首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effect of temperature and oxygen on diazotrophic growth of the thermophilic cyanobacterium HTF (High Temperature Form) Chlorogloeopsis was investigated using cells grown in light-limited continuous culture at a dilution rate of 0.02 h-1. Diazotrophy was more sensitive to elevated temperatures than growth with combined nitrogen. The maximum temperature for growth of cultures gassed with CO2-enriched air was more than 55 °C but less than 60 °C with N2 as the sole nitrogen source, but between 60°C and 65°C when nitrate was present in the medium. The effect of temperature on nitrogenase activity, photosynthesis and respiration in the dark was determined using cells grown at 55°C. Maximal rates of all three processes were observed at 55°C and rates at 60°C during shortterm incubations were not less than 75% of the maximum. However, nitrogenase activity at 60°C was unstable and decayed at a rate of 2.2 h-1 under air and at 0.3 h-1 under argon. Photosynthesis and respiration were more stable at 60°C than anoxic nitrogen fixation. The upper temperature limits for diazotrophic growth thus seem to be set by the stability of nitrogenase.Abbreviations chl chlorophyll a - DCMU N-(3,4-dichlorophenyl) N,N-dimethylurea - Taps N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid  相似文献   

2.
Summary Goat's rue (Galega orientalis) is a potential perennial forage legume for northern temperate acid soils. Greenhouse experiments were performed to compare symbiotically nitrogen fixing goat's rue with plants receiving mineral nitrogen in five different acid soils. Soil acidity had the same effect on yields of symbiotically grown plants as on plants receiving mineral nitrogen, suggesting that the acid sensitivity of the symbiosis was not limiting plant growth, even under very acidic conditions. The survival of an antibiotic resistant Rhizobium (Galega) strain in acid soil and freezing conditions was also studied. The survival of the bacteria was not affected at 15°C, when the pH of the soil (measured in 0.01M CaCl2) was 5.2 or 4.9. In pH 3.4, and after freezing to –5°C, the population density decreased from 3×108 to 1×105/g in a few weeks. It is concluded that goat's rue, its symbiotic nitrogen fixation and R. (Galega) are tolerant of moderately acid agricultural soils, but that harsh winters may reduce bacterial numbers in the soil.  相似文献   

3.
Cabbage plants were grown in soil amended with Clandosan (CLA) prepared from crustacean chitin (0.3% w/w). The plants were maintained in constant temperature tanks set to 15° or 30°C, in soils naturally infested with cyst nematodeHeterodera schachtii, or inoculated with the root-knot nematode,Meloidogyne javanica, respectively. At 30°C, after the first month following inoculation, CLA caused an increase in top fresh weight of plants but no reduction in nematode—induced root galling was recorded. However, when fresh plants were planted, CLA induced a large reduction in gall formation and caused an increase in top fresh weight of nematode-inoculated plants. At 15°C, CLA significantly affected the plants only after 60 days: an increase in top fresh weight and a reduction in the number of eggs per cyst were recorded. Ammonium was not detected in soil after 30 days, at 30°C, whereas at 15°C, CLA-treated soil contained twice as much ammonium as non-treated soil. After 60 days, ammonium was not detected at all. After 30 days nitrate concentrations in soil attained higher values at 30°C than at 15°C, whereas after 60 days high levels were detected only at 15°C. At 30°C, CLA induced an increase in the number of fungi, chitinolytic bacteria, and total amount of bacteria; at 15°C, such an increase was detected only with the chitinolytic microorganisms.Contribution from the Agricultural Research Organization (ARO), Bet Dagan, Israel No. 2196-E, 1987 series.  相似文献   

