首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atopic (AA) and nonatopic (NAA) asthma are characterized by chronic inflammation and local tissue eosinophilia. Many C-C chemokines are potent eosinophil chemoattractants and act predominantly via the CCR3. We examined the expression of eotaxin, eotaxin-2, RANTES, monocyte chemoattractant protein-3 (MCP-3), MCP-4, and CCR3 in the bronchial mucosa from atopic (AA) and nonatopic (intrinsic; NAA) asthmatics and compared our findings with atopic (AC) and nonatopic nonasthmatic controls (NC). Cryostat sections were processed for immunohistochemistry (IHC), in situ hybridization (ISH), and double IHC/ISH. Compared with AC and NC, the numbers of EG2+ cells and the cells expressing mRNA for eotaxin, eotaxin-2, RANTES, MCP-3, MCP-4, and CCR3 were significantly increased in AA and NAA (p < 0.01). Nonsignificant differences in these variants were observed between AA and NAA and between AC and NC. Significant correlations between the cells expressing eotaxin or CCR3 and EG2+ eosinophils in the bronchial tissue were also observed for both AA (p < 0.01) and NAA (p = 0.01). Moreover, in the total asthmatic group (AA + NAA) there was a significant inverse correlation between the expression of eotaxin and that of the histamine PC20 (p < 0.05). Sequential IHC/ISH showed that cytokeratin+ epithelial cells, CD31+ endothelial cells, and CD68+ macrophages were the major sources of eotaxin, eotaxin-2, RANTES, MCP-3, and MCP-4. There was no significantly different distribution of cells expressing mRNA for these chemokines between atopic and nonatopic asthma. These findings suggest that multiple C-C chemokines, acting at least in part via CCR3, contribute to bronchial eosinophilia in both atopic and nonatopic asthma.  相似文献   

2.
Eosinophils are the predominant cell type recruited in inflammatory reactions in response to allergen challenge. The mechanisms of selective eosinophil recruitment in allergic reactions are not fully elucidated. In this study, the ability of several C-C chemokines to induce transendothelial migration (TEM) of eosinophils in vitro was assessed. Eotaxin, eotaxin-2, monocyte chemotactic protein (MCP)-4, and RANTES induced eosinophil TEM across unstimulated human umbilical vein endothelial cells (HUVEC) in a concentration-dependent manner with the following rank order of potency: eotaxin approximately eotaxin-2 > MCP-4 approximately RANTES. The maximal response induced by eotaxin or eotaxin-2 exceeded that of RANTES or MCP-4. Preincubation of eosinophils with anti-CCR3 Ab (7B11) completely blocked eosinophil TEM induced by eotaxin, MCP-4, and RANTES. Activation of endothelial cells with IL-1beta or TNF-alpha induced concentration-dependent migration of eosinophils, which was enhanced synergistically in the presence of eotaxin and RANTES. Anti-CCR3 also inhibited eotaxin-induced eosinophil TEM across TNF-alpha-stimulated HUVEC. The ability of eosinophil-active cytokines to potentiate eosinophil TEM was assessed by investigating eotaxin or RANTES-induced eosinophil TEM across resting and IL-1beta-stimulated HUVEC in the presence or absence of IL-5. The results showed synergy between IL-5 and the chemokines but not between IL-5 and the endothelial activator IL-1beta. Our data suggest that eotaxin, eotaxin-2, MCP-4, and RANTES induce eosinophil TEM via CCR3 with varied potency and efficacy. Activation of HUVEC by IL-1beta or TNF-alpha or priming of eosinophils by IL-5 both promote CCR3-dependent migration of eosinophils from the vasculature in conjunction with CCR3-active chemokines.  相似文献   

3.
The relationship of expression of the C-C chemokines eotaxin, eotaxin 2, RANTES, monocyte chemoattractant protein-3 (MCP-3), and MCP-4 to the kinetics of infiltrating eosinophils, basophils, and other inflammatory cells was examined in allergen-induced, late-phase allergic reactions in the skin of human atopic subjects. EG2+ eosinophils peaked at 6 h and correlated significantly with eotaxin mRNA and protein, whereas declining eosinophils at 24 h correlated significantly with eotaxin-2 and MCP-4 mRNA. In contrast, no significant correlations were observed between BB1+ basophil infiltrates, which peaked at 24 h, and expression of eotaxin, eotaxin-2, RANTES, MCP-3, and MCP-4 or elastase+ neutrophils (6-h peak), CD3+ and CD4+ T cells (24 h), and CD68+ macrophages (72 h). Furthermore, 83% of eosinophils, 40% of basophils, and 1% of CD3+ cells expressed the eotaxin receptor CCR3, while eotaxin protein was expressed by 43% of macrophages, 81% of endothelial cells, and 6% of T cells (6%). These data suggest that 1) eotaxin has a role in the early 6-h recruitment of eosinophils, while eotaxin-2 and MCP-4 appear to be involved in later 24-h infiltration of these CCR3+ cells; 2) different mechanisms may guide the early vs late eosinophilia; and 3) other chemokines and receptors may be involved in basophil accumulation of allergic tissue reactions in human skin.  相似文献   

