首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

2.
Reactions of ligands 1-ethyl-5-methyl-3-phenyl-1H-pyrazole (L1) and 5-methyl-1-octyl-3-phenyl-1H-pyrazole (L2) with [PdCl2(CH3CN)2 and K2PtCl4 gave complexes trans-[MCl2(L)2] (L = L1, L2). The new complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H and 13C{1H} NMR spectroscopies and X-ray diffraction. The NMR study of the complex [PdCl2(L1)2], in CDCl3 solution, is consistent with a very slow rotation of ligands around the Pd-N bond, so that two conformational isomers can be observed in solution (syn and anti). Different behaviour is observed for complexes [PdCl2(L2)2] and [PtCl2(L)2] (L = L1, L2), which present an isomer in solution at room temperature (anti). The crystal structure of [PdCl2(L1)2] complex is described, where the Pd(II) presents a square planar geometry with the ligands coordinated in a trans disposition.  相似文献   

3.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

4.
We have prepared and structurally characterized six-coordinate Fe(II), Co(II), and Ni(II) complexes of types [MII(HL1)2(H2O)2][ClO4]2 (M = Fe, 1; Co, 3; and Ni, 5) and [MII(HL2)3][ClO4]2 · MeCN (M = Fe, 2 and Co, 4) of bidentate pyridine amide ligands, N-(phenyl)-2-pyridinecarboxamide (HL1) and N-(4-methylphenyl)-2-pyridinecarboxamide (HL2). The metal centers in bis(ligand)-diaqua complexes 1, 3 and 5 are coordinated by two pyridyl N and two amide O atoms from two HL1 ligands and six-coordination is completed by coordination of two water molecules. The complexes are isomorphous and possess trans-octahedral geometry. The metal centers in isomorphous tris(ligand) complexes 2 and 4 are coordinated by three pyridyl N and three amide O atoms from three HL2 ligands. The relative dispositions of the pyridine N and amide O atoms reveal that the pseudo-octahedral geometry have the meridional stereochemistry. To the best of our knowledge, this work provides the first examples of structurally characterized six-coordinate iron(II) complexes in which the coordination is solely by neutral pyridine amide ligands providing pyridine N and amide O donor atoms, with or without water coordination. Careful analyses of structural parameters of 1-5 along with that reported in the literature [MII(HL1)2(H2O)2][ClO4]2 (M = Cu and Zn) and [CoIII(L2)3] have allowed us to arrive at a number of structural correlations/generalizations. The complexes are uniformly high-spin. Spectroscopic (IR and UV/Vis) and redox properties of the complexes have also been investigated.  相似文献   

5.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

6.
The reaction of [Rh2(acam)4(H2O)2]ClO4 (1) (Hacam = acetamide) with K2PtCl4 in aqueous solution gave crystals of [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PtCl2}] · 2H2O (2). The reaction of 1 with K2PdCl4 produced the palladium analog [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PdCl2}] · 2H2O (3) and a small amount of an aquated palladium complex [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}] · H2O (4). Complexes 2 and 3 have anionic chains of [Rh2(acam)4{(μ-Cl)2MCl2}] (M = Pt, Pd), while 4 includes neutral chains of [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}]. Although all of the structures include infinite chains of (-Rh-Rh-Cl-M-Cl-)n (M = Pt, Pd), the chain structures are different; zigzag for 2 and 3 and helical for 4. In the structures of 2 and 3, the counter cation [Rh2(acam)4(H2O)2]+ made a hydrogen-bonded chain with the crystallization water molecules. The cationic chains and the anionic chains are connected with hydrogen bonds. In the structure of 4, the chains are also linked together by direct hydrogen bonds between the chains and those with the crystallization water molecules. ESR spectra of the powdered samples of 2 and 3 at 77 K were consistent with a rhombic structure: for 2, g1 = 2.111, g2 = 2.054, g3 = 2.004; for 3, g1 = 2.115, g2 = 2.057, g3 = 2.007. These results indicate that there is a spin flip-flop exchange between the cations, [Rh2(acam)4(H2O)2]+, and the units in the anionic chains. The electrical conductivities of 2 and 3 were in the order of 10−7 S cm−1 at room temperature.  相似文献   

