首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
Therapeutic treatment with hu14.18-IL-2 immunocytokine (IC) or Flt3-L (FL) protein is initially effective at resolving established intradermal NXS2 neuroblastoma tumors in mice. However, many treated animals develop recurrent disease. We previously found that tumors recurring following natural killer (NK) mediated IC treatment show augmented MHC class I expression, while the tumors that recurred following T cell dependent Flt3-L treatment exhibited decreased MHC class I expression. We hypothesized that this divergent MHC modulation on recurrent tumors was due to therapy-specific immunoediting. We further postulated that combining IC and Flt3-L treatments might decrease the likelihood of recurrent disease by preventing MHC modulation as a mechanism for immune escape. We now report that combinatorial treatment of FL plus hu14.18-IL-2 IC provides greater antitumor benefit than treatment with either alone, suppressing development of recurrent disease. We administered FL by gene therapy using a clinically relevant approach: hydrodynamic limb vein (HLV) delivery of DNA for transgene expression by myofibers. Delivery of FL DNA by HLV injection in mice resulted in systemic expression of >10 ng/ml of FL in blood at day 3, and promoted up to a fourfold and tenfold increase in splenic NK and dendritic cells (DCs), respectively. Furthermore, the combination of FL gene therapy plus suboptimal IC treatment induced a greater expansion in the absolute number of splenic NK and DCs than achieved by individual component treatments. Mice that received combined FL gene therapy plus IC exhibited complete and durable resolution of established NXS2 tumors, and demonstrated protection from subsequent rechallenge with NXS2 tumor.  相似文献   

2.
Hu14.18-IL2 is an immunocytokine (IC) consisting of human IL-2 linked to hu14.18 mAb, which recognizes GD2 disialoganglioside. Phase II clinical trials of intravenous-hu14.18-IL2 (IV-IC) in neuroblastoma and melanoma are underway, and have already demonstrated activity in neuroblastoma. In our Phase II trial, lower neuroblastoma burden at the time of treatment was associated with a greater likelihood of clinical response to IV-IC. We have previously shown that intratumoral-hu14.18-IL2 (IT-IC) compared to IV-IC results in enhanced local and systemic antitumor activity in tumor-bearing mice. We utilized a mouse model to investigate the impact of tumor burden on hu14.18-IL2 treatment efficacy in IV- versus IT-treated animals. Studies presented here describe the analyses of tumor burden at the initiation of treatment and its effects on treatment efficacy, survival, and tumor-infiltrating leukocytes in A/J mice bearing subcutaneous NXS2 neuroblastoma. We show that smaller tumor burden at treatment initiation is associated with increased infiltration of NK and CD8+ T cells and increased overall survival. NXS2 tumor shrinkage shortly after completion of the 3 days of hu14.18-IL2 treatment is necessary for long-term survival. This model demonstrates that tumor size is a strong predictor of hu14.18-IL2-induced lymphocyte infiltration and treatment outcome.  相似文献   

3.
Immunocytokines (IC), consisting of tumor-specific monoclonal antibodies fused to the immunostimulatory cytokine interleukin 2 (IL2), exert significant antitumor effects in several murine tumor models. We investigated whether intratumoral (IT) administration of IC provided enhanced antitumor effects against subcutaneous tumors. Three unique ICs (huKS-IL2, hu14.18-IL2, and GcT84.66-IL2) were administered systemically or IT to evaluate their antitumor effects against tumors expressing the appropriate IC-targeted tumor antigens. The effect of IT injection of the primary tumor on a distant tumor was also evaluated. Here, we show that IT injection of IC resulted in enhanced antitumor effects against B16-KSA melanoma, NXS2 neuroblastoma, and human M21 melanoma xenografts when compared to intravenous (IV) IC injection. Resolution of both primary and distant subcutaneous tumors and a tumor-specific memory response were demonstrated following IT treatment in immunocompetent mice bearing NXS2 tumors. The IT effect of huKS-IL2 IC was antigen-specific, enhanced compared to IL2 alone, and dose-dependent. Hu14.18-IL2 also showed greater IT effects than IL2 alone. The antitumor effect of IT IC did not always require T cells since IT IC induced antitumor effects against tumors in both SCID and nude mice. Localization studies using radiolabeled 111In-GcT84.66-IL2 IC confirmed that IT injection resulted in a higher concentration of IC at the tumor site than IV administration. In conclusion, we suggest that IT IC is more effective than IV administration against palpable tumors. Further testing is required to determine how to potentially incorporate IT administration of IC into an antitumor regimen that optimizes local and systemic anticancer therapy.  相似文献   

4.