4.
Eotaxin is a potent eosinophil chemoattractant that acts selectively through CCR3, which is expressed on eosinophils, basophils, mast cells, and Th2-type T cells. This arm of the immune system is believed to have evolved to control helminthic parasites. We hypothesized that helminths may employ mechanisms to inhibit eosinophil recruitment, to prolong worm survival in the host. We observed that the excretory/secretory products of the hookworm Necator americanus inhibited eosinophil recruitment in vivo in response to eotaxin, but not leukotriene B(4), a phenomenon that could be prevented by the addition of protease inhibitors. Using Western blotting, N. americanus supernatant was shown to cause rapid proteolysis of eotaxin, but not IL-8 or eotaxin-2. N. americanus homogenate was fractionated by gel filtration chromatography, and a FACS-based bioassay measured the ability of each fraction to inhibit the activity of a variety of chemokines. This resulted in two peaks of eotaxin-degrading activity, corresponding to approximately 15 and 50 kDa molecular mass. This activity was specific for eotaxin, as responses to other agonists tested were unaffected. Proteolysis of eotaxin was prevented by EDTA and phenanthroline, indicating that metalloprotease activity was involved. Production of enzymes inactivating eotaxin may be a strategy employed by helminths to prevent recruitment and activation of eosinophils at the site of infection. As such this represents a novel mechanism of regulation of chemokine function in vivo. The existence of CCR3 ligands other than eotaxin (e.g., eotaxin-2) may reflect the evolution of host counter measures to parasite defense systems.  相似文献   

5.
Eotaxin-3 (CCL26), like eotaxin (CCL11) and eotaxin-2 (CCL24), has long been considered a specific agonist for CC chemokine receptor 3 (CCR3), attracting and activating eosinophils, basophils, and Th2 type T lymphocytes. Although not characterized extensively yet, its expression profile coincides with a potential role in allergic inflammation. We recently reported that eotaxin-3 is an antagonist for CCR2 (Ogilvie, P., Paoletti, S., Clark-Lewis, I., and Uguccioni, M. (2003) Blood 102, 789-784). In the present report, we provide evidence that eotaxin-3 acts as a natural antagonist on CCR1 and -5 as well. Eotaxin-3 bound to cells transfected with either CCR1 or -5 as well as to monocytes expressing both receptors. Further, it inhibited chemotaxis, the release of free intracellular calcium, and actin polymerization when cells were stimulated with known agonists of CCR1 and -5. An analysis of its three-dimensional structure indicated the presence of two distinct epitopes that may be involved in specific binding to CCR1, -2, -3, and -5. Taken together, our data thus indicate eotaxin-3 to be the first human chemokine that features broadband antagonistic activities, suggesting that it may have a modulatory rather than an inflammatory function. Further, eotaxin-3 may play an unrecognized role in the polarization of cellular recruitment by attracting Th2 lymphocytes as well as eosinophils and basophils via CCR3, while concomitantly blocking the recruitment of Th1 lymphocytes and monocytes via CCR1, -2, and -5.  相似文献   

