首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

2.
TheAgrobacterium rhizogenesT-DNA oncogenerolDunder the control of its own 5′ regulatory region was transferred to day-neutral tobacco plants. The main trait induced byrolDin transgenic plants is a striking precocity in flower setting and a strong enhancement of the flowering potential. InrolDplants, early flowering is followed by the very rapid growth of numerous lateral inflorescences. The analysis of several morphological and histological parameters suggests that some characteristic morphological abnormalities observed inrolDplants can be accounted for by their early reproductive phase transition and points to the involvement in the transition of a greater portion of the plant body than is the case for untransformed tobacco. Thein vitromorphogenic potential of tissues fromrolDplants was also tested. Superficial thin cell layer explants fromrolDplants show an earlier and much enhanced flower organogenesis, compared to controls, both on flowering and on hormone-free medium.  相似文献   

3.
In vitro flower bud formation in tobacco: interaction of hormones   总被引:3,自引:0,他引:3       下载免费PDF全文
External application of auxin and cytokinin is required for the formation of flower buds on thin-layer tissue explants of Nicotiana tabacum cv Samsun. Interaction between both plant growth regulators during this regenerative process has been demonstrated with respect to speed of flower bud initiation and the number of flower buds formed. Separation in time of the hormone application during culture revealed that the cytokinin benzyladenine plays a key role in flower bud initiation whereas auxin (indoleacetic acid) stimulates in particular the differentiation of flower buds. The uptake of each hormone was proportional to the concentration supplied in the medium, and the uptake of either hormone appeared independently of the presence of the other. Metabolism studies showed the conversion of indoleacetic acid by the tissue to at least 13 metabolites after 24 h of culture. In addition, indoleacetic acid metabolism was demonstrated not to be influenced by the uptake and metabolism of benzyladenine. Taken together the results indicate that the interaction of auxin and cytokinin with respect to in vitro flower bud formation is indirect, i.e. does not take place at the level of hormone uptake or metabolism but at some step in the cascade of processes they initiate.  相似文献   

4.
Organogenesis in thin cell layers of Nicotiana tabacum L. was studied in relation to the effects of natural and synthetic auxins in combination with various cytokinins. All cytokinins tested, benzyladenine (BA), kinetin, zeatin (Z), zeatin riboside (ZR), N62-isopentenyl) adenine (IPA), dihydrozeatin [(diH)Z] and dihydrozeatin riboside [(diH)ZR], seem to be active in flower bud formation. In addition to the initiation of flower buds, vegetative buds or roots were also formed on the explants in the presence of BA, Z or IPA as exogenous cytokinins. Only dihydrozeatin and its riboside stimulated the initation of flower buds alone (as is known for kinetin), especially if supplemented with indole-3-acetic acid (IAA) as exogenous auxin. A high number of explants with flower buds was also found with high cytokinin/2,4-D ratios. In these conditions the presence of (diH)Z yielded the higest number of flower buds per explant.  相似文献   

5.
A vascular bundles specific expressing vector pBAL1 with a promoter AQ630 from rice phenylalanine ammonialyase gene and a gene encoding indoleacetic-lysine synthytase from Pseudomonas syringae subsp. savastanoi was constructed. Affirmed by Southern blotting and RTPCR analysis, the AQ630-iaaL transgenic plants show increasing shoots-regeneration frequency of young stem explants on hormone-free 1/2 MS medium and lower sensibility to IAA when roots were induced from the root explants on the media containing different concentrations of IAA compared to untransformed plants.  相似文献   