Purpose

Immunotherapy targeting disialoganglioside GD2 emerges as an important treatment option for neuroblastoma, a pediatric malignancy characterized by poor outcome. Here, we report the induction of a GD2-specific immune response with ganglidiomab, a new anti-idiotype antibody to anti-GD2 antibodies of the 14.18 family.

Experimental design and results

Ganglidiomab was generated following immunization of Balb/c mice with 14G2a, and splenocytes were harvested to generate hybridoma cells. Clones were screened by ELISA for mouse antibody binding to hu14.18. One positive clone was selected to purify and characterize the secreted IgG protein (κ, IgG1). This antibody bound to anti-GD2 antibodies 14G2a, ch14.18/CHO, hu14.18, and to immunocytokines ch14.18-IL2 and hu14.18-IL2 as well as to NK-92 cells expressing scFv(ch14.18)-zeta receptor. Binding of these anti-GD2 antibodies to the nominal antigen GD2 as well as GD2-specific lysis of neuroblastoma cells by NK-92-scFv(ch14.18)-zeta cells was competitively inhibited by ganglidiomab, proving GD2 surrogate function and anti-idiotype characteristics. The dissociation constants of ganglidiomab from anti-GD2 antibodies ranged from 10.8 ± 5.01 to 53.5 ± 1.92 nM as determined by Biacore analyses. The sequences of framework and complementarity-determining regions of ganglidiomab were identified. Finally, we demonstrated induction of a GD2-specific humoral immune response after vaccination of mice with ganglidiomab effective in mediating GD2-specific killing of neuroblastoma cells.

Conclusion

We generated and characterized a novel anti-idiotype antibody ganglidiomab and demonstrated activity against neuroblastoma.  相似文献   

5.
hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E(+) NKp46(+) NK cells and NKG2A/C/E(+) CD8(+) T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC.  相似文献   

6.
Uterine leiomyosarcoma comprises <1 % of uterine malignancies and is known for its clinically aggressive course. Extrapelvic recurrences are common and often lethal. No adjuvant therapies have been shown to significantly improve overall survival, highlighting the need for new and novel therapies. Our objective was to determine whether GD2-specific immunocytokine therapy may be explored for the treatment for uterine leiomyosarcoma. To do so, frozen tissue sections were obtained from the Gynecologic Oncology Group tumor bank and evaluated by immunohistochemistry (IHC) for GD2 expression using both the parent mouse monoclonal antibody 14G2A and immunocytokine 14.18-IL2 generated from the 14G2A sequence. Immunoreactivity was detected by avidin-biotin complex with DAB substrate. Specimens were reviewed by a pathologist with light microscopy and classified as negative, 1+, 2+ or 3+, compared to human melanoma cells as positive control and tissue incubated in the absence of primary antibody as negative control. GD2 was diffusely present in all evaluable samples. 10 tumors (67 %) demonstrated 3+ IHC intensity for GD2, two tumors (13 %) demonstrated 2+ intensity, and 3 (20 %) tumors demonstrated 1+ intensity. Eleven cases had sufficient tissue to assess 14.18-IL2 binding. All 11 cases bound 14.18-IL2 in a pattern identical to the parent antibody. Uterine leiomyosarcoma diffusely express GD2 and bind the therapeutic immunocytokine 14.18-IL2. This warrants further exploration to determine whether immunocytokine therapy may have a clinical role in the management of these aggressive tumors.  相似文献   