6.
To investigate eosinophil stimulation by chemokines we developed a sensitive assay of leukocyte shape change, the gated autofluorescence/forward scatter assay. Leukocyte shape change responses are mediated through rearrangements of the cellular cytoskeleton in a dynamic process typically resulting in a polarized cell and are essential to the processes of leukocyte migration from the microcirculation into sites of inflammation. We examined the actions of the chemokines eotaxin, eotaxin-2, monocyte chemoattractant protein-1 (MCP-1), MCP-3, MCP-4, RANTES, macrophage inflammatory protein-1alpha (MIP-1alpha), and IL-8 on leukocytes in mixed cell suspensions and focused on the responses of eosinophils to C-C chemokines. Those chemokines acting on CCR3 induced a rapid shape change in eosinophils from all donors; of these, eotaxin and eotaxin-2 were the most potent. Responses to MCP-4 were qualitatively different, showing marked reversal of shape change responses with agonist concentration and duration of treatment. In contrast, MIP-1alpha induced a potent response in eosinophils from a small and previously undescribed subgroup of donors via a non-CCR3 pathway likely to be CCR1 mediated. Incubation of leukocytes at 37 degrees C for 90 min in the absence of extracellular calcium up-regulated responses to MCP-4 and MIP-1alpha in the majority of donors, and there was a small increase in responses to eotaxin. MIP-1alpha responsiveness in vivo may therefore be a function of both CCR1 expression levels and the regulated efficiency of coupling to intracellular signaling pathways. The observed up-regulation of MIP-1alpha signaling via non-CCR3 pathways may play a role in eosinophil recruitment in inflammatory states such as occurs in the asthmatic lung.  相似文献   

7.
Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.  相似文献   

8.
Cell-type-dependent induction of eotaxin and CCR3 by ionizing radiation   总被引:2,自引:0,他引:2  
Eotaxin is an eosinophil-specific C-C chemokine that is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma and atopic dermatitis, by acting specifically on its receptor CCR3. Using RT-PCR analysis, we show that the expression of eotaxin is upregulated upon treatment with ionizing radiation (IR) in human dermal fibroblasts, but not in the bronchial epithelial cell line A549. In contrast, the gene encoding CCR3 is markedly induced in both cell types. None of the genes coding for other CCR3 ligands are significantly induced by IR in these cell types. cDNA array analysis of irradiated versus nonirradiated A549 cells and human dermal fibroblasts confirm and extend these results, and support the observation that regulation of eotaxin/CCR3-induction by IR occurs in a selective and cell-type-dependent manner. They further suggest that the induction of signaling via eotaxin and CCR3 may be an important step leading to eosinophilia in patients with radiation exposure.  相似文献   

9.
IL-4 has been shown to be involved in the accumulation of leukocytes, especially eosinophils, at sites of inflammation by acting on vascular endothelial cells. To identify novel molecules involved in the IL-4-dependent eosinophil extravasation, cDNA prepared from HUVEC stimulated with IL-4 was subjected to differential display analysis, which revealed a novel CC chemokine designated as eotaxin-3. The human eotaxin-3 gene has been localized to chromosome 7q11.2, unlike most other CC chemokine genes. The predicted mature protein of 71 aa showed 27-42% identity to other human CC chemokines. The recombinant protein induced a transient increase in the cytosolic Ca2+ concentration and in vitro chemotaxis on eosinophils. Furthermore, in cynomolgus monkeys, the accumulation of eosinophils was observed at the sites where the protein was injected. Eotaxin-3 inhibited the binding of 125I-eotaxin, but not 125I-macrophage inflammatory protein-1alpha, to eosinophils and acted on cell lines transfected with CCR-3, suggesting that eotaxin-3 recognized CCR-3. IL-13 as well as IL-4 up-regulated eotaxin-3 mRNA in HUVEC, whereas neither TNF-alpha, IL-1beta, IFN-gamma, nor TNF-alpha plus IFN-gamma did. The expression profile of eotaxin-3 is different from those of eotaxin, RANTES, and monocyte chemoattractant protein-4, which are potent eosinophil-selective chemoattractants and are induced by either TNF-alpha or TNF-alpha plus IFN-gamma. These results suggest that eotaxin-3 may contribute to the eosinophil accumulation in atopic diseases.  相似文献   