4.
Summary A study was made of the effect of temperature on accumulation of glucosamine and 2-aminoisobutyrate by Candida utilis NCYC 321 grown at 30° C or 10° C. Exponential-phase cells contained greater proportions of C16:1 and C18:3 acids, and smaller proportions of C13:1 and C18:2 acids, when grown in a defined medium at 10° C compared with 30° C. Cells grown at 30° C or 10° C were able to accumulate extracellular (10 mM) glucosamine and 2-aminoisobutyrate against concentration gradients. 2-Aminoisobutyrate was not metabolised by the cells; glucosamine was accumulated probably as a mixture of glucosamine 1- and 6-phosphates. Rates of accumulation of glucosamine and 2-aminoisobutyrate by cells grown at 30° C or 10° C decreased markedly when the test temperature was decreased from 30° C to 15° C. The rate of accumulation of glucosamine by cells grown at 10° C was considerably lower at each of the test temperatures compared with the corresponding rates for cells grown at 30° C; the rate of accumulation of 2-aminoisobutyrate was much less affected by the temperature at which the cells were grown and then only when measured at temperatures below about 20° C. Apparent K m values for accumulation of glucosamine by cells grown at 30° C or 10° C decreased considerably when the test temperature was lowered from 20° C to 15° C. The extent of the decrease in K m value was approximately the same for cells grown at 30° C or 10° C. Apparent K m values for accumulation of 2-aminoisobutyrate were hardly affected by test temperature. Apparent V max values for accumulation of glucosamine or 2-aminoisobutyrate were much lower when measured at 15° C than at 30° C. When measured at 30° C, apparent V max values for accumulation of either solute were slightly lower with cells grown at 10° C compared with cells grown at 30° C; when measured at 15° C, the values were slightly greater with cells grown at 10° C. Net accumulation of glucosamine, at 30° C or 20° C, by cells grown at 30° C or 10° C ceased after 4–6 h. Cells grown at either temperature continued to accumulate 2-aminoisobutyrate at 30° C or 20° C for at least 12 h. The rate of efflux of glucosamine by cells grown at 30° C was slower when measured at 20° C compared with 30° C. With cells grown at 10° C, the rate of efflux at 30° C was slower than with cells grown at 30° C; when measured at 20° C, the rates were about equal. The temperature at which the cells were grown did not affect the ability of d-glucose, d-mannose or d-ribose to compete with d-glucosamine, or with the ability of l-alanine to compete with 2-aminoisobutyrate, when tested at 30° C or 20° C. Cells grown 30° C or 10° C had very similar ATP contents. The results are discussed in relation to the effect of temperature on the rate of solute accumulation by micro-organisms.Abbreviation AIB 2-Aminoisobutyrate  相似文献   

5.
Sorghum [Sorghum bicolor (L.) Moench] plants were grown in growth chambers at 20, 25 and 30°C in a low P Typic Argiudoll (3.65 µg P g–1 soil, pH 8.3) inoculated with Glomus fasciculatum, Glomus intraradices, and Glomus macrocarpum to determine effects of vesicular-arbuscular mycorrhizal fungi (VAMF) species on plant growth and mineral nutrient uptake. Sorghum root colonization by VAMF and plant responses to Glomus species were temperature dependent. G. macrocarpum colonized sorghum roots best and enhanced plant growth and mineral uptake considerably more than the other VAMF species, especially at 30°C. G. fasciculatum enhanced shoot growth at 20 and 25°C, and mineral uptake only at 20°C. G. intraradices depressed shoot growth and mineral uptake at 30°C. G. macrocarpum enhanced shoot P, K, and Zn at all temperatures, and Fe at 25 and 30°C above that which could be accounted for by increased biomass. Sorghum plant growth responses to colonization by VAMF species may need to be evaluated at different temperatures to optimize beneficial effects.  相似文献   

6.
Somatic embryos of Eleutherococcus senticosus were exposed at 12, 16, 24 and 30 °C for duration of 45 days in bioreactor. The effects of such treatments on the growth, eleutheroside B, E, E1, total phenolics, flavonoids, chlorogenic acid concentrations and antioxidant enzymes activities were investigated. The results revealed that low (12 and 18 °C) and high (30 °C) temperature caused significant decrease in fresh weight (FW), dry weight (DW), total phenolics, flavonoids and total eleutheroside accumulation, while low temperature increased eleutheroside E accumulation in somatic embryos. Low temperature significantly increased superoxide dismutase (SOD), catalase (CAT), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) activities whereas a strong increase in ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activity was obtained at 12 °C grown somatic embryos. In contrast, high temperature significantly decreased antioxidant enzymes activities and even guaiacol peroxidase (G-POD) activity also decreased at low temperature in comparison to 24 °C grown embryos. These data suggest that low and high temperature treatment provoked an oxidative stress in E. senticosus embryos, as shown by the increase in lipid peroxidation. The increase in lipid peroxidation was paralleled by a rise in lipoxygenase (LOX) activity and hydrogen peroxide (H2O2) content. However, this stress was more prominent at high temperature than low temperature grown embryos. This result suggests that the reduced growth of embryo at 30 °C was concomitant with reduced efficiency of these protective enzymes. On the other hand, increases in antioxidant activities at 12 and 18 °C could also be a response to the cellular damage; however, this increase could not stop the deleterious effects of low temperature, but reduced stress severity thus allowing embryo growth to occur.  相似文献   

7.

