首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryos of Xenopus laevis, Rana temporaria and Triturus vulgaris exposed to radioactive pregnenolone have been found to convert it to progesterone. Incubations with radioactive progesterone showed that it was actively metabolized by oocytes and embryos. In Xenopus incubations progesterone was converted to 5alpha-pregnane-3,20-dione, 17alpha-hydroxy-4-pregnen-3-one, 4-androstene-3,17-dione and 17alpha-20alpha-dihydroxy-4-pregne-3-one, indicating 5alpha-reductase, 17alpha-hydroxylase, 19-20-desmolase and 20alpha-hydroxylase activities. In oocytes of Triturus and Rana no evidence of 19-20-desmolase was found. In Rana oocytes were also not evidence of 17alpha-hydroxylase activity. All identified activities except 20alpha-hydroxylase were common to embryos of all three species. It is suggested that the steroid enzyme activities present in the embryos are not solely derived from the oocytes but synthentized during early development. Possible meaning of this kind of metabolism during differentiation remains open.  相似文献   

2.
Sertoli cells isolated from 17 day old rats were maintained in culture and incubated with [14C]-progesterone for 20 h. The cells and media were extracted with ether/chloroform and the extracts chromatographed two-dimensionally on TLC and the radioactive metabolites visualized by autoradiography. Nine of the metabolites (constituting about 88% of total metabolite radioactivity) were identified by relative mobilities of the compounds and their derivatives in TLC and GC systems and by recrystallizations with authentic steroids as the following: 20α-hydroxypregn-4-en-3-one, 3α-hydroxy-5α-pregnan-20-one, 5α-pregnane3α,20α-diol, 17β-hydroxy-5α-androstan-3-one, 5α-pregnane-3,20-dione, 17-hydroxypregn-4-ene-3,20-dione, testosterone, 5α-androstane-3α,17β-diol and androst-4-ene-3,17-dione. Over 71% of the metabolite radioactivity was due to 20α-hydroxypregn-4-en-3-one, the major metabolite. 5α-reduced pregnanes constituted about 12% and C19 steroids comprised about 2.9% of the radioactivity of the metabolites. Calculation of relative steroidogenic enzyme activities from initial reaction rates suggested the following activities in μunits/mg Sertoli cell protein: 20α-hydroxysteroid oxidoreductase (20α-HS0; 7.71), 5α-reductase (4.77), 3α-HS0 (3.57), 17α-hydroxylase (0.93), 17β-HS0 (0.34) and C17-C20 lyase (0.34). The relatively high rate of steroidogenic enzyme activities in the Sertoli cells of young rats may indicate that Sertoli cells are less dependent on Leydig cell steroidogenesis than has been assumed. Since nearly all the metabolites of progesterone and testosterone are now identified, it is possible to construct a picture of Sertoli cell steroidogenic activity.  相似文献   

3.
The metabolism of 14C-labeled steroid precursors by cell-free homogenates of medaka ( Oryzias latipes , a daily spawner) ovarian follicles at 12 different developmental stages was examined using thin layer chromatography (TLC). The radioactive metabolites produced were identified and tested for their ability to induce germinal vesicle breakdown (GVBD) in oocytes in an in vitro homologous bioassay. When homogenates of follicles isolated during oocyte maturation were incubated with 14C-labeled 17α-hydroxyprogesterone, 13 metabolites were detected in TLC. Among these metabolites, one metabolite exhibited very high maturation inducing activity by the in vitro bioassay. This metabolite was identified as 17α,20β-dihydroxy-4-pregnen-3-one (17α,20β-DP) by its chromatographic mobility in TLC and recrystallization to constant specific activity. 17α,20β-DP production was high in follicles collected between 10 and 6 hr before spawning. A much less biologically active metabolite, 17α,20β-dihydroxy-5β-pregnane-3-one appeared in follicles immediately after the formation of 17α,20β-DP. A similar pattern of steroidogenesis was observed when the follicles were incubated with 14C-labeled pregnenolone and progesterone. The timely synthesis of 17α,20β-DP in medaka at the onset of oocyte maturation, together with the demonstration that this progestogen is the most potent inducer of oocyte maturation in vitro , provides further evidence that 17α,20β-DP is the naturally occurring maturation-inducing hormone in the medaka. The results also suggest that the conversion of 17α,20β-DP to its 5β-reduced metabolite may be an inactivation process.  相似文献   

