首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 779 毫秒
1.
Epigenetic programming of the rRNA promoter by MBD3   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

2.
3.
4.
5.
6.
7.
The mechanisms responsible for active DNA demethylation remain elusive in Metazoa. A previous study that utilized zebrafish embryos provided a potent mechanism for active demethylation in which three proteins, AID, MBD4, and GADD45 are involved. We recently found age-dependent DNA hypomethylation in zebrafish, and it prompted us to examine if AID and MBD4 could be involved in the phenomenon. Unexpectedly, however, we found that most of the findings in the previous study were not reproducible. First, the injection of a methylated DNA fragment into zebrafish eggs did not affect either the methylation of genomic DNA, injected methylated DNA itself, or several loci tested or the expression level of aid, which has been shown to play a role in demethylation. Second, aberrant methylation was not observed at certain CpG islands following the injection of antisense morpholino oligonucleotides against aid and mbd4. Furthermore, we demonstrated that zebrafish MBD4 cDNA lacked a coding region for the methyl-CpG binding domain, which was assumed to be necessary for guidance to target regions. Taken together, we concluded that there is currently no evidence to support the proposed roles of AID and MBD4 in active demethylation in zebrafish embryos.  相似文献   

8.
9.
The methylation status of the CpG island located within the ribosomal RNA (rRNA) promoter in human hepatocellular carcinomas and pair-matched liver tissues was analyzed by bisulfite genomic sequencing. Significant hypomethylation of methyl-CpGs in the rRNA promoter was observed in the tumor samples compared with matching normal tissues, which was consistent with the relatively high level of rRNA synthesis in rapidly proliferating tumors. To study the effect of CpG methylation on RNA polymerase I (pol I)-transcribed rRNA genes, we constructed pHrD-IRES-Luc (human rRNA promoter-luciferase reporter). In this plasmid, Kozak sequence of the pGL3-basic vector was replaced by the internal ribosome entry site (IRES) of encephalomyocarditis viral genome to optimize pol I-driven reporter gene expression. Transfection of this plasmid into HepG2 (human) cells revealed reduced pol I-driven luciferase activity with an increase in methylation density at the promoter. Markedly reduced luciferase activity in Hepa (mouse) cells compared with HepG2 (human) cells showed that pHrD-IRES-Luc is transcribed by pol I. Site-specific methylation of human rRNA promoter demonstrated that methylation of CpG at the complementary strands located in the promoter (-9, -102, -347 with respect to the +1 site) inhibited luciferase activity, whereas symmetrical methylation of a CpG in the transcribed region (+152) did not affect the promoter activity. Immunofluorescence studies showed that the methyl-CpG-binding proteins, MBD1, MBD2, MBD3, and MeCP2, are localized both in the nuclei and nucleoli of HepG2 cells. Transient overexpression of MBD2 suppressed luciferase activity specifically from the methylated rRNA promoter, whereas MBD1 and MBD3 inhibited rRNA promoter activity irrespective of the methylation status. Chromatin immunoprecipitation analysis confirmed predominant association of MBD2 with the endogenous methylated rRNA promoter, which suggests a selective role for MBD2 in the methylation-mediated inhibition of ribosomal RNA gene expression.  相似文献   

10.
11.
12.
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.  相似文献   

13.
Valproate induces replication-independent active DNA demethylation   总被引:19,自引:0,他引:19  
In this report, we demonstrate that valproic acid (VPA), a drug that has been used for decades in the treatment of epilepsy and as a mood stabilizer, triggers replication-independent active demethylation of DNA. Thus, this drug can potentially reverse DNA methylation patterns and erase stable methylation imprints on DNA in non-dividing cells. Recent discoveries support a role for VPA in the regulation of methylated genes; however, the mechanism has been unclear because it is difficult to dissociate active demethylation from the absence of DNA methylation during DNA synthesis. We therefore took advantage of an assay that measures active DNA demethylation independently from other DNA methylation and DNA replication activities in human embryonal kidney 293 cells. We show that VPA induces histone acetylation, DNA demethylation, and expression of an ectopically methylated CMV-GFP plasmid in a dose-dependent manner. In contrast, valpromide, an analogue of VPA that does not induce histone acetylation, does not induce demethylation or expression of CMV-GFP. Furthermore, we illustrate that methylated DNA-binding protein 2/DNA demethylase (MBD2/dMTase) participates in this reaction since antisense knockdown of MBD2/dMTase attenuates VPA-induced demethylation. Taken together, our data support a new mechanism of action for VPA as enhancing intracellular demethylase activity through its effects on histone acetylation and raises the possibility that DNA methylation is reversible independent of DNA replication by commonly prescribed drugs.  相似文献   

