首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of the present study was to compare tissue oxidative capacity, skeletal muscle fatty acid composition, and tissue fuel stores in low-fat fed (LFD, 12% of energy from corn oil) male Wistar rats, and in high-fat fed (45% of energy from corn oil) obesity-prone (OP) and obesity-resistant (OR) male Wistar rats. Designation of OP and OR rats was based on body weight gain (upper tertile for OP; lower tertile for OR) after 5 weeks on the high-fat diet. Body weight gain over the 5-week dietary period was 91 ± 9 g in LFD, 98 ± 4 g in OR, and 158 ± 5 g in OP (p<0. 05 vs. LFD and OR). Energy intake over the 5-week dietary period was 3099 ± 101 kcal in LFD, 3185 ± 51 kcal in OR, and 3728 ± 45 kcal in OP (p<0. 05 vs. LFD and OR). Maximal citrate synthase activity (μ. mol?1min?1) in the gastrocnemius muscle was not significantly different among groups: 12. 1 ± 2. 4 in LFD, 11. 4 ± 1. 9 in OR and 133 ± 2. 5 in OP rats. Similarly, citrate synthase activity in the heart, 59. 3 ± 7. 2, and liver, 6. 6 ± 0. 4, was also not significantly different among groups. Fatty acid composition of the gastrocnemius muscle was not significantly different among groups. Fasting glycogen levels in the liver, gastrocnemius muscle, and heart were 6. 4 ± 3. 7, 13. 2 ± 2. 3 and 6. 8 ± 1. 9 μmol/g in LFD, 21. 2 ± 5. 1 (p<0. 05 vs. LFD and OP), 10. 4 ± 1. 8 and 5. 9 ± 1. 1 mUmol/g in OR, and 36. 3 ± 4. 8 (p<0. 05 vs. LFD and OR), 10. 2 ± 23 and 53 ± 2. 1 μmol/g in OP rats, respectively. Triglyceride levels were similar among groups in plasma, heart and gastrocnemius muscle, but were significantly (p<0. 05) higher in the liver of OP (15. 5 ± 1. 9 (μmol/g) compared to OR (9. 1 ± 1. 1 μmol/g) and LFD (8. 1 ± 1. 4 μmol/g) rats. These data suggest that susceptibility to dietary obesity, in this rodent model, cannot be explained by differences in tissue oxidative capacity or muscle fatty acid composition.  相似文献   

2.
The activity of pyruvate dehydrogenase (PDH) complex and PDH kinase were measured in brown adipose tissue (BAT) of 4-week-gold thioglucose (GTG)-obese mice. The proportion of PDH complex in the active dephosphorylated form was 2-fold higher in BAT of post-absorptive obese mice compared with lean controls. This result was consistent with the higher circulating insulin concentration observed in GTG-obese mice. In both obese and lean mice the PDH-complex activity in BAT decreased after 24 h starvation and increased in response to supraphysiological insulin injection, indicating that the PDH complex is insulin-responsive in BAT of GTG-obese mice. There was no difference in the PDH kinase activity of BAT in post-absorptive or insulin-injected lean and obese mice, suggesting that the higher PDH-complex activity in obese mice was not due to decreased PDH kinase activity. There is no evidence for a decreased activity of PDH complex contributing to insulin resistance in BAT of 4-week-GTG-obese mice.  相似文献   