4.
The supernatant obtained by centrifugation of Triton N-101-treated freeze-dried rat testicular microsomal fraction at 105000g(av.) for 2h transformed progesterone into testosterone via 17-hydroxypregn-4-ene-3,20-dione and androst-4-ene-3,17-dione. Hydroxylation at C-17 of 3beta-hydroxypregn-5-en-20-one and deoxycorticosterone was not observed. Non-haem iron protein, cytochrome P-450 and material with NADPH dehydrogenase activity were precipitated by 40% saturation of the supernatant with ammonium sulphate; however, it was not possible to establish the participation of these substances in the 17alpha-hydroxylase and side-chain-cleavage activities also present in the precipitate. The results of gel-filtration chromatography indicated that the Triton N-101 extract consisted primarily of a suspension of small particles of microsomes and that the progesterone 17-hydroxylase and the 17-hydroxypregn-4-ene-3,20-dione side-chain-cleavage enzyme were not in true solution.  相似文献   

5.
Metabolism of progesterone by avian granulosa cells in culture   总被引:1,自引:0,他引:1  
Previous studies have demonstrated that progesterone is the primary product of steroidogenesis in avian granulosa cells during short-term incubation. However, during more prolonged culture, lasting several days, the progesterone content in the medium was found to decrease progressively, indicating in vitro metabolic conversion. In the present study we have isolated and identified a number of progesterone metabolites. Granulosa cells, isolated from mature ovarian follicles of laying hens, were cultured in medium 199 supplemented with fetal calf serum and containing [14C]progesterone. After 4 days in culture, cells + media were extracted and the radioactive metabolites separated and identified by TLC, HPLC and GC-MS. Several of the metabolites were further characterized by derivatization and crystallization to constant specific activity. A total of 24 radioactive substances was detected. Of these, 15 have been positively identified, 5 tentatively and the remaining 4 are unidentified. The principal metabolite, representing more than 45% of the total radioactivity, was identified as 3 alpha-hydroxy-5 beta-pregnan-20-one. In addition, significant amounts of 3 alpha-hydroxy-5 alpha-pregnan-20-one (5.76%), 5 beta-pregnane-3,20-dione (3.05%), and 5 alpha-pregnane-3,20-dione (2.95%) were detected and identified. The results indicate that avian granulosa cells possess 3 alpha-hydroxy-steroid dehydrogenase (3 alpha-HSD), 17 beta-HSD, 20 alpha-HSD, 20 beta-HSD, 17 alpha-hydroxylase, C17-20-lyase and 5 alpha- and 5 beta-reductase activities. These enzyme activities may convert progesterone to biologically inactive or less active metabolites. However, a functional role for some of these metabolites cannot be ruled out.  相似文献   

6.
As neuroactive steroids modulate several ionotropic receptors, we assessed whether the ATP-gated currents elicited by P2X4 receptors are modulated by these compounds. We transfected HEK293 cells or injected Xenopus laevis oocytes with the cDNA coding for rat P2X4 receptor. Application of 0.1–10 μM alfaxolone potentiated within 60-s the 1 μM ATP-evoked currents with a maximal potentiation of 1.8 and 2.6-fold in HEK293 or oocytes cells respectively. Allopregnalolone or 3α, 21-dihydroxy-5α-pregnan-20-one (THDOC) also potentiated the ATP-gated currents but with a maximal effect only averaging 1.25 and 1.35-fold respectively. In contrast, 0.3–10 μM pregnanolone, but not its sulfated derivative, inhibited the ATP-gated currents; the maximal inhibition reached 40% in both cell types. THDOC, but not other neurosteroids increased significantly the τoff of the ATP-evoked currents, revealing another mode of neurosteroid modulation. Sexual steroids such as 17β-estradiol or progesterone were inactive revealing explicit structural requirements. Alfaxolone or THDOC at concentrations 30- to 100-fold larger than required to modulate the receptor, gated the P2X4 receptor eliciting ATP-like currents that were reduced with suramin or brilliant blue G, but potentiated the P2X4 receptor more than 10-fold by 10 μM zinc. In conclusion, neurosteroids rapidly modulate via non-genomic mechanisms and with nanomolar potencies, the P2X4 receptor interacting likely at distinct modulator sites.  相似文献   