Acid sulphate soil contains high amounts of iron (Fe) and aluminum (Al), and their contamination has been reported as major problems, especially in rainfed and irrigated lowland paddy fields. Rice is sensitive to Fe and Al grown in acid soil (pH < 5.5), leading to growth inhibition and grain yield loss. The objective of this study was to evaluate Fe and/or Al uptake, translocation, physiological adaptation, metal toxicity, and growth inhibition in rice genotypes grown in acid soil. Fe and Al in the root tissues of all rice genotypes were enriched depending on the exogenous application of either Fe or Al in the soil solution, leading to root growth inhibition, especially in the KDML105 genotype. Expression level of OsYSL1 in KDML105 was increased in relation to metal uptake into root tissues, whereas OsVIT2 was downregulated, leading to Fe (50.3 mg g−1 DW or 13.1 folds over the control) and Al (4.8 mg g−1 DW or 2.2 folds over the control) translocation to leaf tissues. Consequently, leaf greenness (SPAD), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (E) in the leaf tissues of genotype KDML105 under Fe + Al toxicity significantly declined by 28.4%, 35.3%, 55.6%, and 51.6% over the control, respectively. In Azucena (AZU; Fe/Al tolerant), there was a rapid uptake of Fe and Al by OsYSL1 expression in the root tissues, but a limited secretion into vacuole organelles by OsVIT2, leading to a maintenance of low level of toxicity driven by an enhanced accumulation of glutathione together with downregulation of OsGR expression level. In addition, Fe and Al restrictions in the root tissues of genotype RD35 were evident; therefore, crop stress index (CSI) of Fe + Al–treated plants was the maximum, leading to an inhibition of gs (53.6% over the control) and E (49.0% over the control). Consequently, free proline, total phenolic compounds, and ascorbic acid in the leaf tissues of rice under Fe + Al toxicity significantly increased by 3.2, 1.2, and 1.5 folds over the control, respectively, indicating their functions in non-enzymatic antioxidant defense. Moreover, physiological parameters including leaf temperature (Tleaf) increment, high level of CSI (>0.6), SPAD reduction, photon yield of PSII (ΦPSII) diminution, Pn, gs, and E inhibition in rice genotype IR64 (Fe/Al-sensitive) under Fe + Al treatment were clearly demonstrated as good indicators of metal-induced toxicity. Our results on Fe- and/or Al-tolerant screening to find out the candidate genotypes will contribute to present screening and breeding efforts, which in turn help increase rice production in the Fe/Al-contaminated acid soil under lowland conditions.

  相似文献   

8.
An extracellular polygalacturonase (EC 3.2.1.15) fromGeotrichum candidum ATCC 34614 grown onsauerkraut brine was produced and characterized. Polygalacturonic acid markedly increased the enzyme yield in the brine. The fungus produced the highest activity (290 U/l) in brine with 0.3% (w/v) polygalacturonic acid. The pH and temperature optima of the enzymes were 4.5 to 5.0 and 30°C, respectively. It was stable from pH 4.0 to 5.8 and at 30°C but lost its activity at higher temperatures. The Km and Vmax values for polygalacturonic acid were 4.2 mg/ml and 0.19mm galacturonic acid/min, respectively. The enzyme was not substrate inhibited.  相似文献   

9.
The growth characteristics of an obligately psychrophilic Vibrio sp. have been studied in a chemostat with glucose or lactose as the limiting substrate over a temperature range 0–23°C. Vibrio AF-1 has an optimum growth temperature of 15°C and maximum growth temperature which is dependent upon the carbon source. On glucose growth ceases at 20°C whereas on lactose growth continues to 23°C. Growth rate is also a function of the carbon source provided. When grown on glucose, fructose, sucrose, maltose and galactose max values of 0.046 h-1 at 15°C were recorded whereas on lactose, mannose, ribose and xylose max values of 0.020 h-1 were obtained. Substrate affinities (K s ) for the 9 sugars also fall into 2 divisions as for max and are temperature dependent. Those sugars which support a high growth rate have highest K s values at 0°C whereas these which give a low growth rate show maximum affinities at 15°C. Vibrio AF-1 produces the maximum cell yield (0.6 g/g sugar consumed) at temperature <8°C irrespective of the carbon source utilised and correlated with maximum rates of sugar uptake and minimum O2 consumption. Maintenance energy determination on glucose grown cells show that at 2° C 2% of the carbon input is used for maintenance whereas at 20°C the requirement increases to 10% of the carbon input.  相似文献   

