首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
β-Glycosides of 2-acetamido-2-deoxy- -glucopyranose were synthesized, using either 7-methoxycarbonyl-3,6-dioxa-1-heptanol or 8-azido-3,6-dioxa-1-octanol. Selective β-lactosylation of 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl-trichloroacetimidate, followed by β-galactosylation of the secondary hydroxyl group with O-(2,3,4,6-tetra-O-acetyl-- -galactopyranosyl)trichloroacetimidate, catalytic hydrogenolysis, and O-deacetylation, gave 7-methoxycarbonyl-3,6-dioxaheptyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)β- -glucopyranoside. Selective β-lactosylation of 8-azido-3,6-dioxaocytl 2-acetamido-3-O-benzyl-2-deoxy-β- -glucopyranoside with hepta-O-acetyl-lactosyl bromide in the presence of silver triflate, followed by condensation with 2,3,4,6-tetra-O-acetyl-- -galactopyranosyl bromide in the presence of silver triflate, catalytic hdyrogenolysis, and O-deacetylation, gave 8-azido-3,6-dioxaoctyl 2-acetamido-2-deoxy-4-O-β- -galactopyranosyl-6-O-(4-O-β- -galactopyranosyl-β- -glucopyranosyl)-β- glucopyranoside.  相似文献   

2.
p-Nitrophenyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4,6-tetra-O-benzyl-alpha-D-galactopyranosyl bromide, the product deprotected, and the disaccharide glycoside converted into p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-4-O-beta-D-galactopyranosyl-beta- D-glucopyranoside. p-Nitrophenyl 3-O-benzoyl-4,6-di-O-benzylidene-alpha-D-mannopyranoside was condensed with 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl bromide, and the product was deprotected, to yield p-nitrophenyl 2-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-alpha-D-mannopyranoside. p-Nitrophenyl 2-acetamido-3,4-di-O-benzoyl-2-deoxy-beta-D-glucopyranoside was condensed with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide, and, after reduction, trifluoroacetylation, and deprotection, p-trifluoroacetamidophenyl 2-acetamido-2-deoxy-6-O-alpha-L-fucopyranosyl-beta-D-glucopyranoside was obtained.  相似文献   

3.
The disaccharide donor O-[2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->4)-3,6-di-O-benzyl-2-deoxy-2-dimethylmaleimido - alpha,beta-D-glucopyranosyl] trichloroacetimidate (7) was prepared by reacting O-(2,3,4,6-tetra-O-acetyl- alpha-D-galactopyranosyl) trichloroacetimidate with tert-butyldimethylsilyl 3,6-di-O-benzyl-2-deoxy-2- dimethylmaleoylamido-glucopyranoside to give the corresponding disaccharide 5. Deprotection of the anomeric center and then reaction with trichloroacetonitrile afforded 7. Reaction of 7 with 3'-O-unprotected benzyl (2,4,6-tri-O-benzyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside (8) as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->4)-(3,6-di-O- benzyl-2-deoxy-2-dimethylmaleimido-beta-D-glucopyranosyl)-(1-->3)- (2,4,6- tri-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside. Replacement of the N-dimethylmaleoyl group by the acetyl group, O-debenzylation and finally O-deacetylation gave lacto-N-neotetraose. Similarly, reaction of O-[(2,3,4,6-tetra-O-acetyl-beta- D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-dimethylmalei mido- alpha,beta-D-glycopyranosyl] trichloroacetimidate as donor with 8 as acceptor afforded the desired tetrasaccharide benzyl (2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-(1-->3)-(4,6-benzylidene-2-deoxy-2-dimethylmaleimid o- beta-D-glucopyranosyl)-(1-->3)-(2,4,6-tri-O-benzyl-beta-D-galactopyranos yl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside. Removal of the benzylidene group, replacement of the N-dimethylmaleoyl group by the acetyl group and then O-acetylation afforded tetrasaccharide intermediate 15, which carries only O-benzyl and O-acetyl protective groups. O-Debenzylation and O-deacetylation gave lacto-N-tetraose (1). Additionally, known tertbutyldimethylsilyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylide ne- 2-deoxy-2-dimethylmaleimido-beta-D-glucopyranoside was transformed into O-[2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-4,6-di-O-acetyl-2-deoxy-2-dimethylmaleimido-alpha,beta-D- glucopyranosyl] trichloroacetimidate as glycosyl donor, to afford with 8 as acceptor the corresponding tetrasaccharide 22, which is transformed into 15, thus giving an alternative approach to 1.  相似文献   