7.
Homogenates of estrogen-responsive mouse Leydig cell tumors (T 124958-R and T 22137) or 28- and 120-day-old mouse testes were incubated with [3H]progesterone or [14C]4-androstene-3,17-dione in the presence of NADPH, and progesterone metabolism and enzyme activities were estimated. The growth of T 124958-R tumor transplanted in BALB/c mice was markedly stimulated by estrogenization of host mice, but the growth of T 22137 tumor was evidently suppressed by the estrogenization. The major C21-17-OH-steroids and C19-steroids formed from progesterone by both tumors and the testes of immature mice were 5 alpha-steroids, such as 3 alpha,17-dihydroxy-5 alpha-pregnan-20-one, 5 alpha-androstane-3,17-dione, androsterone, 3 beta-hydroxy-5 alpha-androstan-17-one and 5 alpha-androstane-3 alpha,17 beta-diol. In contrast, the major steroids formed by the testes of adult mice were testosterone and 4-androstene-3,17-dione, and no or little 5 alpha-steroids were produced. 5 alpha-Reductase activities in both tumor cells (40-50 nmol/l X 10(8) cells per h) were also found to be approx. 5-6 times higher than that in Leydig cells of adult mouse testes (8 nmol/l X 10(8) Leydig cells per h), though 17-hydroxylase activity was much higher in the Leydig cells of adult testes (730 nmol/l X 10(8) Leydig cells per h) than in both tumor cells (1-7 nmol/l X 10(8) cells per h). Furthermore, the presence of significant amounts of endogenous androsterone and/or 5 alpha-androstane-3 alpha,17 beta-diol was demonstrated in both tumors by radioimmunoassay. The present results demonstrate for the first time that C19-5 alpha-steroids are major C19-steroid products (immature type of testicular androgen production) in Leydig cell tumor lines.  相似文献   

8.
In embryos of many reptiles, the sexual differentiation of gonads is temperature-dependent. In the turtle Emys orbicularis, all individuals become phenotypic males at 25 degrees C, whereas 100% phenotypic females are obtained at 30 degrees C. Steroid metabolism in embryonic gonads was studied at both temperatures, during and after the thermosensitive period for sexual differentiation. Pools of gonads were incubated for various times, with 3 beta-hydroxy-5-pregnen-20-one (pregnenolone), progesterone, dehydroepiandrosterone or 4-androstene-3,17- dione as substrates. The analysis of metabolites combined two successive chromatographies (HPLC and TLC) and autoradiography. Conversion of pregnenolone to progesterone and of dehydroepiandrosterone to 4-androstene-3,17-dione was more important in testes at 25 degrees C than in ovaries at 30 degrees C. In ovaries, a large amount of 5-pregnene- 3 beta,20 beta-diol was formed from pregnenolone, and 5-androstene-3 beta,17 beta-diol was produced from dehydroepiandrosterone. In both testes and ovaries, 5 alpha-pregnane and 5 alpha-androstane derivatives were the main metabolites obtained from progesterone and 4-androstene-3,17-dione, respectively. Progesterone was also converted to 20 beta-hydroxy-4-pregnen-3-one. Dehydroepiandrosterone and 4-androstene-3,17-dione were also metabolized into 11 beta-hydroxy-4-androstene-3,17-dione (only in testes), testosterone, 11 beta,17 beta-dihydroxy-4-androstene-3-one, 17 beta-hydroxy-4-androstene-3,11-dione (low amounts in testes, traces in ovaries), 17 alpha-hydroxy-4-androstene-3-one, estrone and estradiol-17 beta (traces).  相似文献   

