首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
In the invertebrate chordate amphioxus, as in vertebrates, retinoic acid (RA) specifies position along the anterior/posterior axis with elevated RA signaling in the middle third of the endoderm setting the posterior limit of the pharynx. Here we show that AmphiHox1 is also expressed in the middle third of the developing amphioxus endoderm and is activated by RA signaling. Knockdown of AmphiHox1 function with an antisense morpholino oligonucleotide shows that AmphiHox1 mediates the role of RA signaling in setting the posterior limit of the pharynx by repressing expression of pharyngeal markers in the posterior foregut/midgut endoderm. The spatiotemporal expression of these endodermal genes in embryos treated with RA or the RA antagonist BMS009 indicates that Pax1/9, Pitx and Notch are probably more upstream than Otx and Nodal in the hierarchy of genes repressed by RA signaling. This work highlights the potential of amphioxus, a genomically simple, vertebrate-like invertebrate chordate, as a paradigm for understanding gene hierarchies similar to the more complex ones of vertebrates.  相似文献   

2.
The hormone retinoic acid (RA) has been implicated in the organization of the anteroposterior (AP) body axis. In this paper, we describe the effects of RA on the activity of the RA-inducible retinoic acid receptor-beta 2 (RAR beta 2) promoter. When transgenic embryos carrying a RAR beta 2-lacZ reporter gene were exposed to a single dose of RA between gestational days 8.5 to 10.5, lacZ expression was induced in the anterior central nervous system (CNS). Strikingly, the transgene was expressed in a segmented pattern reminiscent of that of Drosophila 'pair-rule' genes. RA treatment of midgastrulation embryos at day 7.5 disturbed the segmentation and produced severe craniofacial defects. We discuss the possibility that the entire anterior CNS is segmented and that this segmentation is reflected by the RAR beta 2-lacZ induction pattern.  相似文献   

3.
Retinoic acid (RA) is required for the differentiation and morphogenesis of chordate-specific features, such as the antero-posterior regionalization of the dorsal hollow nerve cord and neural crest cells. RA receptors (RARs) have been reported exclusively in chordates, suggesting that the acquisition of the RAR gene was important for chordate evolution. A scenario is presented here for the establishment of an RAR-mediated developmental regulatory system during the course of chordate evolution. In the common chordate ancestor, RAR came to control the spatial expression pattern of Hox genes in the ectoderm and endoderm along the antero-posterior axis. In these germ layers, RA was required for the differentiation of epidermal sensory neurons and the morphogenesis of pharyngeal gill slits, respectively. As the diffuse epidermal nerve net in the chordate ancestor became centralized to form the dorsal nerve cord, the epidermal Hox expression pattern was carried into the central nervous system. Because the Hox code here came to specify neuronal identity along the antero-posterior axis, RA became inextricably linked to the antero-posterior patterning of the chordate central nervous system.  相似文献   

4.
Amphioxus is the closest relative to vertebrates but lacks key vertebrate characters, like rhombomeres, neural crest cells, and the cartilaginous endoskeleton. This reflects major differences in the developmental patterning of neural and mesodermal structures between basal chordates and vertebrates. Here, we analyse the expression pattern of an amphioxus FoxB ortholog and an amphioxus single-minded ortholog to gain insight into the evolution of vertebrate neural segmentation. AmphiFoxB expression shows cryptic segmentation of the cerebral vesicle and hindbrain, suggesting that neuromeric segmentation of the chordate neural tube arose before the origin of the vertebrates. In the forebrain, AmphiFoxB expression combined with AmphiSim and other amphioxus gene expression patterns shows that the cerebral vesicle is divided into several distinct domains: we propose homology between these domains and the subdivided diencephalon and midbrain of vertebrates. In the Hox-expressing region of the amphioxus neural tube that is homologous to the vertebrate hindbrain, AmphiFoxB shows the presence of repeated blocks of cells along the anterior-posterior axis, each aligned with a somite. This and other data lead us to propose a model for the evolution of vertebrate rhombomeric segmentation, in which rhombomere evolution involved the transfer of mechanisms regulating neural segmentation from vertical induction by underlying segmented mesoderm to horizontal induction by graded retinoic acid signalling. A consequence of this would have been that segmentation of vertebrate head mesoderm would no longer have been required, paving the way for the evolution of the unsegmented head mesoderm seen in living vertebrates.  相似文献   

5.
C R Sharpe 《Neuron》1991,7(2):239-247
In the frog Xenopus laevis, signals from the mesoderm divert part of the ectoderm from an epidermal to a neural fate. In the course of neural induction, the neurectoderm also acquires anterior-posterior polarity. In this report, the early expression of two genes, XlHbox6 and the neurofilament gene XIF6, is examined. The pattern of expression of the two genes seen in the tailbud embryo develops progressively over a 4 hr period following gastrulation. Physiological concentrations of retinoic acid can mimic this effect in isolated embryonic explants, consistent with the involvement of retinoic acid, or a closely related molecule, in localizing gene expression along the anterior-posterior axis of the neural tube.  相似文献   