10.
Iron deficiency chlorosis (FeDC) is a common disorder for sorghum [Sorghum bicolor (L.) Moench] grown on alkaline calcareous soils. Four sorghum genotypes were grown in growth chambers on a low Fe (1.3 g/g DTPA-extractable), alkaline (pH 8.0), calcareous (3.87% CaCO3 equivalent) Aridic Haplustoll to determine effects of different soil temperatures (12, 17, 22 and 27°C at a constant 27°C air temperature) on various root and shoot growth traits and development of FeDC. As soil temperature increased, leaf chlorosis became more severe, and shoot and root dry weights, root lengths, and leaf areas increased markedly. Shoot/root ratios, shoot weight/root length, leaf area/shoot weight and leaf area/root weight and root length also increased while root length/root weight decreased as soil temperature increased. Severe FeDC developed in all genotypes even though genotypes had previously shown different degrees of resistance to FeDC. Genotypes differed in most growth traits, especially dry matter yields, root lengths, and leaf areas, but most traits did not appear to be related to genotype resistance to FeDC. The most FeDC resistant genotype had the slowest growth rate and this may be a mechanism for its greater resistance to FeDC.  相似文献   

11.
A ferritin from the obligate anaerobe and hyperthermophilic archaeon Pyrococcus furiosus (optimal growth at 100°C) has been cloned and overproduced in Escherichia coli to one-fourth of total cell-free extract protein, and has been purified in one step to homogeneity. The ferritin (PfFtn) is structurally similar to known bacterial and eukaryal ferritins; it is a 24-mer of 20 kDa subunits, which add up to a total Mr 480 kDa. The protein belongs to the non-heme type of ferritins. The 24-mer contains approximately 17 Fe (as isolated), 2,700 Fe (fully loaded), or <1 Fe (apoprotein). Fe-loaded protein exhibits an EPR spectrum characteristic for superparamagnetic core formation. At 25°C Vmax=25 mole core Fe3+ formed per min per mg protein when measured at 315 nm, and the K0.5=5 mM Fe(II). At 0.3 mM Fe(II) activity increases 100-fold from 25 to 85°C. The wild-type ferritin is detected in P. furiosus grown on starch. PfFtn is extremely thermostable; its activity has a half-life of 48 h at 100°C and 85 min at 120°C. No apparent melting temperature was found up to 120°C. The extreme thermostability of PfFtn has potential value for biotechnological applications.  相似文献   

12.
Summary The effect of clustering behaviour on metabolism, body temperature, thermal conductance and evaporative water loss was investigated in speckled mousebirds at temperatures between 5 and 36°C. Within the thermal neutral zone (approximately 30–35 °C) basal metabolic rate of clusters of two birds (32.5 J·g-1·h-1) and four birds (28.5 J·g-1·h-1) was significantly lower by about 11% and 22%, respectively, than that of individuals (36.4 J·g-1·h-1). Similarly, below the lower critical temperature, the metabolism of clusters of two and four birds was about 14% and 31% lower, respectively, than for individual birds as a result of significantly lower total thermal conductance in clustered birds. Body temperature ranged from about 36 to 41°C and was positively correlated with ambient temperature in both individuals and clusters, but was less variable in clusters. Total evaporative water loss was similar in individuals and clusters and averaged 5–6% of body weight per day below 30°C in individuals and below 25°C in clusters. Above these temperatures total evaporative water loss increased and mousebirds could dissipate between 80 and 90% of their metabolic heat production at ambient temperatures between 36 and 39°C. Mousebirds not only clustered to sleep between sunset and sunrise but were also observed to cluster during the day, even at high ambient temperature. Whereas clustering at night and during cold, wet weather serves a thermoregulatory function, in that it allows the brrds to maintain body temperature at a reduced metabolic cost, clustering during the day is probably related to maintenance of social bonds within the flock.Abbreviations BMR basal metabolic rate - bw body weight - C totab total thermal conductance - EWI evaporative water loss - M metabolism - RH relative humidity - T a ambient temperature - T b body temperature - T ch chamber temperature - T cl cluster temperature - TEWL total evaporative water loss - LCT lower critical temperature - TNZ thermal neutral zone  相似文献   