3.
Objective: The capacity for lipid and carbohydrate (CHO) oxidation during exercise is important for energy partitioning and storage. This study examined the effects of obesity on lipid and CHO oxidation during exercise. Research Methods and Procedures: Seven obese and seven lean [body mass index (BMI), 33 ± 0.8 and 23.7 ± 1.2 kg/m2, respectively] sedentary, middle‐aged men matched for aerobic capacity performed 60 minutes of cycle exercise at similar relative (50% Vo 2max) and absolute exercise intensities. Results: Obese men derived a greater proportion of their energy from fatty‐acid oxidation than lean men (43 ± 5% 31 ± 2%; p = 0.02). Plasma fatty‐acid oxidation determined from recovery of infused [0.15 μmol/kg fat‐free mass (FFM) per minute] [1‐13C]‐palmitate in breath CO2 was similar for obese and lean men (8.4 ± 1.1 and 29 ± 15 μmol/kg FFM per minute). Nonplasma fatty‐acid oxidation, presumably, from intramuscular sources, was 50% higher in obese men than in lean men (10.0 ± 0.6 versus 6.6 ± 0.8 μmol/kg FFM per minute; p < 0.05). Systemic glucose disposal was similar in lean and obese groups (33 ± 8 and 29 ± 15 μmol/kg FFM per minute). However, the estimated rate of glycogen‐oxidation was 50% lower in obese than in lean men (61 ± 12 versus 90 ± 6 μmol/kg FFM per minute; p < 0.05). Discussion: During moderate exercise, obese sedentary men have increased rates of fatty‐acid oxidation from nonplasma sources and reduced rates of CHO oxidation, particularly muscle glycogen, compared with lean sedentary men.  相似文献   

4.
Accumulation of triacylglycerols (TAGs) and acylcarnitines in skeletal muscle upon high‐fat (HF) feeding is the resultant of fatty acid uptake and oxidation and is associated with insulin resistance. As medium‐chain fatty acids (MCFAs) are preferentially β‐oxidized over long‐chain fatty acids, we examined the effects of medium‐chain TAGs (MCTs) and long‐chain TAGs (LCTs) on muscle lipid storage and whole‐body glucose tolerance. Rats fed a low‐fat (LF), HFLCT, or an isocaloric HFMCT diet displayed a similar body weight gain over 8 weeks of treatment. Only HFLCT increased myocellular TAG (42.3 ± 4.9, 71.9 ± 6.7, and 48.5 ± 6.5 µmol/g for LF, HFLCT, and HFMCT, respectively, P < 0.05) and long‐chain acylcarnitine content (P < 0.05). Neither HF diet increased myocellular diacylglycerol (DAG) content. Intraperitoneal (IP) glucose tolerance tests (1.5 g/kg) revealed a significantly decreased glucose tolerance in the HFMCT compared to the HFLCT‐fed rats (802 ± 40, 772 ± 18, and 886 ± 18 area under the curve for LF, HFLCT, and HFMCT, respectively, P < 0.05). Finally, no differences in myocellular insulin signaling after bolus insulin injection (10 U/kg) were observed between LF, HFLCT, or HFMCT‐fed rats. These results show that accumulation of TAGs and acylcarnitines in skeletal muscle in the absence of body weight gain do not impede myocellular insulin signaling or whole‐body glucose intolerance.  相似文献   

5.
The supplementing of sow diets with lipids during pregnancy and lactation has been shown to reduce sow condition loss and improve piglet performance. The aim of this study was to determine the effects of supplemental palm oil (PO) on sow performance, plasma metabolites and hormones, milk profiles and pre-weaning piglet development. A commercial sow ration (C) or an experimental diet supplemented with 10% extra energy in the form of PO, were provided from day 90 of gestation until weaning (24 to 28 days postpartum) in two groups of eight multiparous sows. Gestation length of PO sows increased by 1 day (P<0.05). Maternal BW changes were similar throughout the trial, but loss of backfat during lactation was reduced in PO animals (C: −3.6±0.8 mm; PO: −0.1±0.8 mm; P<0.01). Milk fat was increased by PO supplementation (C day 3: 8.0±0.3% fat; PO day 3: 9.1±0.3% fat; C day 7: 7.8±0.5% fat; PO day 7: 9.9±0.5% fat; P<0.05) and hence milk energy yield of PO sows was also elevated (P<0.05). The proportion of saturated fatty acids was greater in colostrum from PO sows (C: 29.19±0.31 g/100 g of fat; PO: 30.77±0.36 g/100 g of fat; P<0.01). Blood samples taken on 105 days of gestation, within 24 h of farrowing, day 7 of lactation and at weaning (28±3 days post-farrowing) showed there were no differences in plasma concentrations of triacylglycerol, non-esterified fatty acids, insulin or IGF-1 throughout the trial. However, circulating plasma concentrations of both glucose and leptin were elevated during lactation in PO sows (P<0.05 and P<0.005, respectively) and thyroxine was greater at weaning in PO sows (P<0.05). Piglet weight and body composition were similar at birth, as were piglet growth rates throughout the pre-weaning period. A period of 7 days after birth, C piglets contained more body fat, as indicated by their lower fat-free mass per kg (C: 66.4±0.8 arbitrary units/kg; PO: 69.7±0.8 arbitrary unit/kg; P<0.01), but by day 14 of life this situation was reversed (C: 65.8±0.6 arbitrary units/kg; PO: 63.6±0.6 arbitrary units/kg; P<0.05). Following weaning, PO sows exhibited an increased ratio of male to female offspring at their subsequent farrowing (C: 1.0±0.3; PO: 2.2±0.2; P<0.05). We conclude that supplementation of sow diets with PO during late gestation and lactation appears to increase sow milk fat content and hence energy supply to piglets. Furthermore, elevated glucose concentrations in the sow during lactation may be suggestive of impaired glucose homoeostasis.  相似文献   