7.
 A major problem in the treatment of solid tumors is the eradication of established, disseminated metastases. Here we describe an effective treatment for established experimental hepatic metastases of human neuroblastoma in C. B.-17 scid/scid mice. This was accomplished with an antibody-cytokine fusion protein, combining the unique targeting ability of antibodies with the multifunctional activity of cytokines. An anti-(ganglioside GD2) antibody (ch14.18) fusion protein with interleukin-2 (ch14.18-IL2), constructed by fusion of a synthetic sequence coding for human interleukin-2 (IL-2) to the carboxyl end of the Cγ1 gene of ch14.18, was tested for its therapeutic efficacy against xenografted human neuroblastoma in vivo. The ch14.18-IL2 fusion protein markedly inhibited growth of established hepatic metastases in SCID (severe combined immunodeficiency) mice previously reconstituted with human lymphokine-activated killer cells. Animals treated with ch14.18-IL2 showed an absence of macroscopic liver metastasis. In contrast, treatment with combinations of ch14.18 and recombinant IL2 at dose levels equivalent to the fusion protein only reduced the tumor load. Survival times of SCID mice treated with the fusion protein were more than double that of control animals. These results demonstrate that an immunotherapeutic approach using a cytokine targeted by an antibody to tumor sites is highly effective in eradicating the growth of established tumor metastases. Received: 7 November 1995 / Accepted: 15 December 1995  相似文献   

8.
 Superantigens such as the staphylococcal enterotoxin A (SEA) are among the most potent T cell activators known. They bind to major histocompatibility complex (MHC) class II molecules and interact with T cells depending on their T cell receptor (TCR) Vβ expression. Superantigens also induce a variety of cytokines and trigger a direct cytotoxic effect against MHC-class-II-positive target cells. In order to extend superantigen-dependent cell-mediated cytotoxicity (SDCC) to MHC-class-II-negative neuroblastoma cells, SEA was linked to the anti-ganglioside GD2 human/mouse chimeric monoclonal antibody (mAb) ch14.18. Ganglioside GD2 is expressed on most tumours of neuroectodermal origin but is expressed to a lesser extent on normal tissues. The linkage of ch14.18 to SEA was achieved either with a protein-A–SEA fusion protein or by chemical coupling. Both constructs induced T-cell-mediated cytotoxicity towards GD2-positive neuroblastoma cells in an effector-to-target(E:T)-ratio-and dose-dependent manner in vitro. To reduce the MHC class II affinity of SEA, a point mutation was introduced in the SEA gene (SEAm9) that resulted in 1000-fold less T cell killing of MHC-class-II-expressing cells as compared to native SEA. However, a protein-A–SEAm9 fusion protein mediated cytotoxicity similar to that of protein-A–SEA on ch14.18-coated, MHC-class-II-negative neuroblastoma cells. Taken together, these findings suggest that superantigen-dependent and monoclonal-antibody-targeted lysis may be a potent novel approach for neuroblastoma therapy. Received: 15 March 1995 / Accepted: 22 May 1995  相似文献   

9.
The huKS-IL2 immunocytokine (IC) consists of IL2 fused to a mAb against EpCAM, while the hu14.18-IL2 IC recognizes the GD2 disialoganglioside. They are under evaluation for treatment of EpCAM(+) (ovarian) and GD2(+) (neuroblastoma and melanoma) malignancies because of their proven ability to enhance tumor cell killing by antibody-dependent cell-mediated cytotoxicity (ADCC) and by antitumor cytotoxic T cells. Here, we demonstrate that huKS-IL2 and hu14.18-IL2 bind to tumor cells via their antibody components and increase adhesion and activating immune synapse (AIS) formation with NK cells by engaging the immune cells' IL-2 receptors (IL2R). The NK leukemia cell line, NKL (which expresses high affinity IL2Rs), shows fivefold increase in binding to tumor targets when treated with IC compared to matching controls. This increase in binding is effectively inhibited by blocking antibodies against CD25, the α-chain of the IL2R. NK cells isolated from the peritoneal environment of ovarian cancer patients, known to be impaired in mediating ADCC, bind to huKS-IL2 via CD25. The increased binding between tumor and effector cells via ICs is due to the formation of AIS that are characterized by the simultaneous polarization of LFA-1, CD2 and F-actin at the cellular interface. AIS formation of peritoneal NK and NKL cells is inhibited by anti-CD25 blocking antibody and is 50-200% higher with IC versus the parent antibody. These findings demonstrate that the IL-2 component of the IC allows IL2Rs to function not only as receptors for this cytokine but also as facilitators of peritoneal NK cell binding to IC-coated tumor cells.  相似文献   