9.
Full-grown oocytes of amphibians respond in vitro to exogenous progesterone by undergoing physiological maturation (breakdown of the germinal vesicle (GVBD), meiosis, and acquisition of the capacity for activation). Both cytoplasm and “cytosol” from maturing oocytes have been shown to produce similar events when injected into unstimulated oocytes. This activity appeared within 4 hr after hormone treatment in Rana pipiens and Xenopus laevis and represents the earliest detectable, specific response of the oocyte yet observed, i.e., 6–8 hr before GVBD in Rana. Maturing oocytes retained activity as long as 100 hr after exposure to progesterone, and activity was also obtained from ovulated eggs and cleaving embryos. In addition, cytoplasm from Rana pipiens, Xenopus laevis, or Ambystoma mexicanum was effective in inducing maturation in oocytes of each other, indicating a lack of specificity.Recipient oocytes of Xenopus laevis consistently began to mature within 1.5–3 hr after injection of maturing cytoplasm, well before progesterone-treated controls. The timing of the response was closely related to the quantity of cytoplasm transferred, suggesting the presence of both a minimum and threshold level of cytoplasmic factor. Serial cytoplasmic transfer in Xenopus oocytes showed no significant loss of activity through 10 injections.  相似文献   

10.
Either [3H] progesterone (0.5 or 5 nmol/5 muCi), 5alpha-[3H] pregnane-3,20-dione (5 nmol/5 muCi) or [14C] progesterone (6.6 nmol/0.2 muCi) plus 5alpha-[3H]-pregnane-3,20-dione (1 or 6.6 nmol/0.6 muCi), suspended in 0.05 ml of physiological saline solution, was injected into each testis of 32- and 90-day-old rats. Following injection, radioactive metabolites in testis and spermatic vein blood were extracted, isolated, measured and identified by column and paper chromatographies, with derivative formation and recrystallization to constant specific activity. In the blood and testis of older prepubertal rats, major 17-OH-C21 and C19 metabolites of progesterone were 5alpha-reduced steroids such as 3alpha, 17alpha-dihydroxy-5alpha-pregnan-20-one, 5alpha-androstane-3alpha,17beta-diol and androsterone. Following injection of [14C] progesterone plus 5alpha-[3H] pregnane-3,20-dione into 32-day-old rat testis, no significant augmentation of the isotope from progesterone was observed in 5alpha-reduced C19 steroids as compared with 5alpha-reduced 17-OH-C21 steroids, indicating that 5alpha-reduced C19 steroids were mainly formed from 5alpha-reduced 17-OH-C21 steroids in older prepubertal testis. In the blood and testis of adult rats, small amounts of 5alpha-reduced metabolites were shown to be produced from progesterone, while active 17alpha-hydroxylation of 5alpha-pregnane-3,20-dione followed by C17-C20-lyase reaction was demonstrated. These findings seem to indicate that formation of 5alpha-reduced C19 steroids from progesterone by the 5alpha-reduced pathway is a major pathway of androgen biosynthesis in older prepubertal rat testis in vivo.  相似文献   

11.
E. Antila  A. Leikola  S. Tähkä 《Steroids》1984,43(3):315-323
Yolk free blastoderms of chick embryo were incubated 3 or 22 hours with labeled pregnenolone, progesterone, 17-hydroxyprogesterone, dehydro-epiandrosterone, androstenedione, testosterone and estradiol-17β. Metabolites and unconverted substrates were found both in the incubation medium and in the cells. Enzymes responsible for identified conversions were: 17α-hydroxylase, 17-20-desmolase, Δ53β- and 3α-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase and 5α- and 5β-reductase. The results suggest that the steroid metabolizing enzyme activities found may reflect a more general ability of early embryonic cells.  相似文献   