4.
Deprotection of the fully blocked disacharide allyl O-(2-amino-4,6-O-benzylidene-3-O-[(R)-1-carboxyethyl]-2-deoxy-beta-D-glucopyranosyl-1',2-lactam)-(1-->4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside by selective de-O-allylation and parallel removal of the benzylidene and O-benzyl groups is described. The resulting beta-muramyl lactam-(1-->4)-GlcNAc disaccharide is characterised as the per-O-acetylated derivative by 1H and 13C NMR spectroscopy and X-ray structure analysis. Conformational analysis about glycosidic bond of repeating units of bacterial spore cortex is based on experimental data and molecular modelling.  相似文献   

5.
Synthesis of disaccharide fragments of dermatan sulfate   总被引:2,自引:0,他引:2  
Condensation of crystalline methyl 2-azido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranoside with methyl (2,3,4-tri-O-acetyl-alpha-L-idopyranosyl bromide)uronate in dichloromethane, in the presence of silver triflate and molecular sieve, provided 54% of methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-alpha-L-idopyranosyluronate)-beta-D-galactopyranoside . The use of methyl (2,3,4-tri-O-acetyl-alpha-L-idopyranosyl trichloroacetimidate)uronate as glycosyl donor, in the presence of trimethylsilyl triflate, improved the yield to 68%. Regioselective opening of the benzylidene group with sodium cyanoborohydride followed successively by O-sulfation with the sulfur trioxide-trimethylamine complex, saponification, catalytic hydrogenolysis and selective N-acetylation gave the disodium salt of methyl 2-acetamido-2-deoxy-3-O-(alpha-L-idopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside. Condensation of methyl 2-azido-4,6-O-benzylidene-2-deoxy-beta-D-galactopyranoside with methyl (2,3,4-tri-O-acetyl-alpha-D-glucopyranosyl bromide)uronate in dichloromethane, in the presence of silver triflate and molecular sieve, gave methyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(methyl 2,3,4-tri-O-acetyl-beta-D-glucopyranosyluronate)-beta-D-galactopryano side in 85% yield. The sequence already described then gave the disodium salt of methyl 2-acetamido-2-deoxy-3-O-(beta-D-glucopyranosyluronic acid)-4-O-sulfo-beta-D-galactopyranoside.  相似文献   

6.
Five disaccharides related in structure to the glycans of vertebrate mucins have been chemically synthesized using orthogonal blocking, coupling and deblocking techniques. These include 2-naphthylmethyl 3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl-( 1 --> 4)-2-acetamido-3,6-di-O-acetyl-2-deoxy-beta-D-glucopyranoside (6), 2-naphthylmethyl 2-aceta-mido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl-(1 --> 3)-2,4,6-tri-O-acetyl-beta-D-galactopyranoside (14), 2-naph-thylmethyl2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl-(1 --> 3)-2-acetamido-4,6-di- O-acetyl-2-deoxy-alpha-D-galactopyranoside (20), 2-naphthylmethyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glucopyranosyl-(1 --> 3)-2-acetamido-4,6-di-O-acetyl-2-deoxy-alpha-D-galactopyranoside (23) and 2-naphthylmethyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-beta-D-glu-copyranosyl-(1 --> 6)-2-acetamido-3,4-di-O-acetyl-2-deoxy-alpha-D-galactopyranoside (27). These per-O-acetylated compounds were fed to U-937 cells to test their ability to prime oligosaccharide synthesis, inhibit glycoprotein biosynthesis and alter adhesion to E-selectin expressed on endothelial cells. The results show that 6, 14, and 20 served as substrates for oligosaccharide synthesis. The generation of glycoside-primed glycans altered the formation of glycoproteins on the cell surface and inhibited cell adhesion dependent on E-selectin.  相似文献   

7.
Reaction of p-nitrophenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-acetyl-alpha-D-galactopyranosyl bromide (3) under the usual conditions, followed by removal of the p-methoxybenzylidene group and O-deacylation, produced crystalline p-nitrophenyl 2-acetamido-2-deoxy-3-O-beta-D-galactopyranosyl-beta-D-glucopyranoside (6). Starting from p-nitrophenyl 2-acetamido 3,4-di-O-acetyl-2-deoxy-beta-D-glucopyranoside, the synthesis of p-nitrophenyl 2-acetamido-2-deoxy-6-O-beta-D-galactopyranosyl-beta-D-glucopyranoside was also accomplished.  相似文献   