6.
7.
In the central nervous system of 11.5-day mouse embryos, the expression of CRABP was spatially restricted to the anteroposterior axis. CRABP was most strongly expressed in the rhombencephalon and the anterior part of the neural tube. In 14-day mouse embryo, CRABP drastically decreased in the brain and the anterior part of the neural tube. The transient expression and spatial distribution of CRABP in the central nervous system strongly suggest that retinoic acid is involved in the neurogenesis during development.  相似文献   

8.
All- trans-retinoic acid (RA) contributes to the establishment of the anterior-posterior (AP) axis in chordates. In vertebrates, all- trans-retinol is oxidized to RA by two oxidative steps. However, the controversy about the enzymes responsible for retinol oxidation (ADH vs RDH) and the fact that some candidates are absent in cephalochordates questioned retinol oxidation in this lineage. Retinoid quantitation has revealed that Branchiostoma floridae adults contain both retinol and retinoic acid as well as retinal, the intermediate in the metabolic pathway. Furthermore, our data show that the developmental effects of retinol treatment are comparable to those reported for RA. SEM analysis revealed mouth and gill slit aberrations due to a posteriorization effect, also visualized by changes in the beta-galactosidase pattern. Overall, these findings support the idea that amphioxus metabolizes endogenous retinol to retinoic acid and suggest a common oxidative pathway for RA in the chordate phylum.  相似文献   

9.
Recent comparative studies on expression patterns of homeobox genes in the development between ascidians and vertebrates have come to suggest a possibility that a common basic mechanism may exist in the patterning of the central nervous system (CNS). The ems/emx genes have been demonstrated to be involved in the formation and patterning of the anterior CNS in Drosophila and vertebrate embryos. In the present study, we have isolated and analyzed expression of Hremx, the ascidian homologue of ems/emx with particular attention to whether it is expressed in the larval ascidian CNS. Expression of Hremx was detected in the anterior trunk and lateral tail epidermis but not in the anterior CNS. The two expression domains of the epidermis responded in different ways upon treatment with retinoic acid: the anterior expression domain was unaltered, while the posterior expression domain extended to the anterior. The present result suggests that Hremx may have a function in anterior patterning but not in the patterning of the CNS in the ascidian embryo. We suggest the possibility that the function of ems/emx genes in the patterning of the anterior CNS in Drosophila and vertebrate embryos might have been acquired independently in the lineages to Drosophila and vertebrates.  相似文献   

10.
Retinoic acid signaling and the evolution of chordates   总被引:1,自引:0,他引:1       下载免费PDF全文
In chordates, which comprise urochordates, cephalochordates and vertebrates, the vitamin A-derived morphogen retinoic acid (RA) has a pivotal role during development. Altering levels of endogenous RA signaling during early embryology leads to severe malformations, mainly due to incorrect positional codes specifying the embryonic anteroposterior body axis. In this review, we present our current understanding of the RA signaling pathway and its roles during chordate development. In particular, we focus on the conserved roles of RA and its downstream mediators, the Hox genes, in conveying positional patterning information to different embryonic tissues, such as the endoderm and the central nervous system. We find that some of the control mechanisms governing RA-mediated patterning are well conserved between vertebrates and invertebrate chordates, such as the cephalochordate amphioxus. In contrast, outside the chordates, evidence for roles of RA signaling is scarce and the evolutionary origin of the RA pathway itself thus remains elusive. In sum, to fully understand the evolutionary history of the RA pathway, future research should focus on identification and study of components of the RA signaling cascade in non-chordate deuterostomes (such as hemichordates and echinoderms) and other invertebrates, such as insects, mollusks and cnidarians.  相似文献   

11.
Developmental signaling by retinoic acid (RA) is thought to be an innovation essential for the origin of the chordate body plan. The larvacean urochordate Oikopleura dioica maintains a chordate body plan throughout life, and yet its genome appears to lack genes for RA synthesis, degradation, and reception. This suggests the hypothesis that the RA-machinery was lost during larvacean evolution, and predicts that Oikopleura development has become independent of RA-signaling. This prediction raises the problem that the anterior-posterior organization of a chordate body plan can be developed without the classical morphogenetic role of RA. To address this problem, we performed pharmacological treatments and analyses of developmental molecular markers to investigate whether RA acts in anterior-posterior axial patterning in Oikopleura embryos. Results revealed that RA does not cause homeotic posteriorization in Oikopleura as it does in vertebrates and cephalochordates, and showed that a chordate can develop the phylotypic body plan in the absence of the classical morphogenetic role of RA. A comparison of Oikopleura and ascidian evidence suggests that the lack of RA-induced homeotic posteriorization is a shared derived feature of urochordates. We discuss possible relationships of altered roles of RA in urochordate development to genomic events, such as rupture of the Hox-cluster, in the context of a new understanding of chordate phylogeny.  相似文献   

