation in the gene coding for leptin.  相似文献   

15.
Neural-mechanical coupling of breathing in REM sleep   总被引:3,自引:0,他引:3  
Smith, C. A., K. S. Henderson, L. Xi, C.-M. Chow, P. R. Eastwood, and J. A. Dempsey. Neural-mechanical coupling of breathing in REM sleep. J. Appl.Physiol. 83(6): 1923-1932, 1997.During rapid-eye-movement (REM) sleep theventilatory response to airway occlusion is reduced. Possiblemechanisms are reduced chemosensitivity, mechanical impairment of thechest wall secondary to the atonia of REM sleep, or phasic REM eventsthat interrupt or fractionate ongoing diaphragm electromyogram (EMG)activity. To differentiate between these possibilities, we studiedthree chronically instrumented dogs before, during, and after15-20 s of airway occlusion during non-REM (NREM) and phasic REMsleep. We found that 1) for a given inspiratory time the integrated diaphragm EMG(Di) was similar or reduced in REM sleep relativeto NREM sleep; 2) for a givenDi in response to airway occlusion and thehyperpnea following occlusion, the mechanical output (flow or pressure)was similar or reduced during REM sleep relative to NREM sleep;3) for comparable durations ofairway occlusion the Di and integratedinspiratory tracheal pressure tended to be smaller and more variable inREM than in NREM sleep, and 4)significant fractionations (caused visible changes in trachealpressure) of the diaphragm EMG during airway occlusion inREM sleep occurred in ~40% of breathing efforts. Thus reducedand/or erratic mechanical output during and after airwayocclusion in REM sleep in terms of flow rate, tidal volume, and/or pressure generation is attributable largely to reduced neural activity of the diaphragm, which in turn is likely attributable to REM effects, causing reduced chemosensitivity at the level of theperipheral chemoreceptors or, more likely, at the central integrator.Chest wall distortion secondary to the atonia of REM sleep maycontribute to the reduced mechanical output following airway occlusionwhen ventilatory drive is highest.

  相似文献   

16.
Megirian, David, Jacek Dmochowski, and Gaspar A. Farkas. Mechanism controlling sleep organization ofthe obese Zucker rat. J. Appl.Physiol. 84(1): 253-256, 1998.We tested thehypothesis that the obese (fa/fa)Zucker rat has a sleep organization that differs from that of leanZucker rats. We used the polygraphic technique to identify and toquantify the distribution of the three main states of the rat:wakefulness (W), non-rapid-eye-movement (NREM), and rapid-eye-movement(REM) sleep states. Assessment of states was made with light present(1000-1600), at the rats thermoneutral temperature of 29°C.Obese rats, compared with lean ones, did not show significantdifferences in the total time spent in the three main states. Whereasthe mean durations of W and REM states did not differ statistically,that of NREM did (P = 0.046). However,in the obese rats, the frequencies of switching from NREM sleep to W,which increased, and from NREM to REM sleep, which decreased, werestatistically significantly different(P = 0.019). Frequency of switchingfrom either REM or W state was not significantly different. We concludethat sleep organization differs between lean and obese Zucker rats andthat it is due to a disparity in switching from NREM sleep to either Wor REM sleep and the mean duration of NREM sleep.

  相似文献   

17.
Periodic breathing (PB) is a fundamental breathing pattern in many common cardiopulmonary illnesses. The finding of PB in C57BL/6J (B6) mice was previously ascribed to strain differences in posthypoxic ventilatory and frequency decline in the B6 mice (Han F, Subramanian S, Price ER, Nadeau J, and Strohl KP. J Appl Physiol 92: 1133-1140, 2002). We tested whether the induction of posthypoxic frequency decline in A/J mice, through administration of a neuronal nitric oxide synthase blocker [7-nitroindazole (7-NI); 60 mg/kg], would cause A/J mice to exhibit PB and/or alter PB expression in the B6 strain. Recordings of ventilatory behavior by the plethysmography method were made when unanesthetized B6 (n = 10) or A/J (n = 6) animals were reoxygenated with 100% O2 or room air after exposure to 8% O2. Before undergoing gas challenges, mice were given an intraperitoneal injection of either peanut oil alone (vehicle) or 7-NI suspended in peanut oil. Compared with vehicle, both strains of mice exhibited posthypoxic frequency decline and the absence of short-term potentiation with 7-NI administration. B6 mice continued to exhibit posthypoxic PB; however, the PB was characterized by longer cycle and apnea length. In contrast, A/J mice did not show increased tendency toward posthypoxic PB with 7-NI. We conclude that 7-NI further differentiates the A/J and B6 strains in terms of PB and that strain-related differences in posthypoxic frequency decline are not primary determinants of this strain difference in the occurrence of PB. Metabolism was not associated with either the expression of posthypoxic ventilatory decline or PB. Furthermore, neuronal nitric oxide may be an organizing feature in the presence, length, and/or cycle length of apnea in the susceptible strain.  相似文献   