6.
7.
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.  相似文献   

8.
The application of cardiopulmonary bypass (CPB) using a heart-lung machine in open heart surgery is associated with numerous pathophysiological changes in the vascular system and the neurohormonal environment. In this study our purpose was to investigate whether the hormones brain natriuretic peptide (BNP) and ghrelin are involved in changes in the systemic vascular resistance index (SVRI) after CPB, using data from 20 patients who had undergone coronary artery by pass grafting accompanied by CPB. Hemodynamic measurements were obtained using a thermodilution catheter and included cardiac index and systemic vascular resistance index. Blood samples were taken before CPB, after CPB, and at 0 and 24 h postoperatively. The blood levels of total and acylated ghrelin were quantified by radioimmunoassay. Blood levels of BNP were measured by a fluorescence immunoassay kit. The SVRI was significantly higher at the end of CPB and at 0 h postoperatively than before CPB (end of CPB: 4282±1035 dyne·s·cm?5·m?2, 0 h postoperatively: 3239±635 dyne·s·cm?5·m?2 vs. before CPB: 2289±330 dyne·s·cm?5·m?2, p<0.05). Total and acylated ghrelin levels decreased until 0 h postoperatively but the change was not statistically significant. However, at 24 h after surgery, they showed a statistically significant increase over the initial ghrelin values (total before CPB: 1413.71±287.93 pg/ml vs. 24 h postoperatively: 1736.85±236.89 pg/ml; acylated ghrelin before CPB: 55.85±25.53 pg/ml vs. 24 h postoperatively: 106.28±30.86 pg/ml; p<0.05 for both). BNP values were markedly lower after than before CPB (before CPB: 69.07±48 pg/ml vs. after CPB: 21.96±13 pg/ml, p<0.05) and reached a maximum value 24 h postoperatively (before CPB: 56.3±42 vs. after CPB: 454.7±229 pg/ml, p<0.05). There was a weak negative correlation between the changes in SVRI and total and acylated ghrelin levels after the CPB period, but this was not statistically significant. However, there was a statistically significant negative correlation between SVRI and BNP after CPB and at 24 h postoperatively (r:?0.709, p<0.01 and r:?0.649, p<0.03, respectively). Taken together, our results show that the observed initial increases in ghrelin and/or BNP in the postoperative period (at 24 h) might be causally related to the decrease in the SVRI in the same period. However, further investigations are needed to clarify the significance of this observation with respect to that of SVRI.  相似文献   

9.
Metabolic flux analysis of postburn hepatic hypermetabolism   总被引:3,自引:0,他引:3  
The hepatic response to severe injury is characterized by a marked upregulation of glucose, fatty acid, and amino acid turnover, which, if persistent, predisposes the patient to progressive organ dysfunction. To study the effect of injury on liver intermediary metabolism, metabolic flux analysis was applied to isolated perfused livers of burned and sham-burned rats. Intracellular fluxes were calculated using metabolite measurements and a stoichiometric balance model. Significant flux increases were found for multiple pathways, including mitochondrial electron transport, the TCA and urea cycles, gluconeogenesis, and pentose phosphate pathway (PPP). The burn-induced increase in gluconeogenesis did not significantly increase glucose output. Instead, glucose-6-phosphate was diverted into the PPP. These changes were paralleled by increases in glucose-6-phosphate dehydrogenase (G6PDH) and glutathione reductase (GR) activities. Given that G6PDH and GR are the most significant NADPH producers and consumers in the liver, respectively, and that GR is responsible for recycling the free radical scavenger glutathione, these data are consistent with the notion that hepatic metabolic changes are in part due to the induction of liver antioxidant defenses.  相似文献   