10.
The CC chemokine eotaxin/CCL11 is known to bind to the receptor CCR3 on eosinophils and Th2-type lymphocytes. In this study, we demonstrate that CCR3 is expressed on a subpopulation of primary human dermal microvascular endothelial cells and is up-regulated by TNF-alpha. We found that incubation of human dermal microvascular endothelial cells with recombinant eotaxin/CCL11 suppresses TNF-alpha-induced production of the neutrophil-specific chemokine IL-8/CXCL8. The eotaxin/CCL11-suppressive effect on endothelial cells was not seen on IL-1beta-induced IL-8/CXCL8 release. Eotaxin/CCL11 showed no effect on TNF-alpha-induced up-regulation of growth-related oncogene-alpha or IFN-gamma-inducible protein-10, two other CXC chemokines tested, and did not affect production of the CC chemokines monocyte chemoattractant protein-1/CCL2 and RANTES/CCL5, or the adhesion molecules ICAM-1 and E-selectin. These results suggest that eotaxin/CXCL11 is not effecting a general suppression of TNF-alphaR levels or signal transduction. Suppression of IL-8/CXCL8 was abrogated in the presence of anti-CCR3 mAb, pertussis toxin, and wortmannin, indicating it was mediated by the CCR3 receptor, G(i) proteins, and phosphatidylinositol 3-kinase signaling. Eotaxin/CCL11 decreased steady state levels of IL-8/CXCL8 mRNA in TNF-alpha-stimulated cells, an effect mediated in part by an acceleration of IL-8 mRNA decay. Eotaxin/CCL11 may down-regulate production of the neutrophil chemoattractant IL-8/CXCL8 by endothelial cells in vivo, acting as a negative regulator of neutrophil recruitment. This may play an important biological role in the prevention of overzealous inflammatory responses, aiding in the resolution of acute inflammation or transition from neutrophilic to mononuclear/eosinophilic inflammation.  相似文献   

11.
12.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   

13.
Eosinophilic leukocytes have been implicated as primary effector cells in inflammatory and allergic diseases. When activated by cytokines, human eosinophils secrete and produce a variety of proinflammatory or tissue damaging substances. Although well known for their chemoattractant effects, little is known about the precise contribution of the eosinophil-selective chemokines, eotaxin, eotaxin-2, and eotaxin-3 to the effector functions of eosinophils. This forms the central focus of these investigations for which clone 15-HL-60 human eosinophilic cells were used as the in vitro model. Investigation results suggest that all three subtypes of eotaxin directly stimulate eosinophil superoxide anion generation that is inhibited by neutralizing eotaxin antibody or pretreatment of cells with the receptor antibody anti-CCR3. Pretreatment or co-treatment with each of the eotaxins augmented phorbol myristate-induced superoxide generation. Concentration-dependent degranulation of eosinophil peroxidase was noted for all three chemokines, and potentiation of calcium ionophore-induced degranulation was observed with eotaxin pretreatments. Results of interleukin-5 pretreatment studies suggest that the eotaxin chemokines may act cooperatively to enhance effector functions of eosinophils. Collectively, the present studies have advanced knowledge of the eotaxin family of chemokines to include eosinophil priming and modulation of eosinophil activation and secretion effector functions.  相似文献   

14.
The involvement of chemokines in eosinophil recruitment during inflammation and allergic reactions is well established. However, a functional role for chemokines in eosinophil differentiation has not been investigated. Using in situ RT-PCR, immunostaining, and flow cytometric analysis, we report that human CD34+ cord blood progenitor cells contain CCR3 mRNA and protein. Activation of CD34+ progenitor cells under conditions that promote Th2 type differentiation up-regulated surface expression of the CCR3. In contrast, activation with IL-12 and IFN-gamma resulted in a significant decrease in the expression of CCR3. Eotaxin induced Ca2+ mobilization in CD34+ progenitor cells, which could explain the in vitro and in vivo chemotactic responsiveness to eotaxin. We also found that eotaxin induced the differentiation of eosinophils from cord blood CD34+ progenitor cells. The largest number of mature eosinophils was found in cultures containing eotaxin and IL-5. The addition of neutralizing anti-IL-3, anti-IL-5, and anti-GM-CSF Abs to culture medium demonstrated that the differentiation of eosinophils in the presence of eotaxin was IL-3-, IL-5-, and GM-CSF-independent. These results could explain how CD34+ progenitor cells accumulate and persist in the airways and peripheral blood of patients with asthma and highlight an alternative mechanism by which blood and tissue eosinophilia might occur in the absence of IL-5.  相似文献   

15.
Eotaxin potentiates antigen-dependent basophil IL-4 production.   总被引:2,自引:0,他引:2  
Basophils are a major source of IL-4, which is a critical factor in the generation of allergic inflammation. Eotaxin induces chemotaxis mediated through the CC chemokine receptor 3 (CCR3) present on basophils as well as eosinophils and Th2 cells, thereby promoting cell recruitment. To determine whether eotaxin has other proinflammatory activity, we examined the effect of eotaxin on basophil IL-4 expression by flow cytometry. Eotaxin alone had no effect on basophil IL-4 production, but further increased allergen-stimulated IL-4 expression. Eotaxin also enhanced IL-4 release from purified basophils 2- to 4-fold, as determined by ELISA (p < 0.01). Addition of eotaxin to cultures resulted in a 40-fold left shift in the dose response to Ag. This effect was obtained with physiologic concentrations of eotaxin (10 ng/ml), was abrogated by an Ab to the CCR3 receptor, and was noted with other chemokine ligands of CCR3. Additionally, eotaxin augmented IL-3 priming of basophil IL-4 production in a synergistic manner (p < 0.01). In contrast, no priming was observed with either IL-5 or GM-CSF. These results establish a novel function for eotaxin and other chemokine ligands of CCR3: the potentiation of Ag-mediated IL-4 production in basophils, and suggest a potential nonchemotactic role for CC chemokines in the pathogenesis and amplification of inflammation.  相似文献   