10.
Phase I testing of the hu14.18-IL2 immunocytokine in melanoma patients showed immune activation, reversible toxicities, and a maximal tolerated dose of 7.5?mg/m2/day. In this phase II study, 14 patients with measurable metastatic melanoma were scheduled to receive hu14.18-IL2 at 6?mg/m2/day as 4-h intravenous infusions on Days 1, 2, and 3 of each 28?day cycle. Patients with stable disease (SD) or regression following cycle 2 could receive two additional treatment cycles. The primary objective was to evaluate antitumor activity and response duration. Secondary objectives evaluated adverse events and immunologic activation. All patients received two cycles of treatment. One patient had a partial response (PR) [1 PR of 14 patients?=?response rate of 7.1?%; confidence interval, 0.2?C33.9?%], and 4 patients had SD and received cycles 3 and 4. The PR and SD responses lasted 3?C4?months. All toxicities were reversible and those resulting in dose reduction included grade 3 hypotension (2 patients) and grade 2 renal insufficiency with oliguria (1 patient). Patients had a peripheral blood lymphocytosis on Day 8 and increased C-reactive protein. While one PR in 14 patients met protocol criteria to proceed to stage 2 and enter 16 additional patients, we suspended stage 2 due to limited availability of hu14.18-IL2 at that time and the brief duration of PR and SD. We conclude that subsequent testing of hu14.18-IL2 should involve melanoma patients with minimal residual disease based on compelling preclinical data and the confirmed immune activation with some antitumor activity in this study.  相似文献   

11.
Effective treatment of high-risk neuroblastoma (NB) remains a major challenge in pediatric oncology. Human/mouse chimeric monoclonal anti-GD2 antibody (mAb) ch14.18 is emerging as a treatment option to improve outcome. After establishing a production process in Chinese hamster ovary (CHO) cells, ch14.18/CHO was made available in Europe for clinical trials. Here, we describe validated functional bioassays for the purpose of immune monitoring of these trials and demonstrate GD2-specific immune effector functions of ch14.18/CHO in treated patients. Two calcein-based bioassays for complement-dependent- (CDC) and antibody-dependent cellular cytotoxicity (ADCC) were set up based on patient serum and immune cells tested against NB cells. For this purpose, we identified LA-N-1 NB cells as best suited within a panel of cell lines. Assay conditions were first established using serum and cells of healthy donors. We found an effector-to-target (E:T) cell ratio of 20∶1 for PBMC preparations as best suited for GD2-specific ADCC analysis. A simplified method of effector cell preparation by lysis of erythrocytes was evaluated revealing equivalent results at an E:T ratio of 40∶1. Optimal results for CDC were found with a serum dilution at 1∶8. For validation, both within-assay and inter-assay precision were determined and coefficients of variation (CV) were below 20%. Sample quality following storage at room temperature (RT) showed that sodium-heparin-anticoagulated blood and serum are stable for 48 h and 96 h, respectively. Application of these bioassays to blood samples of three selected high-risk NB patients treated with ch14.18/CHO (100 mg/m2) revealed GD2-specific increases in CDC (4.5–9.4 fold) and ADCC (4.6–6.0 fold) on day 8 compared to baseline, indicating assay applicability for the monitoring of multicenter clinical trials requiring sample shipment at RT for central lab analysis.  相似文献   