10.
The relationship among impaired selenium status, lipid peroxidation, and liver function was examined in 19 hospitalized patients with severe alcoholic cirrhosis. Plasma selenium was found to be significantly lower (mean±SD: 54±13 μg/L) than in healthy controls (83±11 μg/L) and plasma malondialdehyde, assessed as thiobarbituric acid reactants, which reflects lipid peroxidation, was increased (2.0±1.2 μmol/L vs <1.2 μmol/L in controls). The mean14C aminopyrine breath test, an indicator of liver function, was lower than normal (2.7±1.9 vs 6.3±0.9% in controls) and found to be significantly correlated with plasma selenium (r=0.59,p<0.05). A prospective, randomized selenium supplementation trial was conducted in a group of 16 patients who received either daily 100 μg selenium as enriched yeast during 4 mo or a placebo. Among the 10 patients who completed the study, plasma selenium significantly increased in the supplemented group (n=4; before: 58±10 μg/L, and after 101±12 μg/L,p<0.01) contrary to the placebo group (n=6, before: 47±10 μg/L, after: 57±9 μg/L, n.s.),14C aminopyrine breath test improved in three out of four selenium-supplemented patients and in three out of six placebo patients, but the small number of patients did not allow statistical evaluation. These results demonstrate that low selenium status in alcoholic cirrhosis is correlated to liver function and could be improved by supplementation.  相似文献   

11.
Coenzyme A (CoA) biosynthesis is regulated by the pantothenate kinases (PanK), of which there are four active isoforms. The PanK1 isoform is selectively expressed in liver and accounted for 40% of the total PanK activity in this organ. CoA synthesis was limited using a Pank1 −/− knockout mouse model to determine whether the regulation of CoA levels was critical to liver function. The elimination of PanK1 reduced hepatic CoA levels, and fasting triggered a substantial increase in total hepatic CoA in both Pank1 −/− and wild-type mice. The increase in hepatic CoA during fasting was blunted in the Pank1 −/− mouse, and resulted in reduced fatty acid oxidation as evidenced by abnormally high accumulation of long-chain acyl-CoAs, acyl-carnitines, and triglycerides in the form of lipid droplets. The Pank1 −/− mice became hypoglycemic during a fast due to impaired gluconeogenesis, although ketogenesis was normal. These data illustrate the importance of PanK1 and elevated liver CoA levels during fasting to support the metabolic transition from glucose utilization and fatty acid synthesis to gluconeogenesis and fatty acid oxidation. The findings also suggest that PanK1 may be a suitable target for therapeutic intervention in metabolic disorders that feature hyperglycemia and hypertriglyceridemia.  相似文献   

12.
BRL 26830A, a beta adrenoceptor agonist, has been shown to have antiobesity and antidiabetic properties in rodents. The aim of this study was to study the effects of chronic BRL 26830A treatment (20 mg/kg/day for 9 weeks) on weight gain and the development of insulin resistance in gold-thioglucose-injected mice (GTG). BRL 26830A slowed the rate of weight gain in GTG such that mice weighed significantly less between 2 w and 7 w of treatment. However, at the time of sacrifice (9 w), there was no difference in body weight between treated and untreated GTG. The obesity-induced reduction in lipogenesis in brown adipose tissue (BAT) was increased 9 fold to greater than CON levels. However, weight and fatty acid (FA) content of BAT were reduced, suggesting increased lipid turnover and thermogenesis. Lipogenesis, FA content and fat pad weight were unchanged in white adipose tissue (WAT) and decreased in liver of GTG. Glucose tolerance was improved in both CON and GTG. Hyperglycemia, hyperinsulinemia and changes in cardiac and hepatic glucose oxidation as indicated by PDHC activity were normalized. Serum triglycerides and non-esterified fatty acids were reduced. Thus, chronic BRL 26830A treatment prevented the development of insulin resistance and attenuated weight gain, but did not prevent the development of obesity in this model.  相似文献   