16.
The eotaxin chemokines have been implicated in allergen-induced eosinophil responses in the lung. However, the individual and combined contribution of each of the individual eotaxins is not well defined. We aimed to examine the consequences of genetically ablating eotaxin-1 or eotaxin-2 alone, eotaxin-1 and eotaxin-2 together, and CCR3. Mice carrying targeted deletions of these individual or combined genes were subjected to an OVA-induced experimental asthma model. Analysis of airway (luminal) eosinophilia revealed a dominant role for eotaxin-2 and a synergistic reduction in eotaxin-1/2 double-deficient (DKO) and CCR3-deficient mice. Examination of pulmonary tissue eosinophilia revealed a modest role for individually ablated eotaxin-1 or eotaxin-2. However, eotaxin-1/2 DKO mice had a marked decrease in tissue eosinophilia approaching the low levels seen in CCR3-deficient mice. Notably, the organized accumulation of eosinophils in the peribronchial and perivascular regions of allergen-challenged wild-type mice was lost in eotaxin-1/2 DKO and CCR3-deficient mice. Mechanistic analysis revealed distinct expression of eotaxin-2 in bronchoalveolar lavage fluid cells consistent with macrophages. Taken together, these results provide definitive evidence for a fundamental role of the eotaxin/CCR3 pathway in eosinophil recruitment in experimental asthma. These results imply that successful blockade of Ag-induced pulmonary eosinophilia will require antagonism of multiple CCR3 ligands.  相似文献   

17.
The chemokine eotaxin is a potent and relatively eosinophil-specific chemoattractant implicated in the cell migration to inflammatory sites in allergic diseases. Eotaxin exerts its activity solely through the CCR3 receptor, but the signaling pathways are poorly defined. In this study, we show that eotaxin induces an increase in tyrosine phosphorylation of multiple cellular proteins in normal human eosinophils. Eotaxin-dependent tyrosine phosphorylation was detected 1 min after stimulation and increased for at least 15 min with kinetics similar to those of eotaxin-induced cell shape changes. Herbimycin A, a tyrosine kinase inhibitor, blocked both eotaxin-induced tyrosine phosphorylation and cell shape changes as well as chemotaxis. Immunofluorescence microscopy analyses showed that eotaxin-induced cell shape changes were accompanied by redistribution of tyrosine-phosphorylated proteins and F-actin reorganization that were sensitive to herbimycin A. Coimmunoprecipitation studies revealed that binding of eotaxin to CCR3 greatly enhanced association of the Src family kinases, Hck and c-Fgr, with CCR3 after internalization of CCR3. These results may indicate that recruitment of Hck and c-Fgr to CCR3 in a compartment triggers tyrosine phosphorylation, leading to rapid cell shape changes required for cell migration.  相似文献   