12.
Both partially purified chum salmon gonadotropin and 17α-hydroxyprogesterone stimulated in vitro production of testosterone by postvitellogenic follicles of goldfish ( Carassius auratus ). Chum salmon gonadotropin further enhanced the conversion of exogenously supplied 17α-hydroxyprogesterone to 17α, 20β-dihydroxy-4-pregnen-3-one. The increased medium concentrations of 17α, 20β-dihydroxy-4-pregnen-3-one were associated with the induction of final oocyte maturation.
The capacity of postvitellogenic follicles to produce steroids in response to exogenous 17α-hydroxyprogesterone was examined in females at various stages of final oocyte maturation following the administration of human chorionic gonadotropin in vivo combined with elevation of holding temperature. The maximum production of testosterone in response to 17α-hydroxyprogesterone was obtained in follicles from initial controls. In contrast, 17α 20β-diOHprog production was very low in initial controls and markedly increased during oocyte maturation (3–6 hr following injection), followed by a significant decrease in follicles collected at 15 hr. Estradiol-17β production by the follicles was very low at any stages of gonadotropin-induced oocyte maturation. These results suggest that gonadotropin-induced shift in the biosynthetic pathway in the follicle from the secretion of predominantly testosterone to 17α, 20β-dihydroxy-4-pregnen-3-one secretion is a prerequisite step for the induction of oocyte maturation in goldfish.  相似文献   

13.
3beta-Hydroxypregn-5-en-20-one (pregnenolone) and NAD+ were incubated with a solubilized preparation of the coupled enzyme 3beta-hydroxysteroid:NAD(P) oxidoreductase-3-ketosteroid delta4,delta5-isomerase (3beta-hydroxysteroid dehydrogenase: delta5-isomerase) from the mitochondrial fraction of human placenta. Unconverted pregnenolone, pregn-4-ene-3,20-dione (rogesterone), and a small but detectable amount of pregn-5-ene-3,20-dione were isolated from the medium by Sephadex LH-20 chromomatography. The identification of pregn-5-ene-3,20-dione, confirmed by mass fragmentography, has provided the first direct evidence for the formation of the hypothetical delta5,3-ketone intermediate in the conversion of pregnenolone to progesterone. When tritium-labeled pregnenolone and [4-14C]pregnenolone were incubated simultaneously the 3H:14C ratio in isolated pregn-5-ene-3,20-dione was 4.6 times greater than in isolated progesterone and pregnenolone, indicating a kinetic isotope effect in the enzymatic isomerization of tritium-labeled pregn-5-ene-3,20-dione. Exposure of the enzyme to two steroids which inhibit the overall enzyme reaction, 2alpha-cyano-17beta-hydroxy-4,4,17alpha-trimethylandrost-5-en-3-one (cyanoketone) and 3-hydroxyestra-1,3,5(10),6,8-pentaen-17-one (equilenin), increased the relative yield of labeled pregn-5-ene-3,20-dione as well as the recovery of radioactivity remaining as unconverted pregnenolone, suggesting that both the dehydrogenase and isomerase activities were inhibited. Exposure of the enzyme to equilenin increased the ratio of isolated pregn-5-ene-3,20-dione radioactivity to progesterone radioactivity as progesterone synthesis was inhibited. Equilenin also diminished the tritium isotope effect on the isomerase reaction. Both findings suggest that it is possible to inhibit the isomerase to a greater extent than the dehydrogenase. In order to measure the rate of progesterone produced by the coupled enzymes, we have modified a radiochemical method which involves precipitation of pregnenolone by digitonin. Digitonin precipitation proved to be effective in separating unconverted pregnenolone from the steroid products of both enzyme reactions, progesterone and pregn-5-ene-3,20-dione. Neither the steroidal inhibitors nor the kinetic isotope effect altered the accuracy of the method for routine measurement of the overall rate of conversion of delta5,3beta-hydroxysteroid to delta4,3-ketosteroid.  相似文献   