13.
During prolonged fasting, fatty acid (FA) released from adipose tissue is a major energy source for peripheral tissues, including the heart, skeletal muscle and liver. We recently showed that FA binding protein 4 (FABP4) and FABP5, which are abundantly expressed in adipocytes and macrophages, are prominently expressed in capillary endothelial cells in the heart and skeletal muscle. In addition, mice deficient for both FABP4 and FABP5 (FABP4/5 DKO mice) exhibited defective uptake of FA with compensatory up-regulation of glucose consumption in these tissues during fasting. Here we showed that deletion of FABP4/5 resulted in a marked perturbation of metabolism in response to prolonged fasting, including hyperketotic hypoglycemia and hepatic steatosis. Blood glucose levels were reduced, whereas the levels of non-esterified FA (NEFA) and ketone bodies were markedly increased during fasting. In addition, the uptake of the 125I-BMIPP FA analogue in the DKO livers was markedly increased after fasting. Consistent with an increased influx of NEFA into the liver, DKO mice showed marked hepatic steatosis after a 48-hr fast. Although gluconeogenesis was observed shortly after fasting, the substrates for gluconeogenesis were reduced during prolonged fasting, resulting in insufficient gluconeogenesis and enhanced hypoglycemia. These metabolic responses to prolonged fasting in DKO mice were readily reversed by re-feeding. Taken together, these data strongly suggested that a maladaptive response to fasting in DKO mice occurred as a result of an increased influx of NEFA into the liver and pronounced hypoglycemia. Together with our previous study, the metabolic consequence found in the present study is likely to be attributed to an impairment of FA uptake in the heart and skeletal muscle. Thus, our data provided evidence that peripheral uptake of FA via capillary endothelial FABP4/5 is crucial for systemic metabolism and may establish FABP4/5 as potentially novel targets for the modulation of energy homeostasis.  相似文献   

14.
N-acylethanolamines (NAEs) are lipid signaling mediators, which can be synthesized from dietary fatty acids via n-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) and in turn influence physiological outcomes; however, the roles of NAPE-PLD upon dietary fatty acid modulation are not fully understood. Presently, we examine if NAPE-PLD is necessary to increase NAEs in response to dietary fatty acid manipulation. Post-weaning male wild-type (C57Bl/6), NAPE-PLD (−/+) and NAPE-PLD (−/−) mice received isocaloric fat diets containing either beef tallow, corn oil, canola oil or fish oil (10% wt/wt from fat) for 9 weeks. Brain docosahexaenoic acid (DHA) levels were higher (P<.01) in NAPE-PLD (−/+) (10.01±0.31 μmol/g) and NAPE-PLD (−/−) (10.89±0.61 μmol/g) than wild-type (7.72±0.61 μmol/g) consuming fish oil. In NAPE-PLD (−/−) mice, brain docosahexaenoylethanolamide (DHEA) levels were higher (P<.01) after fish oil feeding suggesting that NAPE-PLD was not necessary for DHEA synthesis. Liver and jejunum arachidonoylethanolamide, 1,2-arachidonoylglycerol and DHEA levels reflected their corresponding fatty acid precursors suggesting that alternate pathways are involved in NAE synthesis. NAPE-PLD (−/−) mice had lower oleoylethanolamide levels in the jejunum and a leaner phenotype compared to wild-type mice. Overall, these results demonstrate that dietary fatty acid can augment tissue NAEs in the absence of NAPE-PLD.  相似文献   

15.
The impact of probiotic supplementation of canine-derived strain Lactobacillus fermentum AD1-CCM7421 in freeze-dried form on quantitative composition of microbiota and short-chain fatty acid profile in feces of dogs was demonstrated by two independent studies (straightforward repeated-measures model; study I: a dose of 2 g per dog for 2 weeks, 108 CFU/g, n = 12; study II: 1 g per dog for 1 week, 107 CFU/g, n = 11. The results revealed a significant increase of lactic acid bacteria population persisting also after the cessation of probiotic application in both studies. A reduction of clostridia (study I, p sum < 0.01) and tested Gram-negative bacterial genera (coliforms, Aeromonas sp., Pseudomonas sp., study II, p < 0.05) was also detected. The strain AD1-CCM7421 colonized the canine digestive tract in sufficient numbers (105–106 CFU/g) and it persisted in the majority of dogs after cessation of probiotic application. An increase of short-chain fatty acid concentrations (study I: butyric, succinic, valeric, formic acid) especially in the early post-treatment phase (p < 0.05) most likely led to a decrease of fecal pH value (p < 0.05) without negative influence on fecal consistency throughout the studies.  相似文献   