18.
BACKGROUND: Understanding the processes that control selective eosinophilia is of fundamental importance in a variety of human diseases (e.g., allergies, parasitic infections, malignancy). Interleukin 5, an eosinophil-specific growth and activating factor, and eotaxin appear to collaborate in this process. Eotaxin is a recently described chemotactic factor that belongs to the C-C (or beta) chemokine family and has been implicated in animal and human eosinophilic inflammatory states. We have recently reported the molecular characterization of murine eotaxin and now report the biological properties of purified recombinant murine eotaxin in vitro and in vivo in the presence or absence of interleukin 5 (IL-5) in mice. MATERIALS AND METHODS: Murine eotaxin was expressed in bacteria and purified by affinity chromatography and HPLC. Activity was tested in vitro by examining chemotactic and calcium flux responses of purified murine leukocytes. Additionally, desensitization of calcium flux responses to other chemokines, eosinophil survival assays, and basophil histamine release were examined. Finally, eotaxin was delivered to wild-type or IL-5 transgenic mice and the host response was examined. RESULTS: Eotaxin had activity only when the recombinant molecule had the native mature amino terminus and contained the first 25 amino acids of the mature protein. It was active in vitro at an effective concentration between 10 and 100 ng/ml in both chemotaxis and calcium flux assays toward eosinophils, but not macrophages or neutrophils. Furthermore, intranasal or subcutaneous application of eotaxin selectively recruited large numbers of eosinophils into the mouse lung and skin, respectively, only in the presence of interleukin 5. Macrophage inflammatory protein-1 alpha, a related C-C chemokine active on eosinophils, and eotaxin were not able to cross-desensitize. Eotaxin had no affect on the in vitro survival of eosinophils and did not induce basophil histamine release. CONCLUSIONS: Mouse eotaxin is an eosinophil specific chemoattractant that has a markedly enhanced effect in vivo in the presence of another eosinophil selective cytokine IL-5, and utilizes a signal transduction receptor pathway that is distinct from that utilized by macrophage inflammatory protein-1 alpha. This data suggests that the development of tissue eosinophilia in vivo involves a two-step mechanism elicited by interleukin 5 and eotaxin.  相似文献   

19.
Previously, we mapped the novel CC chemokine myeloid progenitor inhibitory factor 2 (MPIF-2)/eotaxin-2 to chromosome 7q11.23 (Nomiyama, H., Osborne, L. R., Imai, T., Kusuda, J., Miura, R., Tsui, L.-C., and Yoshie, O. (1998) Genomics 49, 339-340). Since chemokine genes tend to be clustered, unknown chemokines may be present in the vicinity of those mapped to new chromosomal loci. Prompted by this hypothesis, we analyzed the genomic region containing the gene for MPIF-2/eotaxin-2 (SCYA24) and have identified a novel CC chemokine termed eotaxin-3. The genes for MPIF-2/eotaxin-2 (SCYA24) and eotaxin-3 (SCYA26) are localized within a region of approximately 40 kilobases. By Northern blot analysis, eotaxin-3 mRNA was constitutively expressed in the heart and ovary. We have generated recombinant eotaxin-3 in a baculovirus expression system. Eotaxin-3 induced transient calcium mobilization specifically in CC chemokine receptor 3 (CCR3)-expressing L1.2 cells with an EC(50) of 3 nM. Eotaxin-3 competed the binding of (125)I-eotaxin to CCR3-expressing L1.2 cells with an IC(50) of 13 nM. Eotaxin-3 was chemotactic for normal peripheral blood eosinophils and basophils at high concentrations. Collectively, eotaxin-3 is yet another functional ligand for CCR3. The potency of eotaxin-3 as a CCR3 ligand seems, however, to be approximately 10-fold less than that of eotaxin. Identification of eotaxin-3 will further promote our understanding of the control of eosinophil trafficking and other CCR3-mediated biological phenomena. The strategy used in this study may also be applicable to identification of other unknown chemokine genes.  相似文献   

20.
Abonyo BO  Lebby KD  Tonry JH  Ahmad M  Heiman AS 《Cytokine》2006,36(5-6):237-244
Airway epithelial inflammation associated with emphysema, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and asthma is regulated in part by alveolar type II cell chemokine signaling. Data suggest that resident lung cells use CCR3, CCR5 and CCR2 chemokine receptor/ligand systems to regulate the profile of leukocytes recruited in disease-associated inflammatory conditions. Thus studies were designed to test whether alveolar type II cells possess a Th1-activated CCR5-ligand system that modulates the Th2-activated CCR3/eotaxin-2 (CCL24), eotaxin-3 (CCL26) chemokine systems. The A549 alveolar type II epithelial-like cell culture model was used to demonstrate that alveolar type II cells constitutively express CCR5 which may be upregulated by MIP-1alpha (CCL3) whose expression was induced by the Th1 cytokines IL-1beta and IFN-gamma. Selective down-regulation of CCL26, but not CCL24, was observed in CCL3 and IL-4/CCL3 stimulated cells. Down-regulation was reversed by anti-CCR5 neutralizing antibody treatment. Thus, one mechanism through which Th1-activated CCCR5/ligand pathways modulate Th2-activated CCR3/ligand pathways is the differential down-regulation of CCL26 expression. Results suggest that the CCR3 and CCR5 receptor/ligand signaling pathways may be important targets for development of novel mechanism-based adjunctive therapies designed to abrogate the chronic inflammation associated with airway diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号