14.
The metabolism of [4-14C]progesterone and [4-14C]testosterone by slices of the nasal mucosa from rats was studied. As shown by gas chromatography-mass spectrometry there was a preferential formation of reduced progesterone-metabolites (5 alpha-pregnane-3,20-dione, 3 alpha- and 3 beta-hydroxy-5 alpha-pregnane-20-one, 20 alpha- and 20 beta-hydroxypregn-4-en-3-one, 2 alpha,3 alpha-dihydroxy-5 alpha-pregnane-20-one, 3 alpha,16 alpha-dihydroxy-5 alpha-pregnane-20-one) and reduced testosterone-metabolites (4-androstene-3,17-dione, 5 alpha-dihydrotestosterone, 3 alpha-hydroxy-5 alpha-androstane-17-one, and 5 alpha-androstane-3 alpha, 17 beta-diol, 2 alpha-hydroxy-5 alpha-dihydrotestosterone, 5 alpha-androstane-2 alpha,3 alpha, 17 beta-triol) indicating the presence of 5 alpha-reductase, 3 alpha-, 3 beta-, 17 beta-, 20 alpha- and 20 beta-hydroxysteroid oxidoreductase activities in this tissue. Progesterone-metabolites hydroxylated at positions 2 alpha, 6 alpha, 6 beta, 15 alpha and 16 alpha and testosterone-metabolites hydroxylated at positions 1 beta, 2 alpha, 6 beta, 15 beta and 16 alpha were also identified, indicating the presence of several steroid hydroxylases in the nasal mucosa. Autoradiography of the nasal region of rats injected with [4-14C]progesterone or [4-14C]testosterone showed a selective localization of radioactivity in the mucosa covering the olfactory region of the nasal cavity.  相似文献   

15.
To characterize Leydig cell steroidogensis, we examined the metabolism of (3H)pregnenolone (3β-hydroxy-5-pregnen-20-one) to androgens in the presence and absence of human chorionic gonadotropin (hCG) as a function of culture duration. Approximately 20–30% of the (3H)pregnenolone was converted to testosterone (17β-hydroxy-4-androsten-3-one) by purified Leydig cells at 0, 3 and 5 days (d) of culture. Androstenedione (4-androstene-3,17-dione) and dihydrotestosterone (17β-hydroxy-5α-androstan-3-one) were also produced while on day 5 of culture, significant amounts of progesterone (4-pregnene-3, 20-dione) were isolated. The Δ5 intermediates, 17-hydroxypregnenolone (3β, 17-dihydroxy-5-pregnen-20-one) and dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one), accounted for less than 1% of substrate conversion, indicating a clear preference for Leydig cells to metabolize (3H)pregnenolone via the Δ4 pathway. On day 0 of culture, unidentified metabolites consisted of predominately polar steroids while on day 5 of culture, the unidentified metabolites consisted of predominately nonpolar steroids. In the presence of hCG, (3H)pregnenolone metabolism did not differ from basal on day 0 or 3 of culture. HCG increased the conversion of pregnenolone to progesterone and 17-hydroxyprogesterone (17-hydroxy-4-pregnene-3, 20-dione) on 5d. This suggests that Leydig cells cultured for 5d have decreased C17–20 desmolase activity or that hCG acutely stimulates 3β-hydroxysteroid dehydrogenase and Δ45 isomerase activities.  相似文献   

16.
The effect of 5-hydroxytryptamine (5-HT) on steroidogenesis and oocyte maturation in pre-ovulatory follicles of the medaka Oryzias lalipes was examined using in vitro culture system. The earliest breakdown of the germinal vesicle of intrafollicular oocytes occurred about 17 hr after the beginning of incubation in the presence of 5-HT at concentration of 10 ng/ml or more. 5-HT induced oocyte maturation in a dose-dependent manner. Cyanoketone inhibited this stimulation. The concentration of 5-HT required to induce oocyte maturation corresponded to that required to enhance the production (secretion) of estradiol-17β and 17α,20β-dihydroxy-4-pregnen-3-one by pre-ovulatory follicle cells. At a concentration of 1 μg/ml, the follicle had to be exposed to 5-HT for at least 4 hr for oocyte maturation accompanied by ovulation to occur. These results indicate that 5-HT induces in vitro maturation of medaka oocytes by stimulating 17α,20β-dihydroxy-4-pregnen-3-one production by pre-ovulatory follicular cells.  相似文献   