14.
Although highly homologous to other methylcytosine-binding domain (MBD) proteins, MBD3 does not selectively bind methylated DNA, and thus the functional role of MBD3 remains in question. To explore the structural basis of its binding properties and potential function, we characterized the solution structure and binding distribution of the MBD3 MBD on hydroxymethylated, methylated, and unmethylated DNA. The overall fold of this domain is very similar to other MBDs, yet a key loop involved in DNA binding is more disordered than previously observed. Specific recognition of methylated DNA constrains the structure of this loop and results in large chemical shift changes in NMR spectra. Based on these spectral changes, we show that MBD3 preferentially localizes to methylated and, to a lesser degree, unmethylated cytosine-guanosine dinucleotides (CpGs), yet does not distinguish between hydroxymethylated and unmethylated sites. Measuring residual dipolar couplings for the different bound states clearly shows that the MBD3 structure does not change between methylation-specific and nonspecific binding modes. Furthermore, residual dipolar couplings measured for MBD3 bound to methylated DNA can be described by a linear combination of those for the methylation and nonspecific binding modes, confirming the preferential localization to methylated sites. The highly homologous MBD2 protein shows similar but much stronger localization to methylated as well as unmethylated CpGs. Together, these data establish the structural basis for the relative distribution of MBD2 and MBD3 on genomic DNA and their observed occupancy at active and inactive CpG-rich promoters.  相似文献   

15.
MBD1 is a vertebrate methyl-CpG binding domain protein (MBD) that can bring about repression of methylated promoter DNA sequences. Like other MBD proteins, MBD1 localizes to nuclear foci that in mice are rich in methyl-CpG. In methyl-CpG-deficient mouse cells, however, Mbd1 remains localized to heterochromatic foci whereas other MBD proteins become dispersed in the nucleus. We find that Mbd1a, a major mouse isoform, contains a CXXC domain (CXXC-3) that binds specifically to nonmethylated CpG, suggesting an explanation for methylation-independent localization. Transfection studies demonstrate that the CXXC-3 domain indeed targets nonmethylated CpG sites in vivo. Repression of nonmethylated reporter genes depends on the CXXC-3 domain, whereas repression of methylated reporters requires the MBD. Our findings indicate that MBD1 can interpret the CpG dinucleotide as a repressive signal in vivo regardless of its methylation status.  相似文献   

16.
17.
18.
Wu LP  Wang X  Li L  Zhao Y  Lu S  Yu Y  Zhou W  Liu X  Yang J  Zheng Z  Zhang H  Feng J  Yang Y  Wang H  Zhu WG 《Molecular and cellular biology》2008,28(10):3219-3235
Histone deacetylase inhibitor (HDACi) has been shown to demethylate the mammalian genome, which further strengthens the concept that DNA methylation and histone modifications interact in regulation of gene expression. Here, we report that an HDAC inhibitor, depsipeptide, exhibited significant demethylating activity on the promoters of several genes, including p16, SALL3, and GATA4 in human lung cancer cell lines H719 and H23, colon cancer cell line HT-29, and pancreatic cancer cell line PANC1. Although expression of DNA methyltransferase 1 (DNMT1) was not affected by depsipeptide, a decrease in binding of DNMT1 to the promoter of these genes played a dominant role in depsipeptide-induced demethylation and reactivation. Depsipeptide also suppressed expression of histone methyltransferases G9A and SUV39H1, which in turn resulted in a decrease of di- and trimethylated H3K9 around these genes' promoter. Furthermore, both loading of heterochromatin-associated protein 1 (HP1alpha and HP1beta) to methylated H3K9 and binding of DNMT1 to these genes' promoter were significantly reduced in depsipeptide-treated cells. Similar DNA demethylation was induced by another HDAC inhibitor, apicidin, but not by trichostatin A. Our data describe a novel mechanism of HDACi-mediated DNA demethylation via suppression of histone methyltransferases and reduced recruitment of HP1 and DNMT1 to the genes' promoter.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号