13.
Oxidation of elemental-S in coastal-dune sands and soils   总被引:1,自引:0,他引:1  
Summary S-oxidation was studied in samples of (a) coastal sands lacking vegetation; (b) sands from beneath isolated stands ofAmmophila arenaria andHippophaë rhamnoides; and (c) dune soils obtained from beneath vegetation growing on mature dunes. S-oxidation in samples taken from dune environments was compared with the process in a fertile garden soil.Elemental-S was oxidized to SO 4 2– in all samples, with S2O 3 2– being formed as intermediates. S-oxidation was most pronounced in the dune soil, followed by the garden soil,Ammophila arenaria andH. rhamnoides rhizospheres and finally the non-vegetated sand. The rate of S-oxidation thus generally increased with increasing C and N content, increasing vegetation cover and decreasing soil-sand pH.Maximum S-oxidation occurred at 30–37°C, but some of the intermediates appeared even at 45°C, presumably indicating abiotic S-oxidation at high temperatures. S-oxidation decreased the pH of the two soils studied, but did not markedly acidify the unvegetated or rhizosphere sands.  相似文献   

14.
Domisch  Timo  Finér  Leena  Lehto  Tarja  Smolander  Aino 《Plant and Soil》2002,239(2):173-185
We studied the effect of soil temperature on nutrient allocation and mycorrhizal development in seedlings of Scots pine (Pinus sylvestris L.) during the first 9 weeks of the growing season. One-year-old seedlings were grown in Carex-peat from a drained and forested peatland at soil temperatures of 5, 9, 13 and 17 °C under controlled environmental conditions. Fourteen seedlings from each temperature treatment were harvested at intervals of three weeks and the current and previous year's parts of the roots, stems and needles were separated. Mineral nutrient and Al contents in all plant parts were determined and the tips and mycorrhizas of the new roots were counted. Microbial biomass C and N in the growth medium were determined at the end of the experiment. None of the elements studied, except Fe, were taken up from the soil by the seedlings during the first three weeks. Thereafter, the contents of all the elements increased at all soil temperatures except 5 °C. Element concentrations in needles, stems and roots increased with soil temperature. Higher soil temperature greatly increased the number of root tips and mycorrhizas, and the numbers of mycorrhizas increased more than did the length of new roots. Cenococcum geophilum was relatively more abundant at lower soil temperatures (5 and 9 °C) than at higher ones (13 and 17 °C). A trend was observed for decreased microbial biomass C and N in the peat soil at higher soil temperatures at the end of the experiment.  相似文献   

15.
Body temperature and oxygen consumption were measured in the eastern hedgehog,Erinaceus concolor Martin 1838, during summer at ambient temperatures (T a) between-6.0 and 35.6°C.E. concolor has a relatively low basal metabolic rate (0.422 ml O2·g-1·h-1), amounting to 80% of that predicted from its body mass (822.7 g). Between 26.5 and 1.2°C, the resting metabolic rate increases with decreasing ambient temperature according to the equation: RMR=1.980-0.057T a. The minimal heat transfer coefficient (0.057 ml O2·g-1·h-1·°C-1) is higher than expected in other eutherian mammals, which may result from partial conversion of hair into spines. At lower ambient temperature (from-4.6 to-6.0° C) there is a drop in body temperature (from 35.2 to 31.4° C) and a decrease in oxygen consumption (1.530 ml O2·g-1·h-1) even though the potential thermoregulation capabilities of this species are significantly higher. This is evidenced by the high maximum noradrenaline-induced non-shivering thermogenesis (2.370 ml O2·g-1·h-1), amounting to 124% of the value predicted. The active metabolic rate at ambient temperatures between 31.0 and 14.5° C averages 1.064 ml O2·g-1·h-1; at ambient temperatures between 14.5 and 2.0° C AMR=3.228-0.140T a.Abbreviations AMR active metabolic rate - bm body mass - BMR basal metabolic rate - h heat transfer coefficient - NA noradrenaline - NST non-shivering thermogenesis - NSTmax maximum rate of NA-induced non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - STPD standard temperature and pressure (25°C, 1 ATM) - T a ambient temperature - T b body temperature  相似文献   