17.
The metabolism of progesterone and 5α-pregnane-3,20-dione was studied in subcellular fractions of uterus from untreated and estradiol-17β treated immature rats. The reduction of progesterone to 5α-pregnane-3, 20-dione took place in all the particulate fractions of the uterus. The nuclear 5α-reductase accounted for the greatest fraction of enzymatic activity and was stimulated by estradiol treatment in vivo. The 5α-reductase activity in the mitochondrial and microsomal fractions was not increased after estradiol treatment. The reduction of 5α-pregnane-3,20-dione to 3α-hydroxy-5α-pregnan-20-one occurred mainly in the soluble fraction and was only slightly stimulated by estradiol. It proceeded much more rapidly than the reduction of progesterone to pregnanedione. Progesterone was also reduced to 20α-hydroxy-4-pregnen-3-one by a soluble enzyme whose activity was increased after estradiol-17β treatment.  相似文献   

18.
Steroid synthesis and metabolism have been followed in Rana pipiens ovarian follicles, denuded oocytes and eggs during ovulation, fertilization and cleavage stages (blastula formation). Under physiological conditions, gonadotropin stimulation of the fully grown follicle leads to progesterone synthesis from [(3)H]acetate as well as formation of much smaller amounts of 17alpha-hydroxyprogesterone, androstenedione, pregnanedione and pregnanediol. Progesterone levels increase during completion of the first meiotic division, but by ovulation progesterone disappears from the egg. Plasma membrane-bound progesterone is taken up into the oocyte cortical granules and is largely metabolized to 5alpha-pregnane-3alphaol,20-one and 5beta-pregnane-3alpha,17alpha,20beta-triol coincident with internalization of 60% of the oocyte surface (and >90% of bound progesterone) by the end of the hormone-dependent period. The principal steroid in the ovulated egg is 5beta-pregnane-3alpha,17alpha,20beta-triol. There is a rapid efflux of 5beta-pregnane-3alpha,17alpha,20beta-triol into the medium immediately following fertilization and residual steroid levels remain low in the developing blastula. Dissociated blastulae cells prepared from stage 9 1/2 embryos concentrate both pregnenolone and progesterone from the medium with minimal metabolism. The results indicate that the ovarian follicle has the ability to synthesize and metabolize progesterone but that this ability disappears in the ovulated egg. The progesterone metabolites formed during meiosis are largely released at fertilization.  相似文献   

19.
Homogenates prepared from fetal rhesus monkey testes were incubated with progesterone, 4-androstene-3,17-dione, testosterone and 17 beta-hydroxy-5 alpha-androstan-3-one. The major progesterone metabolite was 17-hydroxy-4-pregnene-3,20-dione. Testosterone also accumulated in the progesterone incubations. 4-Androstene-3,17-dione was converted chiefly to testosterone. Testosterone was not actively metabolized by the fetal monkey testis. 17 beta-Hydroxy-5 alpha-androstan-3-one was actively converted primarily to 5 alpha-androstane-3 beta,17 beta-diol.  相似文献   

20.
A method for the convenient synthesis of the recently isolated allylic gonadal steroids, 3 alpha-hydroxy-4-pregnen-20-one (3 alpha-dihydroprogesterone; 3 alpha-DHP) and 3 alpha-hydroxy-4-androsten-17-one (3 alpha-HA), was developed using 4-pregnene-3,20-dione (progesterone) and 4-androstene-3,17-dione as substrates and potassium trisiamylborohydride (KS-Selectride) as reducing agent. Similar reactions were also used for the reduction of 5 alpha-pregnane-3,20-dione to 3 alpha-hydroxy-5 alpha-pregnan-20-one (3 alpha-HP). The yields were about 15%, 50%, and greater than 90% for 3 alpha-DHP, 3 alpha-HA and 3 alpha-HP, respectively. Structures of the products, including the 3 beta-isomers and the 17 alpha-epimer, formed in these reactions were determined by NMR and mass spectroscopic methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号