16.
Tumor necrosis factor α (TNFα) is a cytokine involved in many metabolic responses in both normal and pathological states. Considering that the effects of TNFα on hepatic gluconeogenesis are inconclusive, we investigated the influence of this cytokine in gluconeogenesis from various glucose precursors. TNFα (10 μg/kg) was intravenously injected in rats; 6 h later, gluconeogenesis from alanine, lactate, glutamine, glycerol, and several related metabolic parameters were evaluated in situ perfused liver. TNFα reduced the hepatic glucose production (p < 0.001), increased the pyruvate production (p < 0.01), and had no effect on the lactate and urea production from alanine. TNFα also reduced the glucose production (p < 0.01), but had no effect on the pyruvate production from lactate. In addition, TNFα did not alter the hepatic glucose production from glutamine nor from glycerol. It can be concluded that the TNFα inhibited hepatic gluconeogenesis from alanine and lactate, which enter in gluconeogenic pathway before the pyruvate carboxylase step, but not from glutamine and glycerol, which enter in this pathway after the pyruvate carboxylase step, suggesting an important role of this metabolic step in the changes mediated by TNFα.  相似文献   

17.
Nonalcoholic steatohepatitis (NASH) is a progressive disease and poses a high risk of severe liver damage. However, the pathogenesis of NASH is still unclear. Accumulation of lipid droplets and insulin resistance is the hallmark of NASH. Pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) plays key role in glucose metabolism via regulating the activity of pyruvate dehydrogenase complex (PDC). Here, we demonstrated a novel of PDK4 in NASH by regulating hepatic steatosis and insulin signaling pathway in methionine and choline deficient (MCD) diet induced NASH model. Hepatic PDK4 levels were highly induced in human patients with NASH and MCD diet fed mice, as well as in hepatocytes treated with oleic acid. The glucose and lipid metabolism were impaired in Pdk4?/? mice. Pdk4 deficiency ameliorated the hepatic steatosis significantly in NASH mice. Pdk4?/?-MCD mice had reduced liver weights and triglyceride (TG) levels. And Pdk4 deficiency dramatically reduced the expression of genes related to fatty acid uptake, synthesis and gluconeogenesis. In addition, elevated phosphorylated AMPK (p-AMPK), p-SAPK/JNK and diminished p-ERK, p-P38, p-Akt and p-mTOR/p-4EBP1 proteins were observed. In conclusion, our data indicated that PDK4 potentially contributes to the hepatic steatosis in NASH via regulating several signaling pathway and PDK4 may be a new therapeutic strategy against NAFLD.  相似文献   

18.
To study effects of the portal-arterial glucose difference on the hepatic glycogenesis, the liver was isolated from fasted rats and was bivascularly perfused. Thirty-five milliliters of Krebs-Ringer buffer (pH 7.4) with 2 mM glucose, 3 mM lactate, 20 ng/ml insulin, and [1-14C]glucose or [U-14C]lactate was recirculated at flow rates of 14 ml/min via the portal vein and 7 ml/min via the hepatic artery. Glucose was continuously infused at a rate of 27.75 μmol/min into the portal (P experiment) and the arterial cannula (A experiment), and the portal-arterial glucose gradients were + 1.98 and −3.96 mM. Perfusate glucose concentration was not different between the P and A experiments within 20 min. Perfusate lactate level was higher in the P experiment than in the A experiment at 20 min. Incorporation of radioactivity from [14C]glucosc into glycogen was higher in the P experiment than in the A experiment (0.245 ± 0.014%/20 min vs 0.175 ± 0.022%/20 min, P < 0.01), and not influenced by the addition of insulin. Incorporation of 14C from [14C]lactate into glycogen was not different between the P and A experiments, and was significantly increased with the addition of insulin. This activity, in the presence of insulin, was higher in the P experiment than in the A experiment (0.490 ± 0,028%/20 min vs 0.406 ± 0.025%/20 min, P < 0.05). These results suggest that the portal-arterial glucose difference has an important role in the regulation of hepatic glycogenesis from exogenous glucose and gluconeogenesis.  相似文献   