6.
Leaves were obtained from 4-week-old seedlings of Lavandula latifolia Medicus grown in vitro. Leaf explants were then cultured on MS medium supplemented with different concentrations and combinations of the auxins IAA or NAA with the cytokinin BA and maintained under three illumination conditions, 16h photoperiod, darkness or darkness followed by a photoperiod, to assess morphogenic responses. Irrespective of illumination conditions, bud regeneration was achieved only in media containing BA or BA/auxin combinations, with the best results being obtained in the presence of BA and 0.06 or 0.6 M IAA or NAA. A photoperiod of 16h appeared to yield the best response in terms of bud regeneration percentage. High auxin concentrations (6.0 or 11.0 M) inhibited bud differentiation, especially when explants were cultured in darkness. On the other hand, low auxin levels and photoperiod improved shoot development. Excised shoots were induced to form roots by transfer to hormone-free MS medium with macronutrients at half strength. The obtained plantlets were ultimately grown in the greenhouse.Abbreviations BA benzyladenine - BM basal medium - IAA indoleacetic acid - MS Murashige & skoog - NAA -naphthaleneacetic acid  相似文献   

7.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

8.
我们利用水稻苯丙氨酸解氨酶启动子(AQ630)和吲哚乙酰胺赖氨酸酯合成酶基因(iaaL)构建了维管束特异表达的植物表达载体pBAL1并导入烟草基因组中。比较了对照植株、转基因植株的幼茎和根外植体在组织培养中分化能力的变化,结果表明转基因植株茎外植体的不定芽形成明显受到促进,而转化植株根外植体在不定根发生方面对外源IAA的敏感性下降。  相似文献   

9.
Cultures of Lavandula latifolia Medicus were established from axillary buds of mature field-grown plants. Explants were initially cultured on media with two different macronutrient combinations and benzyladenine or kinetin added either individually or with naphthaleneacetic acid. Subsequently, explants were subcultured in Murashige and Skoog medium supplemented with 20% coconut milk, 0.57 M indoleacetic acid and 8.88 M benzyladenine. Shoot proliferation from axillary buds was not affected by seasonal fluctuations in the stock plants but depended on the macronutrient composition and on the type and concentration of cytokinin tested. Best results were obtained in explants initially cultured in media with Murashige and Skoog constituents and supplemented with 5 M benzyladenine. In vitro-grown shoots were used to induce multiple shooting by transferring them to subculture medium. Shoots were rooted on Murashige and Skoog medium with macronutrients at half-strength. Plantlets were transferred to soil and grown to maturity.  相似文献   

10.
The in vitro development of flower buds was studied on tissue explants of epidermis and subepidermal cortex from the flower stalks of Nicotiana tabacum L. cv. Samsun. The number of flower buds formed depended mainly on cytokinin concentration. Auxin acted as a modifier in a complex way. In early development, NAA at 1 μ M decreased the number of buds initiated and delayed bud emergence. At a later stage, auxin promoted bud outgrowth at the same concentration. Optimal results were obtained when explants were first incubated at low auxin concentration for 3–5 days and subsequently transferred to an elevated auxin level. Physiological processes that lead to flower bud initiation start very soon after the onset of incubation. This was inferred from experiments whereby explants were first cultured at an inductive cytokinin concentration and then transferred to a non-inductive hormone level.  相似文献   

11.
The accumulation and metabolism of exogenously applied and endogenously produced auxins and cytokinins were studied in relation to organogenesis in thin cell layers of Nicotiana tabacum L. It was shown that, in order to obtain maximal flower bud formation, both exogenous auxin and cytokinin needed to be present during the first 4 days of culture (to the formation of a subepidermal meristematic zone) whereas cytokinins needed to be present for at least 4 days more (until formation of organogenic centres). Explants taken from floral branches have higher endogenous indole-3-acetic acid (IAA) levels compared with explants from the basal part of the stem which form only vegetative buds. This might be related to a different IAA metabolism in these two types of explants as was shown by the different accumulation of exogenously applied IAA. Both 'floral' and 'vegetative' cells layers contained comparable amounts of zeatin riboside (ZR) as their major cytokinin. Free bases, zeatin (Z) and dihydrozeatin [(diH)Z], given exogenously, were largely metabolised to their respective ribosides. The observation that Z was less effective than (diH)Z in the induction of flower buds could be related to (diH)ZR apparently not being a substrate for cytokinin oxidase.  相似文献   

