首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
UDP-glucuronic acid decarboxylase catalyses the reaction responsible for the formation of UDP-xylose and commits assimilate for the biosynthesis of cell wall polysaccharides and glycosylation of proteins. Xylose-rich polymers such as xylans are a feature of dicot secondary walls. Thus a cell culture system of tobacco transformed with the ipt gene from Agrobacterium tumefaciens for cytokinin production and which when manipulated with auxin and sucrose leads to induction of xylogenesis, has been used as a source for purification of the enzyme. UDP-glucuronic acid decarboxylase was purified by ion-exchange, gel filtration and affinity chromatography on Reactive Brown-Agarose. The native enzyme had an apparent M(r) of 220,000 which yielded a single subunit of 87,000 when analysed on SDS-PAGE using silver staining. This appears to be a novel form of the enzyme since a gene family encoding polypeptides around M(r) 40,000 with homology to the fungal enzyme also exists in plants. Using an antibody raised to the native 87 kDa form of the enzyme, this decarboxylase was localised mainly to to cambium and differentiating vascular tissue in tobacco stem, consistent with a role in the provision of UDP-xylose for the synthesis of secondary wall xylan. Further analysis using immunogold electron microscopy localised the 87 kDa UDP-glucuronic acid decarboxylase to the cytosol of developing vascular tissue.  相似文献   

2.
The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion‐exchange chromatography, could be determined accurately since, xylem‐specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.  相似文献   

3.
4.
利用紫外光显微镜、透射电子显微镜结合免疫胶体金标记,研究了杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程中木质素与半纤维素组分(木葡聚糖和木聚糖)在细胞壁分布的动态变化。在形成层及细胞伸展区域,细胞壁具有木葡聚糖的分布,而没有木聚糖和木质素沉积,随着次生壁S1层的形成,木质素出现在细胞角隅和胞间层,木聚糖开始出现在S1层中,此时木葡聚糖则分布在初生壁和胞间层;随着次生,壁S2层及S3层的形成和加厚,木质逐逐步由细胞角隅和胞间层扩展到S1、S2和S3层,其沉积呈现出不均匀的块状或片状沉积模式,在次生壁各层形成与其木质化的同时,木聚糖逐渐分布于整个次生壁中,而木糖聚糖仍局限分布于初生壁和胞间层。结果表明,随着细胞次生壁的形成与木质化,细胞壁结构发生较大变化。细胞壁的不同区域,如细胞角隅、胞间层、初生壁和次生壁各层,具有不同的半纤维素组成,其与木质等细胞壁组分结构构成不同的细胞壁分子结构。  相似文献   

5.
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S2 and S3 layer, lignification extended to S1, S2 and S3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.  相似文献   

6.
Secondary walls in vessels and fibers of dicotyledonous plants are mainly composed of cellulose, xylan, and lignin. Although genes involved in biosynthesis of cellulose and lignin have been intensively studied, little is known about genes participating in xylan synthesis. We found that Arabidopsis thaliana fragile fiber8 (fra8) is defective in xylan synthesis. The fra8 mutation caused a dramatic reduction in fiber wall thickness and a decrease in stem strength. FRA8 was found to encode a member of glycosyltransferase family 47 and exhibits high sequence similarity to tobacco (Nicotiana plumbaginifolia) pectin glucuronyltransferase. FRA8 is expressed specifically in developing vessels and fiber cells, and FRA8 is targeted to Golgi. Comparative analyses of cell wall polysaccharide fractions from fra8 and wild-type stems showed that the xylan and cellulose contents are drastically reduced in fra8, whereas xyloglucan and pectin are elevated. Further structural analysis of cell walls revealed that although wild-type xylans contain both glucuronic acid and 4-O-methylglucuronic acid residues, xylans from fra8 retain only 4-O-methylglucuronic acid, indicating that the fra8 mutation results in a specific defect in the addition of glucuronic acid residues onto xylans. These findings suggest that FRA8 is a glucuronyltransferase involved in the biosynthesis of glucuronoxylan during secondary wall formation.  相似文献   