12.
Targeted monoclonal antibodies (mAb) can be used therapeutically for tumors with identifiable antigens such as disialoganglioside GD2, expressed on neuroblastoma and melanoma tumors. Anti-GD2 mAbs (αGD2) can provide clinical benefit in patients with neuroblastoma. An important mechanism of mAb therapy is antibody-dependent cellular cytotoxicity (ADCC). Combinatorial therapeutic strategies can dramatically increase the anti-tumor response elicited by mAbs. We combined a novel αGD2 mAb, hu14.18K322A, with an immunostimulatory regimen of agonist CD40 mAb and class B CpG-ODN 1826 (CpG). Combination immunotherapy was more effective than the single therapeutic components in a syngeneic model of GD2-expressing B16 melanoma with minimal tumor burden. NK cell depletion in B6 mice showed that NK cells were required for the anti-tumor effect; however, anti-tumor responses were also observed in tumor-bearing SCID/beige mice. Thus, NK cell cytotoxicity did not appear to be essential. Peritoneal macrophages from anti-CD40 + CpG-treated mice inhibited tumor cells in vitro in an hu14.18K322A antibody-dependent manner. These data highlight the importance of myeloid cells as potential effectors in immunotherapy regimens utilizing tumor-specific mAb and suggest that further studies are needed to investigate the therapeutic potential of activated myeloid cells and their interaction with NK cells.  相似文献   

13.
Purpose: This study aimed to assess the safety, pharmacokinetic and activity profiles of the human-mouse chimeric monoclonal anti-disialoganglioside GD2 antibody ch14.18 produced in Chinese hamster ovary (CHO) cells (ch14.18/CHO).

Methods: Sixteen children with recurrent/refractory neuroblastoma (median age 7.6 y) were enrolled in this Phase 1 dose-finding study. Patients received ch14.18/CHO courses of 10, 20 or 30 mg/m2/day as an eight-hour infusion over five consecutive days. Three courses at the same dose level were allowed unless disease progressed. Clearance and biodistribution of radiolabelled ch14.18/CHO in Balb/c and A/J mice were analyzed.

Results: A total of 41 ch14.18/CHO courses were given (10 × 3 courses, 5 × 2 courses, 1 × 1 course). Side effects were similar in expectedness, frequency and magnitude to those reported for ch14.18/SP2/0. The dose level of 20 mg/m2/day was confirmed. Toxicity was reversible and no treatment-related deaths occurred. In children, the peak plasma concentration was 16.51 µg/ml ± 5.9 µg/ml and the half-life was 76.91 h ± 52.5 h. A partial response following ch14.18/CHO was observed in 2/7 patients with residual disease. In mice, the half-lives were 22.7 h ± 1.9h for ch14.18/CHO and 25.0 h ± 1.9 h for ch14.18/SP2/0. The biodistribution of 125I-ch14.18/CHO in mice with neuroblastoma was identical to 125I-ch14.18/SP2/0, indicating GD2 targeting activity in vivo.

Ch14.18 produced in CHO cells showed an unchanged toxicity profile and pharmacokinetics in neuroblastoma patients compared with ch14.18 produced in SP2/0 cells, and evidence of clinical activity was observed. In mice, analysis of pharmacokinetics and biodistribution showed comparable results between ch14.18/CHO and ch14.18/SP2/0. Based on these results, ch14.18/CHO was accepted for prospective clinical evaluation.  相似文献   

14.
Vaccination with proteins mimicking GD2 that is highly expressed on neuroblastoma (NB) cells is a promising strategy in treatment of NB, a pediatric malignancy with poor prognosis. We previously showed efficacy of ganglidiomab in vivo, a murine anti-idiotype (anti-Id) IgG1. In order to tailor immune responses to variable regions, we generated a new human/mouse chimeric anti-Id antibody (Ab) ganglidiximab by replacing murine constant fragments with corresponding human IgG1 regions. DNA sequences encoding for variable regions of heavy (VH) and light chains (VL) were synthesized by RT-PCR from total RNA of ganglidiomab-producing hybridoma cells and further ligated into mammalian expression plasmids with coding sequences for constant regions of human IgG1 heavy and light chains, respectively. We established a stable production cell line using Chinese hamster ovarian (CHO) cells co-transfected with two expression plasmids driving the expression of either ganglidiximab heavy or light chain. After purification from supernatants, anti-idiotypic characteristics of ganglidiximab were demonstrated. Binding of ganglidiximab to anti-GD2 Abs of the 14.18 family as well as to NK-92tr cells expressing a GD2-specific chimeric antigen receptor (scFv(ch14.18)-zeta) was shown using standard ELISA and flow cytometry analysis, respectively. Ganglidiximab binding affinities to anti-GD2 Abs were further determined by surface plasmon resonance technique. Moreover, binding of anti-GD2 Abs to the nominal antigen GD2 as well as GD2-specific Ab-mediated cytotoxicity (ADCC, CDC) was competitively inhibited by ganglidiximab. Finally, ganglidiximab was successfully used as a protein vaccine in vivo to induce a GD2-specific humoral immune response. In summary, we report generation and characterization of a new human/mouse chimeric anti-Id Ab ganglidiximab for active immunotherapy against NB. This Ab may be useful to tailor immune responses to the paratope regions mimicking GD2 overexpressed in NB.  相似文献   