12.
The objective was to determine whether the protein of rolB affects shoot formation and whether this potential relationship depends on the developmental stages of the plant and/or on the culture conditions. Thin cell layers (TCL) and leaf explants were excised from tobacco plants in the vegetative and flowering stages and cultured under various hormonal conditions. In TCLs of vegetative-stage plants, the expression of rolB enhanced the formation of the shoot buds under hormone-free conditions and with specific concentrations of auxin and/or cytokinin. Histological examination showed that the induction of the shoot meristemoids was particularly enhanced by rolB protein and that meristemoid growth was accelerated. In leaf explants from vegetative-stage plants, the expression of rolB increased the formation of shoot buds in the presence of 1 M IAA plus 1 or 10 M cytokinin. With BA alone, at a 0.1 M concentration, shoot formation occurred in the transgenic explants only, whereas with concentrations ranging from 0.5 to 10 M, it was higher in these explants than in controls.RolB protein enhanced the formation of shoot buds in TCLs from flowering plants under all hormonal conditions. In the presence of 1 M IAA and kinetin, the protein also increased the flowering response. In leaf explants from flowering plants, the expression of rolB increased the number of shoot buds in the presence of 1 M IAA with 10 M BA.In conclusion, rolB protein promotes shoot formation; it seems to have a positive interaction with cytokinin and an effect on the induction of the meristematic condition.  相似文献   

13.
Callus initiation from seedling explants of niger (Guizotia abyssinica Cass) cv. Ootacamund was found to be better on LS medium containing kinetin (1.4 M) plus 2,4-dichlorophenoxyacetic acid (9 M) than its analogues. Embryoids were induced directly from cotyledons on LS medium supplemented with 2,4,5-trichlorophenoxyacetic acid and 2,4,5-trichlorophenoxypropionic acid. When cotyledon-derived callus was subcultured onto medium with 10.7 M naphthalene-acetic acid and 2.3 M kinetin, embryogenesis was observed. Multiple shoots were obtained from cotyledonary explants in presence of MS medium containing 4.4 M benzyladenine and 11.4 M indoleacetic acid. Regenerated plants that were transferred to pots and grown to maturity were morphologically normal and fertile.Abbreviations NAA naphthaleneacetic acid - IAA indoleacetic acid - BA benzyladenine - GA3 gibberellic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - 2,4,5-T 2,4,5-trichlorophenoxypropionic acid - 2,4,5-TP 2,4,5-trichlorophenoxypropionic acid - ABA abscisic acid  相似文献   

14.
Adventitious shoots and plantlets were regenerated in vitro from floral stem explants of Crinum macowanii (Bak.) (bush lily). The length (age) of the floral stem as well as the orientation and position of the explant disc in the floral stem were the most important factors affecting shoot regeneration. The highest number of shoots were regenerated when immature floral stems of 70–100 mm were used as starting material, using the middle or basal parts of the stem, and orientating the discs with their proximal ends on the medium. Combinations of kinetin (4.65 M) and either indoleacetic acid (0.57 M) or naphthaleneacetic acid (0.54 M), or a combination of benzyladenine (4.44 M) and 2,4-dichlorophenoxyacetic acid (0.45 M) resulted in the highest numbers of shoots being regenerated. Although a slight degree of callus formation was noticed on the cut-edges of the discs, shoot formation did not occur via callus, but directly from the floral stem epidermis. Unrooted shoots were rooted on MS-medium containing 0.17 M sucrose.Abbreviations BA benzyladenine - IAA indoleacetic acid - IBA indolebutyric acid - NAA naphthaleneacetic acid - 2,4-d 2,4 dichlorophenoxyacetic acid  相似文献   