7.
Using tobacco transgenic lines altered in the monolignol biosynthetic pathway and which differ in their lignin profiles we have evaluated lignin deposition at the cellular and subcellular levels using several microanalytical techniques. Surprisingly, whereas a Cinnamoyl CoA reductase (CCR) down-regulated line with a strong decrease in lignin content exhibited an overall reduction in lignin deposition in the walls of the different xylem cell types, this reduction was selectively targeted to the fibers in a double transformant (down-regulated for both CCR and Cinnamyl alcohol dehydrogenase (CAD)) displaying a similar degree of global lignin content decrease. Fiber and vessel secondary walls of the transgenic tobacco line homozygous for the ccr antisense gene (CCR.H) down-regulated plants were dramatically destructured, particularly in the S2 sublayer, whereas the deposition of lignins in the S1 sublayer was not significantly modified. In contrast, cell wall organization was slightly altered in xylem cells of the double transformant. The relative distribution of non-condensed and condensed units in lignin, evaluated microscopically with specific antibodies, was differentially affected in the transgenics studied and, in a general way, a drop in non-condensed lignin units (beta- 0-4 interunit linkages) was associated with a loss of cohesion and extensive disorganization of the secondary wall. These results demonstrate that lignification is tightly and independently regulated in individual cell types and cell wall sublayers. They also show that down-regulation of specific genes may induce targeted changes in lignin structure and in spatial deposition patterns of the polymer.  相似文献   

8.
In the Arabidopsis mutant irx3, truncation of the AtCesA7 gene encoding a xylem-specific cellulose synthase results in reduced cellulose synthesis in the affected xylem cells and collapse of mature xylem vessels. Here we describe spectroscopic experiments to determine whether any cellulose, normal or abnormal, remained in the walls of these cells and whether there were consequent effects on other cell-wall polysaccharides. Xylem cell walls from irx3 and its wild-type were prepared by anatomically specific isolation and were examined by solid-state NMR spectroscopy and FTIR microscopy. The affected cell walls of irx3 contained low levels of crystalline cellulose, probably associated with primary cell walls. There was no evidence that crystalline cellulose was replaced by less ordered glucans. From the molecular mobility of xylans and lignin it was deduced that these non-cellulosic polymers were cross-linked together in both irx3 and the wild-type. The disorder previously observed in the spatial pattern of non-cellulosic polymer deposition in the secondary walls of irx3 xylem could not be explained by any alteration in the structure or cross-linking of these polymers and may be attributed directly to the absence of cellulose microfibrils which, in the wild-type, scaffold the organisation of the other polymers into a coherent secondary cell wall.  相似文献   

9.
10.
Transgenic hybrid aspen (Populus tremula L. x P. tremuloides Michx.) plants expressing a high-isoelectric-point superoxide dismutase (hipI-SOD) gene in antisense orientation were generated to investigate its function. Immunolocalization studies showed the enzyme to be localized extracellularly, in the secondary cell wall of xylem vessels and phloem fibers. The antisense lines of hipI-SOD exhibited a distinct phenotype; growth rate was reduced, stems were thinner and leaves smaller than in wild-type (WT) plants. The abundance of hipI-SOD was reduced in the bark and xylem of plants from these antisense lines. The vascular tissue of transgenic lines became lignified earlier than in WT plants and also showed an increased accumulation of reactive oxygen species (ROS). Xylem fibers and vessels were shorter and thinner in the transgenic lines than in WT plants. The total phenolic content was enhanced in the antisense lines. Furthermore, microarray analysis indicated that several enzymes involved in cell signaling, lignin biosynthesis and stress responses were upregulated in apical vascular tissues of transgenic plants. The upregulation of selected genes involved in lignin biosynthesis was also verified by real-time PCR. The results suggest that, in the transgenic plants, a premature transition into maturation occurs and the process is discussed in terms of the effects of increased accumulation of ROS due to reduced expression of hipI-SOD during development and differentiation.  相似文献   

11.
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6‐like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild‐type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6‐like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.  相似文献   