15.
We investigated whether polymorphonuclear leukocytes (PMN) are able to kill human neuroblastoma cells either directly or if coated with antibody MAb 14.18 that recognizes ganglioside GD2 present on the cell surface of most neuroblastoma cells. Neuroblastoma cells could not be destroyed directly, whereas in the antibody-dependent reaction (ADCC-reaction) they were easily eliminated. In order to answer the question whether reactive oxygen intermediates are involved in this process, chemiluminescence measurements were performed. Compared to the signals that could be measured using opsonized zymosan as stimulus, only weak CL-signals could be registered during the ADCC reaction. Pretreatment of PMN with granulocyte-macrophage colony stimulating factor (GM-CSF) enhanced the CL-signals, catalase and SOD reduced it; however, cell killing was only slightly influenced in the presence of catalase and superoxide dismutase. These data suggested that reactive oxygen compounds do not play a prominent role in the killing process. Definitive evidence for this suggestion could be obtained using PMN from a patient with chronic granulomatous disease (CGD): MAb 14.18 coated neuroblastoma cells could be killed effectively, but no CL-signal could be registered, either in the ADCC-reaction or using opsonized zymosan as stimulus.  相似文献   

16.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

17.
To develop an efficient antitumor immunotherapy, we have examined if dendritic cells (DCs) loaded with soluble antigens by electroporation present more antigens via the MHC (major histocompatibility complex) class I pathway, which mediate a cytotoxic T-cell response. DCs loaded with ovalbumin (OVA) by electroporation presented more MHC class I–restricted determinants compared with DCs pulsed with OVA. When electroporated DCs were pulsed with OVA for additional times, both MHC class I– and II–restricted presentation of OVA were increased compared with each single procedure, including electroporation or simple pulse. Immunization with DCs loaded with OVA by electroporation induced higher cytotoxicity of splenocytes to E.G7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with DCs pulsed with OVA. In the animal study, immunization with DCs loaded with OVA or tumor cell lysates by electroporation induced an effective antitumor immunity against tumor of E.G7 cells or Lewis lung carcinoma cells, respectively. In addition, immunization with DCs loaded with antigen by combination of electroporation and pulse, completely protected mice from tumor formation, and prolonged survival, in both tumor models. These results demonstrated that electroporation would be a useful way to enhance MHC class I–mediated antitumor immunity without functional deterioration, and that the combination of electroporation and pulse could be a simple and efficient antigen-loading method and consequently lead to induction of strong antitumor immunity.Abbreviations DCs dendritic cells - MHC major histocompatibility complex - OVA ovalbumin - TAA tumor-associated antigen - CTL cytotoxic T lymphocyte - LDH lactate dehydrogenase  相似文献   