8.
The total synthesis of the threonine-linked core 2 class disialylated hexasaccharide in a completely protected form was accomplished for the first time. The L-threonine conjugate, N-(9-fluorenylmethoxycarbonyl)-O-[(5-acetamido-4,7,8,9-tetra-O-ben zyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosylonic acid)-(2-->3)-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2-acetam ido-2-deoxy-3,6-di-O-benzyl-beta-D-glucopyranosyl-(1-->6)-[(5-acetamido- 4,7,8,9-tetra-O-benzyl-3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulo pyranosylonic acid)-(2-->3)-2,6-di-O-benzyl-beta-D-galactopyranosyl-(1-->3)]-2-acetami do-2-deoxy-alpha-D-galactopyranosyl-(1d-->4c:1f-->4e)-dilactone ]-L-threonine allyl ester was synthesized via stereocontrolled glycosylations employing readily accessible monosaccharidic blocks; t-butyl-diphenylsilyl-2-azido-2-deoxy-3,6-di-O-benzyl-beta-D-gluco pyranose, N-(9-fluorenylmethoxycarbonyl)-O-(2-azido-6-O-t-butyldimethylsilyl -2-deoxy-alpha-D-galactopyranosyl)-L-threonine allyl ester, 8, 9 and N-(9-fluorenylmethoxycarbonyl)-O-(2-azido-4,6-O-benzylidene-3-O-ch loroacetyl-2-deoxy-alpha-D-galactopyranosyl)-L-threonine allyl ester. For the introduction of the amino acid, the azide group was used to temporarily mask the amino group of GalNAc so as to obtain an alpha-glycosidic linkage without participation from the C-2 substituent. The threonine was attached to the sugar unit at the monosaccharide stage to avoid loss of oligosaccharide at a later stage. The Fmoc and allyl ester protected amino acid at the reducing end facilitates efficient glycopeptide synthesis on solid-phase support.  相似文献   

9.
The sulfated pentasaccharide benzyl O-(3-O-sulfo-beta-D-galactopyranosyl)-(1-->3)-O-[(alpha-L-fucopyranosyl)-(1-->4)]-O-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-(1-->3)-O-(beta-D-galactopyranosyl)-(1-->4)-O-beta-D-glucopyranoside sodium salt was synthesized using a chemo-enzymatic approach. Lacto-N-tetraose, obtained from two disaccharides [4-methoxybenzyl O-(2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)-4,6-O-benzylidene-2-deoxy-2-phtalimido-beta-D-glucopyranoside and benzyl 2,6-di-O-acetyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-acetyl-beta-D-glucopyranoside], was regioselectively sulfated at the 3 OH position of the terminal galactose using the stannylene procedure. The fucosylation of the sulfated tetrasaccharide was performed using soluble or immobilized fucosyltransferase FucT-III to give the title compound.  相似文献   

10.
Benzylation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D- glucopyranosyl)-2,4,6-tri-O-benzyl-beta-D-galactopyranoside with benzyl bromide in N,N-dimethylformamide in the presence of sodium hydride afforded methyl 3-O- (2-acetamido-3-O-benzyl-4,6-O-benzylidene-2-deoxy-beta-D-glucopyranosyl) -2,4,6- tri-O-benzyl-beta-D-galactopyranoside (3). Reductive ring-opening of the benzylidene group of 3 gave methyl 3-O-(2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D- glucopyranosyl)- 2,4,6-tri-O-benzyl-beta-D-galactopyranoside (4). Cleavage of the 4,6-acetal group of 3 with hot, 80% aqueous acetic acid afforded the diol (5). Compounds 3, 4, and 5 were each subjected to halide ion-catalyzed glycosylation with 2,3,4-tri-O-benzyl-alpha-L-fucopyranosyl bromide to produce the corresponding trisaccharide derivatives, which, on catalytic hydrogenation, furnished the title trisaccharides, respectively.  相似文献   