18.
It has been proposed that the gender difference in sleep apnea prevalence is related to gender differences in upper airway structure and function. We hypothesized that men would have smaller retropalatal cross-sectional area and higher compliance during sleep compared with women. Using upper airway imaging, we measured upper airway cross-sectional area and retropalatal compliance in wakefulness and non-rapid eye movement (NREM) sleep in 15 men and 15 women without sleep-disordered breathing. Cross-sectional area at the beginning of inspiration tended to be larger in men compared with women in both wakefulness [194.5 +/- 21.3 vs. 138.8 +/- 12.0 (SE) mm(2)] and NREM sleep (111.1 +/- 17.6 vs. 83.3 +/- 11.9 mm(2); P = 0.058). There was no significant difference, however, after correction for body surface area. Retropalatal compliance also tended to be higher in men during both wakefulness (5.9 +/- 1.4 vs. 3.1 +/- 1.4 mm(2)/cmH(2)O; P = 0.006) and NREM sleep (12.6 +/- 2.7 vs. 4.7 +/- 2.6 mm(2)/cmH(2)O; P = 0.055). However, compliance was similar in men relative to women after correction for neck circumference. We conclude that the gender difference in retropalatal compliance is more accurately attributed to differences in neck circumference between the genders.  相似文献   

19.
The relationship between renal sympathetic nerve activity (RSNA) and systemic arterial pressure obtained during rapid eye movement (REM) sleep was compared with that obtained in other sleep and awake states. Electrodes for the measurements of RSNA, electrocardiogram, electromyogram, and electroencephalogram and a catheter for the measurement of systemic arterial pressure were implanted while the animals were under aseptic conditions at least 5 days before the experiment. During the transition from non-REM (NREM) to REM sleep, RSNA and heart rate (HR) decreased immediately by 46 +/- 2% (P < 0.05) and 22 +/- 3 beats/min (P < 0.05), respectively, over 3 s after the onset of REM sleep. Meanwhile, systemic arterial pressure increased gradually after the onset of REM sleep, which was apparently independent of the changes in RSNA. During REM sleep, the relationships between RSNA/HR and systemic arterial pressure were dissociated compared with that obtained during the other behavioral states. These data indicate that the interdependency between systemic arterial pressure and RSNA during REM sleep is likely to be modified compared with other behavioral states.  相似文献   

20.
Comparison of the abdominal muscle response to CO2 rebreathing in rapid-eye-movement (REM) and non-REM (NREM) sleep was performed in healthy premature infants near full term. Eight subjects were studied at a postconceptional age of 40 +/- 1.6 (SD) wk (range 38-43 wk) during spontaneous sleep. Sleep stages were defined on the basis of electrophysiological and behavioral criteria, and diaphragmatic and abdominal muscle electromyographic activity was recorded by cutaneous electrodes. The responses to CO2 were measured by a modified Read rebreathing technique. The minute ventilation and diaphragmatic and abdominal muscle electromyographic activities were calculated and plotted against end-tidal CO2 partial pressure. Both the ventilatory and diaphragmatic muscle responses to CO2 decreased from NREM to REM sleep (P less than 0.05). Abdominal muscles were forcefully recruited in response to CO2 rebreathing during NREM sleep. In REM sleep, abdominal muscle response to CO2 was virtually absent or decreased compared with NREM sleep (P less than 0.05). We conclude that 1) the abdominal muscles are recruited during NREM sleep in response to CO2 rebreathing in healthy premature infants near full term and 2) the abdominal muscle recruitment is inhibited during REM sleep compared with NREM sleep, and this REM sleep-related inhibition probably contributes to the decrease in the ventilatory response to CO2 rebreathing in REM sleep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号