18.
The successful induction of T cell-mediated protective immunity against poorly immunogenic malignancies remains a major challenge for cancer immunotherapy. Here, we demonstrate that the induction of tumor-protective immunity by IL-12 in a murine neuroblastoma model depends entirely on the CXC chemokine IFN-gamma-inducible protein 10 (IP-10). This was established by in vivo depletion of IP-10 with mAbs in mice vaccinated against NXS2 neuroblastoma by gene therapy with a linearized, single-chain (sc) version of the heterodimeric cytokine IL-12 (scIL-12). The efficacy of IP-10 depletion was indicated by the effective abrogation of scIL-12-mediated antiangiogenesis and T cell chemotaxis in mice receiving s.c. injections of scIL-12-producing NXS2 cells. These findings were extended by data demonstrating that IP-10 is directly involved in the generation of a tumor-protective CD8+ T cell-mediated immune response during the early immunization phase. Four lines of evidence support this contention: First, A/J mice vaccinated with NXS2 scIL-12 and depleted of IP-10 by two different anti-IP-10 mAbs revealed an abrogation of systemic-protective immunity against disseminated metastases. Second, CD8+ T cell-mediated MHC class I Ag-restricted tumor cell lysis was inhibited in such mice. Third, intracellular IFN-gamma expressed by proliferating CD8+ T cells was substantially inhibited in IP-10-depleted, scIL-12 NXS2-vaccinated mice. Fourth, systemic tumor protective immunity was completely abrogated in mice depleted of IP-10 in the early immunization phase, but not if IP-10 was depleted only in the effector phase. These findings suggest that IP-10 plays a crucial role during the early immunization phase in the induction of immunity against neuroblastoma by scIL-12 gene therapy.  相似文献   

19.
We have shown previously that IFN-gamma-inducing cytokines such as IL-12 can mediate potent antitumor effects against murine solid tumors. IL-27 is a newly described IL-12-related cytokine that potentiates various aspects of T and/or NK cell function. We hypothesized that IL-27 might also mediate potent antitumor activity in vivo. TBJ neuroblastoma cells engineered to overexpress IL-27 demonstrated markedly delayed growth compared with control mice, and complete durable tumor regression was observed in >90% of mice bearing either s.c. or orthotopic intra-adrenal tumors, and 40% of mice bearing induced metastatic disease. The majority of mice cured of their original TBJ-IL-27 tumors were resistant to tumor rechallenge. Furthermore, TBJ-IL-27 tumors were heavily infiltrated by CD8(+) T cells, and draining lymph node-derived lymphocytes from mice bearing s.c. TBJ-IL-27 tumors are primed to proliferate more readily when cultured ex vivo with anti-CD3/anti-CD28 compared with lymphocytes from mice bearing control tumors, and to secrete higher levels of IFN-gamma. In addition, marked enhancement of local IFN-gamma gene expression and potent up-regulation of cell surface MHC class I expression are noted within TBJ-IL-27 tumors compared with control tumors. Functionally, these alterations occur in conjunction with the generation of tumor-specific CTL reactivity in mice bearing TBJ-IL-27 tumors, and the induction of tumor regression via mechanisms that are critically dependent on CD8(+), but not CD4(+) T cells or NK cells. Collectively, these studies suggest that IL-27 could be used therapeutically to potentiate the host antitumor immune response in patients with malignancy.  相似文献   

20.
We analyzed the in vivo tumor regression activity of high molecular mass poly-gamma-glutamate (gamma-PGA) from Bacillus subtilis sups. chungkookjang. C57BL/6 mice were orally administered 10-, 100-, or 2000-kDa gamma-PGA or beta-glucan (positive control), and antitumor immunity was examined. Our results revealed higher levels of NK cell-mediated cytotoxicity and IFN-gamma secretion in mice treated with higher molecular mass gamma-PGA (2000 kDa) vs those treated with lower molecular mass gamma-PGA (10 or 100 kDa) or beta-glucan. We then examined the effect of oral administration of 10- or 2000-kDa gamma-PGA on protection against B16 tumor challenge in C57BL/6 mice. Mice receiving high molecular mass gamma-PGA (2000 kDa) showed significantly smaller tumor sizes following challenge with the MHC class I-down-regulated tumor cell lines, B16 and TC-1 P3 (A15), but not with TC-1 cells, which have normal MHC class I expression. Lastly, we found that gamma-PGA-induced antitumor effect was decreased by in vivo depletion of NK cells using mAb PK136 or anti-asialo GM1 Ab, and that was completely blocked in NK cell-deficient B6 beige mice or IFN-gamma knockout mice. Taken together, we demonstrated that oral administration of high molecular mass gamma-PGA (2000 kDa) generated significant NK cell-mediated antitumor activity in mice bearing MHC class I-deficient tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号