11.
2-O-[4-O-(2-Acetamido-2-deoxy-beta-D-mannopyranosyl)-alpha-D- glucopyranosyl]-alpha,beta-L-rhamnopyranose, a structural component of the capsular polysaccharide of Streptococcus pneumoniae type 19F, has been synthesized by sequential glycosylation reactions using the glycosyl acceptor 2,2,2-trichloroethyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (prepared from the known 2-O-acetyl-3,4-di-O-benzyl-alpha-L-rhamnopyranosyl chloride), and the glycosyl donors 4-O-acetyl-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl chloride and 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-alpha-D-mannopyranosyl bromide (prepared in seven steps from the known methyl 2-azido-4,6-O-benzylidene-2-deoxy-alpha-D-altropyranoside). The corresponding 8-(methoxycarbonyl)octyl glycoside has also been synthesized, by coupling of 8-(methoxycarbonyl)octyl trifluoromethanesulfonate and the sodium salt of 2-O-[4-O-(2-acetamido-4,6-di-O-acetyl-3-O-benzyl-2-deoxy-beta-D- mannopyranosyl)-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl]-3,4-di-O- benzyl-alpha,beta-L-rhamnopyranose.  相似文献   

12.
The linker-equipped disaccharide, 8-amino-3,6-dioxaoctyl 2,6-dideoxy-2-acetamido-3-O-β-d-galactopyranosyluronate-β-d-glucopyranoside (10), was synthesized in eight steps from acetobromogalactose and ethyl 4,6-O-benzylidene-2-deoxy-2-trichloroacetamido-1-thio-β-d-glucopyranoside. The hydroxyl group present at C-4II in the last intermediate, 8-azido-3,6-dioxaoctyl 4-O-benzyl-6-bromo-2,6-dideoxy-2-trichloroacetamido-3-O-(benzyl 2,3-di-O-benzyl-β-d-galactopyranosyluronate)-β-d-glucopyranoside (9), is positioned to allow further build-up of the molecule and, eventually, construction of the complete hexasaccharide. Global deprotection (910) was done in one step by catalytic hydrogenolysis over palladium-on-charcoal.  相似文献   

13.
Zeng Y  Kong F 《Carbohydrate research》2003,338(22):2359-2366
The glucohexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-beta-D-Glcp-(1-->6)]-beta-D-Glcp-(1-->3)-D-Glcp, was synthesized as its allyl glycoside via 3+3 strategy. The trisaccharide donor, 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11), was obtained by 3-selective coupling of isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (2) with 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-4,6-O-benzylidene-alpha-D-glucopyranosyl trichloroacetimidate (6), followed by hydrolysis, acetylation, dethiolation, and trichloroacetimidation. Meanwhile, the trisaccharide acceptor, allyl 2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2-O-acetyl-beta-D-glucopyranosyl-(1-->3)-4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (14), was prepared by coupling of allyl 4,6-di-O-acetyl-2-O-benzoyl-alpha-D-glucopyranoside (12) with 6, followed by debenzylidenation. Condensation of 14 with 11, followed by deacylation, gave the target hexaoside. A beta-(1-->3)-linked tetrasaccharide 29 was also synthesized with methyl 2-O-benzoyl-4,6-O-benzylidene-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-beta-D-glucopyranoside (25) as the acceptor and acylated beta-(1-->3)-linked disaccharide 21 as the donor.  相似文献   

14.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

15.
The synthesis of thioglycosyl donors with a disaccharide beta-D-Gal-(1-->3)-D-GalNAc backbone was studied using the glycosylation of a series of suitably protected 3-monohydroxy- and 3,4-dihydroxyderivatives of phenyl 2-azido-2-deoxy-1-thio-alpha- and 1-thio-beta-D-galactopyranosides by galactosyl bromide, fluoride, and trichloroacetimidate. In the reaction with the monohydroxylated glycosyl acceptor, the process of intermolecular transfer of thiophenyl group from the glycosyl acceptor onto the cation formed from the molecule of glycosyl donor dominated. When glycosylating 3,4-diol under the same conditions, the product of the thiophenyl group transfer dominated or the undesired (1-->4), rather than (1-->3)-linked, disaccharide product formed. The aglycone transfer was excluded when 4-nitrophenylthio group was substituted for phenylthio group in the galactosyl acceptor molecule. This led to the target disaccharide, 4-nitrophenyl 2-azido-4,5-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-beta-D-galactopyranoside, in 57% yield. This disaccharide product bears nonparticipating azide group in position 2 of galactosamine and can hence be used to form alpha-glycoside bond. 2-Azide group and the aglycone nitro group were simultaneously reduced in this product and then trichloroacetylated, which led to the beta-glycosyl donor, 4-trichloroacetamidophenyl 4,6-O-diacetyl-2-deoxy-3-O-(2,3,4,6-tetra- O-acetyl-beta-D-galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D- galactopyranoside, in 62% yield. The resulting glycosyl donor was used in the synthesis of tetrasaccharide asialo-GM1.  相似文献   