12.
All chordates share a basic body plan and many common features of early development. Anteroposterior (AP) regions of the vertebrate neural tube are specified by a combinatorial pattern of Hox gene expression that is conserved in urochordates and cephalochordates. Another primitive feature of Hox gene regulation in all chordates is a sensitivity to retinoic acid during embryogenesis, and recent developmental genetic studies have demonstrated the essential role for retinoid signalling in vertebrates. Two AP regions develop within the chordate neural tube during gastrulation: an anterior 'forebrain-midbrain' region specified by Otx genes and a posterior 'hindbrain-spinal cord' region specified by Hox genes. A third, intermediate region corresponding to the midbrain or midbrain-hindbrain boundary develops at around the same time in vertebrates, and comparative data suggest that this was also present in the chordate ancestor. Within the anterior part of the Hox-expressing domain, however, vertebrates appear to have evolved unique roles for segmentation genes, such as Krox-20, in patterning the hindbrain. Genetic approaches in mammals and zebrafish, coupled with molecular phylogenetic studies in ascidians, amphioxus and lampreys, promise to reveal how the complex mechanisms that specify the vertebrate body plan may have arisen from a relatively simple set of ancestral developmental components.  相似文献   

13.
14.
Because retinoic acid (RA) is known to affect anterior-posterior patterning in vertebrate embryos, it was questioned whether it shows similar effects in a more primitive chordate, the ascidian Halocynthia roretzi . Ascidian embryos treated with RA exhibited truncated phenotypes in a dose-dependent manner similar to the anterior truncations seen in vertebrate embryos. The most severely affected larvae possessed a round trunk without the papillae characteristic of the anterior terminal epidermis. Retinoic acid also altered the expression of HrHox-1 and Hroth in a dose-dependent manner. Expression of HrHox-1 increased, whereas expression of Hroth decreased with increasing levels of RA. In treated embryos, HrHox-1 was first expressed pan-ectodermally, then degraded in all but specific regions of the embryo. By contrast, initiation of Hroth expression was not affected, but epidermal expression was lost while expression in the neural tube narrowed toward the anterior in tail-bud embryos. These alterations in the expression of homeobox genes appear to correlate closely to the morphological defects elicited by RA treatment, suggesting broad conservation of developmental patterning mechanisms within the Phylum Chordata.  相似文献   

15.
16.
We describe a new zebrafish mutation, neckless, and present evidence that it inactivates retinaldehyde dehydrogenase type 2, an enzyme involved in retinoic acid biosynthesis. neckless embryos are characterised by a truncation of the anteroposterior axis anterior to the somites, defects in midline mesendodermal tissues and absence of pectoral fins. At a similar anteroposterior level within the nervous system, expression of the retinoic acid receptor a and hoxb4 genes is delayed and significantly reduced. Consistent with a primary defect in retinoic acid signalling, some of these defects in neckless mutants can be rescued by application of exogenous retinoic acid. We use mosaic analysis to show that the reduction in hoxb4 expression in the nervous system is a non-cell autonomous effect, reflecting a requirement for retinoic acid signalling from adjacent paraxial mesoderm. Together, our results demonstrate a conserved role for retinaldehyde dehydrogenase type 2 in patterning the posterior cranial mesoderm of the vertebrate embryo and provide definitive evidence for an involvement of endogenous retinoic acid in signalling between the paraxial mesoderm and neural tube.  相似文献   

17.
18.
19.
20.
We report the genomic organization and deduced protein sequence of a cephalochordate member of the Otx homeobox gene family (AmphiOtx) and show its probable single-copy state in the genome. We also present molecular phylogenetic analysis indicating that there was single ancestral Otx gene in the first chordates which was duplicated in the vertebrate lineage after it had split from the lineage leading to the cephalochordates. Duplication of a C-terminal protein domain has occurred specifically in the vertebrate lineage, strengthening the case for a single Otx gene in an ancestral chordate whose gene structure has been retained in an extant cephalochordate. Comparative analysis of protein sequences and published gene expression patterns suggest that the ancestral chordate Otx gene had roles in patterning the anterior mesendoderm and central nervous system. These roles were elaborated following Otx gene duplication in vertebrates, accompanied by regulatory and structural divergence, particularly of Otx1 descendant genes.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号