7.
New complexes of formulae [Cu(HL2)(H2O)(NO3)](NO3) (1), [{Cu(L1)(tfa)}2] (2), [{Cu(L1)}2(pz)](ClO4)2 (3) and {[{Cu(L1)}2(dca)](ClO4)}n (4), where HL1 = pyridine-2-carbaldehyde thiosemicarbazone, HL2 = pyridine-2-carbaldehyde 4N-methylthiosemicarbazone, Htfa = trifluoroacetic acid (CF3COOH), pz = pyrazine (C4H4N2) and dca = dicyanamide [N(CN)2], have been synthesized and characterized. The crystal structures of these compounds are built up of monomers (1), dinuclear entities with the metal centers bridged through the non-thiosemicarbazone coligand (2 and 3) and 1D chains of dimers (4). In all the cases, square-pyramidal copper(II) ions are present, except for the square-planar ones in 3. Magnetic measurements show antiferromagnetic couplings in 2, 3 and 4. The susceptibility data were fitted by the Bleaney-Bowers’ equation for copper(II) dimers derived from H = -2JS1S2 being the obtained J/k values −4.8, −4.3 and −5.1 K for compounds 2-4, respectively. The magnetic susceptibility of the already known [{Cu(HL1)(tfa)}2](tfa)2 compound has been also measured for the first time. The J/k value is -0.3 K, lower than that in 2. The nuclease activity of 3 and 4 has been analyzed.  相似文献   

8.
The organometallic tin(IV) complexes [SnPh2(SRF)2] SRF = SC6F4-4-H (1), SC6F5 (2), were synthesized and their reactivity with [MCl2(PPh3)2] M = Ni, Pd and Pt explored. Thus, transmetallation products were obtained affording polymeric [Ni(SRF)(μ-SRF)]n, monomeric cis-[Pt(PPh3)2(SC6F4-4-H)2] (3) and cis-[Pt(PPh3)2(SC6F5)2] (4) and dimeric species [Pd(PPh3)(SC6F4-4-H)(μ-SC6F4-4-H)]2 (5) and [Pd(PPh3)(SC6F5)(μ-SC6F5)]2 (6) for Ni, Pt and Pd, respectively. The crystal structures of complexes 1, 2, 3, 4 and 6 were determined.  相似文献   

9.
The reaction of MCl2 · 2H2O (M = Cu, Zn) with 2,3,5,6-tetra(2-pyridyl)pyrazine (tppz) (referred hereafter as L) in 2:1 molar ratio in acetonitrile at room temperature afforded binuclear complexes [M23-L)Cl4] [Cu (1), Zn (2)] where the ligand is bis-tridentate manner. The complexes have been characterized by elemental analyses, FAB-MS, IR, EPR, NMR and electronic spectral studies. Solid state structures of both the [Cu23-L)Cl4] · 5H2O (1), [Zn23-L)Cl4] · H2O (2) have been determined by single crystal X-ray analyses. A well-resolved uudd cyclic water tetramer and water monomer were reported in the crystal host of [Cu23-L)Cl4] · 5H2O (1) and [Zn23-L)Cl4] · H2O (2) showing the contribution of the water cluster to the stability of the crystal host 1 and 2.  相似文献   

10.
Three novel complexes [Mn(atza)2(H2O)4] (1), [Mn(nptza)2(CH3OH)4] (2), and [Mn(a4-ptz)2(H2O)2]n · 2nH2O] (3) [atza = 5-aminotetrazole-1-acetato, nptza = 5-[(4-nitryl)phenyl] tetrazole-1-acetato, a4-ptz = 5-[N-acetato(4-pyridyl)] tetrazole] containing carboxylate-tetrazolate ligands have been synthesized and characterized by element analysis. X-ray crystallography shows that complexes 1 and 2 both contain mononuclear structure. The complex 3 is a 1D polymeric chain structure. Compounds 1-3 are self-assembled to form supramolecular structures through hydrogen bonds interactions.  相似文献   

11.
《Inorganica chimica acta》2004,357(7):1997-2006
Five new lanthanide complexes displaying crotonato bridges have been prepared: [Gd2(crot)6(H2O)4] · 4(bpa) (1); [Ho2(crot)7]n · (Hbpa) (2); [Gd2(crot)6(bipy)2] (3); [Ho2(crot)6(bipy)2] (4) and [Nd2(crot)6(H2O)3]n (5), where bipy=2,2-bipyridine; bpa=di(2-pyridyl)amine; crot=crotonato. The compounds were characterized by magnetic susceptibility measurements and their crystal structures were determined by single crystal X-ray diffraction. These studies showed complexes 1, 3 and 4 to be dimers while structures 2 and 5 are polymeric in nature.  相似文献   