12.
Formation of UDP-Xylose and Xyloglucan in Soybean Golgi Membranes   总被引:2,自引:2,他引:0       下载免费PDF全文
Soybean (Glycine max) membranes co-equilibrating with Golgi vesicles in linear sucrose gradients contained UDP-glucuronate carboxy-lyase and xyloglucan synthase activities. Digitonin solubilized and increased the activity of the membrane-bound UDP-glucuronate carboxy-lyase. UDP-xylose did not inhibit the transport of UDP-glucuronate into the lumen of Golgi vesicles but repressed the decarboxylation of the translocated UDP-glucuronate. The results suggest that UDP-glucuronate is transported into the vesicles by a specific carrier and decarboxylated to UDP-xylose within the lumen. On incubation of UDP-[14C]glucuronate with Golgi membranes in the presence of UDP-glucose, [14C]xylose-labeled xyloglucan was formed. Although the Km value of UDP-glucuronate for the decarboxylation was 240 micromolar, the affinity of UDP-glucuronate for xyloglucan formation (31 micromolar) was similar to that of UDP-xylose (28 micromolar), suggesting a high turnover of UDP-xylose. The biosynthesis of UDP-xylose from UDP-glucuronate probably occurs in Golgi membranes, where xyloglucan subsequently forms from UDP-xylose and UDP-glucose.  相似文献   

13.
A family 15 carbohydrate esterase (CE15) from the white‐rot basidiomycete, Phanerochaete carnosa (PcGCE), was transformed into Arabidopsis thaliana Col‐0 and was expressed from the constitutive cauliflower mosaic virus 35S promoter. Like other CE15 enzymes, PcGCE hydrolyzed methyl‐4‐O‐methyl‐d ‐glucopyranuronate and could target ester linkages that contribute to lignin–carbohydrate complexes that form in plant cell walls. Three independently transformed Arabidopsis lines were evaluated in terms of nine morphometric parameters, total sugar and lignin composition, cell wall anatomy, enzymatic saccharification and xylan extractability. The transgenic lines consistently displayed a leaf‐yellowing phenotype, as well as reduced glucose and xylose content by as much as 30% and 35%, respectively. Histological analysis revealed 50% reduction in cell wall thickness in the interfascicular fibres of transgenic plants, and FT‐IR microspectroscopy of interfascicular fibre walls indicated reduction in lignin cross‐linking in plants overexpressing PcGCE. Notably, these characteristics could be correlated with improved xylose recovery in transgenic plants, up to 15%. The current analysis represents the first example whereby a fungal glucuronoyl esterase is expressed in Arabidopsis and shows that the promotion of glucuronoyl esterase activity in plants can alter the extent of intermolecular cross‐linking within plant cell walls.  相似文献   

14.
15.
16.
UDP-glucuronate decarboxylase (UGD) catalyzes the formation of UDP-xylose from UDP-glucuronate. UDP-xylose is then used to initiate glycosaminoglycan biosynthesis on the core protein of proteoglycans. In a yeast two-hybrid screen with the protein kinase Akt (protein kinase B), we detected interactions with a novel sequence, which we cloned and expressed. The expressed protein displayed UGD activity but did not display the activities of homologous nucleotide sugar epimerases or dehydratases. We did not detect phosphorylation of UGD by Akt nor did we detect any influence of Akt on UGD activity. Effects of UGD on Akt kinase activity were also absent. Northern blot and Western blot analyses revealed the presence of UGD in multiple tissues and brain regions. Subcellular studies and histochemistry localized UGD protein to the perinuclear Golgi where xylosylation of proteoglycan core proteins is known to occur.  相似文献   

17.
18.
19.
20.
Summary— Polyclonal antibodies against 4-O-methyl-glucuronoxylan and α L-1-3 arabinofuranosyl poly-β-d-1-4-xylopyranosyl were raised from rabbits. An immunocytochemical technique was used to localize xylans and arabinoxylans in the plant cell walls of the apical internode of two maize lines of different digestibility. The sclerenchyma, fibres and xylem (lignified tissues) and the parenchyma (non-lignified tissue) were studied. The arabinoxylans were more heavily labelled than the xylans in the lignified tissues of the less digestible maize whereas in the more digestible line the labelling of the two polysaccharides was similar. The xylans and arabinoxylans were localized in the secondary cell wall. In both maize lines, labelling increased from the base upwards of the apical internode, reflecting the changes in growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号