19.
Objective: Lower lipid and insulin levels are found during a glucose-tolerance test in obese black than obese white South African women. Therefore, β-cell function and lipid metabolism were compared in these populations during a mixed meal. Research Methods and Procedures: Blood concentrations of glucose, free fatty acids (FFAs), insulin, lipograms, and in vivo FFA oxidation were determined at fasting and for 7 hours after oral administration of a mixed emulsion containing glucose-casein-sucrose-lipid and [1-13C] palmitic acid in 8 lean black women (LBW), 10 obese black women (OBW), 9 lean white women (LWW), and 10 obese white women (OWW). Subcutaneous and visceral fat mass was assessed by computerized tomography. Results: Visceral fat area was higher in OWW (152.7 ± 17.0 cm2) than OBW (80.0 ± 6.7 cm2; p < 0.01). In OBW, 30-minute insulin levels were higher (604.3 ± 117.6 pM) than OWW (311.0 ± 42.9 pM; p < 0.05). Total triglyceride was higher in OWW (706.7 ± 96.0 mM × 7 hours) than OBW (465.7 ± 48.2 mM × 7 hours; p < 0.05) and correlated with visceral fat area (β = 0.38, p = 0.05). Palmitate oxidation was higher in lean than obese women in both ethnic groups and correlated negatively with fat mass (β = −0.58, p < 0.005). Discussion: The higher 30-minute insulin response in OBW may reflect a higher insulinotropic effect of FFAs or glucose. The elevated triglyceride level of OWW may be due to their higher visceral fat mass and possibly reduced clearance by adipose tissue.  相似文献   

20.

Background

In the general population, peripheral metabolic complications (MC) increase the risk for left ventricular dysfunction. Human immunodeficiency virus infection (HIV) and combination anti-retroviral therapy (cART) are associated with MC, left ventricular dysfunction, and a higher incidence of cardiovascular events than the general population. We examined whether myocardial nutrient metabolism and left ventricular dysfunction are related to one another and worse in HIV infected men treated with cART vs. HIV-negative men with or without MC.

Methods

Prospective, cross-sectional study of myocardial glucose and fatty acid metabolism and left ventricular function in HIV+ and HIV-negative men with and without MC. Myocardial glucose utilization (GLUT), and fatty acid oxidation and utilization rates were quantified using 11C-glucose and 11C-palmitate and myocardial positron emission tomography (PET) imaging in four groups of men: 23 HIV+ men with MC+ (HIV+/MC+, 42 ± 6 yrs), 15 HIV+ men without MC (HIV+/MC-, 41 ± 6 yrs), 9 HIV-negative men with MC (HIV-/MC+, 33 ± 5 yrs), and 22 HIV-negative men without MC (HIV-/MC-, 25 ± 6 yrs). Left ventricular function parameters were quantified using echocardiography.

Results

Myocardial glucose utilization was similar among groups, however when normalized to fasting plasma insulin concentration (GLUT/INS) was lower (p < 0.01) in men with metabolic complications (HIV+: 9.2 ± 6.2 vs. HIV-: 10.4 ± 8.1 nmol/g/min/μU/mL) than men without metabolic complications (HIV+: 45.0 ± 33.3 vs. HIV-: 60.3 ± 53.0 nmol/g/min/μU/mL). Lower GLUT/INS was associated with lower myocardial relaxation velocity during early diastole (r = 0.39, p < 0.001).

Conclusion

Men with metabolic complications, irrespective of HIV infection, had lower basal myocardial glucose utilization rates per unit insulin that were related to left ventricular diastolic impairments, indicating that well-controlled HIV infection is not an independent risk factor for blunted myocardial glucose utilization per unit of insulin.

Trial Registration

NIH Clinical Trials NCT00656851  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号