16.
As part of a continuing study aimed to achieve improved monoclonal antibodies against carcinoembryonic antigen (CEA) carbohydrate fragments, the synthesis of a sialyl-(2-->6)-lactosamine trisaccharide with a 5-amino-3-oxapentyl spacer group at C-1I has been developed. Two different routes to access this target are described. For this purpose 5-azido-3-oxapentyl 6-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranoside (4) was selectively beta-galactosylated in 81% yield using the crystalline 2,3-di-O-acetyl-4,6-O-benzylidene-alpha-D-galactopyranosyl trichloroacetimidate as the donor, taking advantage of the bulky phthalimido group at C-2 of 4. On the other hand, galactosylation of the suitable protected acceptor 5-azido-3-oxapentyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside with the crystalline 2,3-di-O-acetyl-4,6-O-benzylidene-alpha-D-galactosyl bromide renders the corresponding disaccharide in a moderate 58% yield. Despite the fact that the first strategy, unlike the second one, requires a hydrazinolysis-acetylation reaction at the disaccharide stage, it was found to be more convenient to access the disaccharide acceptor. Sialylation was performed using a thiophenyl donor under an NIS-TfOH activation procedure in acetonitrile to give a mixture of alpha and beta trisaccharides in 49 and 16% yields, respectively.  相似文献   

17.
Glycosylation of methyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside with 2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl bromide gave methyl 2,4-di-O-benzoyl-3-O-(2,3,4-tri-O-acetyl-alpha-L-rhamnopyranosyl) -alpha-L-rhamnopyranoside (4) in 93% yield. Conversion of 4 into the corresponding glycosyl bromide was accomplished with dibromomethyl methyl ether. Under Koenigs-Knorr conditions, this bromide reacted with 8-(methoxycarbonyl)octyl 2-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-beta-D-glycopyranosyl)- 3,4-di-O- benzyl-alpha-L-rhamnopyranoside, to provide the protected tetrasaccharide in 91% yield. Removal of blocking groups gave 8-(methoxycarbonyl)octyl O-alpha-L-rhamnopyranosyl-(1---- 3)-O-alpha-L-rhamnopyranosyl-(1---- 3)-O-2-acetamido-2-deoxy-beta-D-glucopyranosyl-(1----2)-alpha-L- rhamnopyranoside. Together with previously synthesized tetrasaccharides of the Shigella flexneri Y O-antigen, this oligosaccharide has been used to study the conformation of O-antigens and to assist in the selection of S. flexneri, variant Y, specific monoclonal antibodies.  相似文献   

18.
Starting from L-rhamnose, D-mannose and 2-amino-2-deoxy-D-glucose hydrochloride, two disaccharide blocks, namely, ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamnopyranos yl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-1-thio-alpha-D-mannopyranoside and 2-(trimethylsilyl)ethyl 2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-4,6-di-O-benzy l-2-deoxy-2-phthalimido-beta-D-glucopyranoside, were synthesised and then allowed to react in the presence of N-iodosuccinimide and trifluoromethane sulfonic acid to give a tetrasaccharide derivative. This compound was converted into 2-(trimethylsilyl)ethyl 2,4-di-O-benzyl-3-O-[(R)-1-(methoxycarbonyl)ethyl]-alpha-L-rhamno- pyranosyl-(1-->3)-2-O-acetyl-4,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-- >4)-2-O-acetyl-3,6-di-O-benzyl-alpha-D-mannopyranosyl-(1-->3)-2-acetamid o-4,6-di-O-benzyl-2-deoxy-beta-D-glucopyranoside, which on hydrogenolysis, afforded the methyl ester 2-(trimethylsilyl)ethyl glycoside of the tetrasaccharide related to the repeating unit of the O-antigen from Shigella dysenteriae type 5.  相似文献   

19.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

20.
Syntheses of allyl 2,3,4-tri-O-benzyl-alpha-D-gluco- and D-galactopyranosyluronate-(1-->3)-2-acetamido-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside via oxidation of the hydroxymethyl group of allyl 2,3,4-tri-O-benzyl-alpha-D-gluco- and D-galactopyranosyl-(1-->3)-2-acetamido-4,6-O-benzylidene-2-deoxy-alpha-D-glucopyranoside under Jones conditions are described. Structures of the title compounds were confirmed by (1)H and (13)C NMR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号