15.
Summary A system for the regeneration of spinach (Spinacia oleracea L.) from mature dry seed explants has been established. The response of two commercial spinach cultivars, ‘Grandstand’ and ‘Baker’, was examined. Callus proliferation was most prominent on MS medium supplemented with 9.3 μM of 6-furfurylaminopurine (kinetin) and 3.39 μM 2,4-dichlorophenoxyacetic acid (2,4-D). Adventitious shoot formation was observed within 8 wk after callus was transferred onto regeneration medium. Shoot regeneration was best from callus induced on 9.3 μM kinetin and 4.56 μM 2,4-D. The regeneration medium contained 9.3 μM kinetin, 0.045 μM 2,4-D, and 2.89 μM gibberellic acid (GA3). Shoots were rooted on hormone-free medium, and plants grown in a greenhouse showed normal phenotype. This system is beneficial in rapid propagation of spinach plants, particularly when only a limited number of seeds are available.  相似文献   

16.
Plant regeneration from Bulgarian rose callus   总被引:5,自引:0,他引:5  
Plant regeneration capacity of Bulgarian rose callus tissue was examined. Adventitious bud formation could be successfully attained, depending on the kinds of mineral salts used in the medium, auxin and cytokinin used. When callus tissues were cultured on the medium without ammonium nitrate and contained indoleacetic acid and benzyladenine, buds were formed in the callus. The number of buds were significantly increased by the simultaneous addition of calcium ionophore. When the cultures were transferred to the medium without cytokinin, roots were formed in the basal part of the buds.Abbreviations BA benzyladenine - IAA indoleacetic acid - K kinetin - NAA naphthaleneacetic acid  相似文献   

17.
Leaf and shoot explants of Sempervivum tectorum L., taken from 14- and 30-day-old plants germinated in vitro, have been studied by using Murashige-Skoog and White basal media with cytokinins (benzyladenine, kinetin) and auxins (indoleacetic acid, naphthaleneacetic acid, indolebutyric acid) in various concentrations. Explants taken from 14-day-old plants died but 30-day-old leaves and shoots produced yellow and soft, as well as green and hard calluses on Murashige-Skoog medium with 4.4–8.8 M benzyladenine and 0.57 M indoleacetic acid. Shoot organogenesis was induced from green, hard callus in a medium with 2.2 M benzyladenine plus either 1.1 M indoleacetic acid or 2.5 M indolebutyric acid. Whole plants were grown on Murashige-Skoog medium without plant growth regulators. On the other hand, White medium was not suitable for raising Sempervivum tectorum in vitro.Abbreviations BA benzyladenine - IAA indoleacetic acid - IBA indolebutyric acid - MS Murashige-Skoog - NAA napthaleneacetic acid - W White  相似文献   

18.
Methods for obtaining heterotic F1 and maintaining purebred lines for breeding of Brassica oleracea are limited by absence of male sterile lines and occurrence of inbreeding depression, respectively. The use of vegetative (stem, petiole, leaf, leaf rib) and floral (peduncle, pedicel, flower bud, curd) explants of cauliflower to regenerate purebred lines for crossing were examined. Of four growth regulator treatments and explant types used, best results were obtained with curd explants on MS medium with 6-benzyladenine (cytokinin) and gibberellic acid. Although 6-benzyladenine alone promoted formation of shoots in floral explants, both 6-benzyladenine and α-napthaleneacetic acid were required for vegetative explants. Use of α-napthaleneacetic acid, however, often increased callus formation. These culture techniques to maintain purebred regenerated plants will complement newly-derived nuclear-based male sterile lines obtained by the introduction of antisense copies of the gene BcpI, which is required for pollen fertility. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Summary To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1-1. These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.Abbreviations BA 6-benzyl-aminopurine - NAA 1-Naphthaleneacetic acid - MS Murashige & Skoog (1962) medium  相似文献   

20.
A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ) (2.27 μM), 6-benzylaminopurine (BA) (2.22 μM) and indole-3-butyric acid (IBA) (0.49 μM). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA (4.44 μM), kinetin (Kn) (2.33 μM), indole-3-acetic acid (IAA) (1.43 μM), and gibberellic acid (GA3) (0.72 μM). Well-developed shoots were rooted on MS medium supplemented with IBA (0.5 μM) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号