16.
Effects of temperature on the activity of flucycloxuron on larval stages of Panonychus ulmi (Koch), based on LC50 values, were highly significant (P < 0.001) with temperature coefficients of-1.7 in both the ranges of 15° to 25°C and 20° to 30°C. The slopes of probit regression lines at 15° and 20°C were significantly steeper than those at 25° and 30°C. As a consequence the temperature coefficients based on LC90 values were-4.4 and-2.2, for the 2 temperature ranges. The ovicidal activity of flucycloxuron on P. ulmi was low and was only statistically detectable at 20°C (LC90 of 84 mg a.i./l). In studies with larvae of Aedes aegypti (Linnaeus), Leptinotarsa decemlineata (Say), Plutella xylostella (Linnaeus), Spodeptera exigua (Hübner) and Spodoptera littoralis (Boisduval) probit regression lines were parallel over temperature. The activity of flucycloxuron on these five insect species was not affected by temperature. Based on LC50 values, diflubenzuron showed positive temperature coefficients on P. xylostella of + 2.1 at 15° to 25°C and + 2.5 at 20° to 30°C. For S. littoralis the temperature coefficient was positive (+ 2.4) at 15° to 25°C but negative (-1.9) at the 20° to 30°C range. Temperature coefficients of diflubenzuron were neutral for A. aegypti, L. decemlineata and S. exigua. In the design and analysis of these studies special allowance was made for date effects and variation in natural mortality over temperature.  相似文献   

17.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

18.
Cultures of the obligate psychrophilic diatom Fragilariopsis cylindrus (Grunow) were grown for 4 months under steady-state conditions at −1 °C and +7 °C (50 μmol photons m−2 s−1) prior to measurements in order to investigate long-term acclimation of photosynthesis to both temperatures. No differences in maximum intrinsic quantum yield of PS II (FV/FM) and relative electron transport rates could be detected at either temperature after 4 months of acclimation. Measurements of photosynthesis (relative electron transport rates) vs. irradiance (P vs. E curves) revealed similar values for relative light utilization efficiency (α = 0.57 at −1 °C, α = 0.60 at +7 °C) but higher values for irradiance levels at which photosynthesis saturates (EK) at −1 °C and, therefore, higher maximum photosynthesis (PMAX = 54 (relative units) at −1 °C, PMAX = 49 at +7 °C). Nonphotochemical quenching (NPQ) measurements at 385 μmol photons m−2 s−1 indicated higher (37%) NPQ for diatoms grown at −1 °C compared to +7 °C, which was possibly related to a 2-fold increase in the concentration of the pigment diatoxanthin and a 9-fold up-regulation of a gene encoding a fucoxanthin chlorophyll a,c-binding protein. Expression of the D1 protein encoding gene psbA was ca. 1.5-fold up-regulated at −1 °C, whereas expression levels of other genes from Photosystem II (psbC, psbU, psbO), as well as rbcL, the gene encoding the Rubisco large subunit were similar at both temperatures. However, a 2-fold up-regulation of a plastid glyceraldehyde-P dehydrogenase at −1 °C indicated enhanced Calvin cycle activity. This study revealed for the first time that a polar diatom could efficiently acclimate photosynthesis over a wide range of polar temperatures given enough time. Acclimation of photosynthesis at −1 °C was probably regulated similarly to high light acclimation.  相似文献   

19.
Guar (Cyamopsis tetregonoloba (L.) may be grown when soil temperatures are potentially high enough at the time of planting to inhibit nodulation and N2 fixation. An experiment was conducted using controlled conditions to determine the influence of high root temperature on growth and N2 fixation of guar. The experiment included two strains of rhizobia, two varieties of guar, two mineral N treatments, and root temperatures of 34, 37, and 40°C. Plants were grown for 44 days. The root temperature of 40°C reduced N fixation by at least 80% and nodule weight by more than 50%. Significant interactions occurred between most factors in influencing nodulation, N2 fixation and dry matter production. Guar, nodulated by rhizobial strain GAR022-1 and fully dependent on N2 fixation or provided with starter mineral N (25 mg pot–1), was not influenced by the root temperature of 37°C as compared to 34°C. Nodulation and N2 fixation by strain 32H1 was reduced by at least 40% when no starter mineral N was provided and the root temperature was 37°C. Providing starter mineral N to one variety of guar doubled the quantity of N2 fixed by strain 32H1 at both 34 and 37°C but N2 fixation was lower at the higher root temperature. It appears that root temperatures between 37° and 40°C bracketed the critical root temperature for N2 fixation by nodulated guar and that the critical root temperature for guar dependent on mineral N was above 40°C.  相似文献   

20.
The properties of the ATPase in the facultative thermophile, Bacillus coagulans, grown at thermophilic or mesophilic temperatures were similar. Arrhenius plots did not show discontinuities indicative of thermoadaptation. Magnesium stimulation of the enzyme was dependant on the assay temperature but independant of the growth temperature. The ATPase in cells grown at 35°C or 55°C was equally thermostable at 65°C. In contrast, the ATPase from the mesophile, Bacillus megaterium (T max=42°C) was completely inactivated at 55°C in 5 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号