12.
Treatment of the spatially congested 5-(6-methylpyridin-2-yl)-3-trifluoromethyl-1,2,4-triazole (fmptzH) chelate with K2PtCl4 in basic media gave a pale-yellow complex [Pt(fmptz)2] (1), for which the single crystal X-ray diffraction study showed a highly distorted square-planar coordination geometry with one N-Pt-N vector significantly deviated from linearity. This complex undergoes slow equilibration in refluxing THF to afford a dinuclear complex [Pt(fmptz)(μ-fmptz)]2 (2), showing reversible transformation of one fmptz chelate to the distinctive bridging mode. Synthesis of the less spatially congested, heteroleptic complexes [Pt(fppz)(fmptz)] (3) and [Pt(iqbpz)(fmptz)] (4) were successfully achieved by combination of [Pt(fppzH)Cl2] and [Pt(iqbpzH)Cl2] with one equiv. of fmptzH ligand under similar condition, fppzH = 5-(2-pyridyl)-3-trifluoromethyl-pyrazole and iqbpzH = 5-(1-isoquinolyl)-3-tert-butyl-pyrazole. Only the derivative 4 was found to be weakly emissive in both fluid and solid states at room temperature.  相似文献   

13.
Palladium [PdCl2(L)] complexes with N-alkylpyridylpyrazole derived ligands [2-(5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L1), 2-(1-ethyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L2), 2-(1-octyl-5-trifluoromethyl-1H-pyrazol-3-yl)pyridine (L3), and 2-(3-pyridin-2-yl-5-trifluoromethyl-pyrazol-1-yl)ethanol (L4) were synthesised. The crystal and molecular structures of [PdCl2(L)] (L = L2, L3, L4) were resolved by X-ray diffraction, and consist of monomeric cis-[PdCl2(L)] molecules. The palladium centre has a typical square-planar geometry, with a slight tetrahedral distortion. The tetra-coordinate metal atom is bonded to one pyridinic nitrogen, one pyrazolic nitrogen and two chlorine ligands in cis disposition. Reaction of L (L2, L4) with [Pd(CH3CN)4](BF4)2, in the ratio 1M:2L, gave complexes [Pd(L)]2(BF4)2. Treatment of [PdCl2(L)] (L = L2, L4) with NaBF4 and pyridine (py) and treatment of the same complexes with AgBF4 and triphenylphosphine (PPh3) yielded [Pd(L)(py)2](BF4)2 and [Pd(L)(PPh3)2](BF4)2 complexes, respectively. Finally, reaction of [PdCl2(L4)] with 1 equiv of AgBF4 yields [PdCl(L4)](BF4).  相似文献   

14.
The interaction of an excess of the title ligands L with the cis-Pt(phos)2 moieties gives compounds a-bcis-[Pt(L-O)2(phos)2] (a, phos = P(Ph)3; b, phos = 1/2 dppe), in which O- is preferred to S-coordination. Such preference is confirmed by the fact that the same products are obtained by reaction of excess of L with the previously reported a-d complexes [Pt(L-O,S)(phos)2]+, (c, phos = PPh3, d, phos = 1/2 dppe), for which chelate ring opening occurs with rupture of Pt-S rather than Pt-O bonds. Compound a can be obtained also by oxidative addition of HL to [Pt(PPh3)3]. The Pt-O bonds in compounds a-d are stable towards substitution by Me2SO, pyridine and tetramethylthiourea. Substitution of L’s occurs with N,N′-diethyldithiocarbamate, which forms a very stable chelate with Pt(II). Thiourea and N,N′-dimethylthiourea also react, because they give rise to cyclometallated products [Pt(phos)2(NRC(S)NHR)]+ (R = H, CH3), with one ionised thioamido group, as revealed by an X-ray investigation of [Pt(PPh3)2(NHC(S)NH2)]+. The preference of O versus S coordination, as well as the stability of the Pt-O bonds, are discussed in terms of antisymbiosis.  相似文献   

15.
The ligands 1-hydroxymethylpyrazole (hl1), 1-(2-hydroxyethyl)pyrazole (hl2) and 1-(3-hydroxypropyl)pyrazole (hl3) react with [PdCl2(CH3CN)2] to give trans-[PdCl2(hl)2] compounds. Due to a hindered rotation around the Pd-bond, these compounds present two different conformations in solution: anti and syn. The conformation presented depends on the relative disposition of the hydroxyalkylic chains of the two pyrazolic ligands. The present study was carried out on the basis of NMR experiments. The present paper reports the crystal structure of trans-[PdCl2(hl2)2]. The synthesis and characterisation of compounds [Pd(hl)4](BF4)2 (hl = hl1, hl2 and hl3) starting from [Pd(CH3CN)4](BF4)2 and the corresponding chlorocomplexes trans-[PdCl2(hl)2] are also described.  相似文献   

16.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

17.
A study of the complexation of heavy metal ions by the coronands 3,12,20,29-tetraoxa-35,36-diazapentacyclo[29.3.1.1.14,18.05,10.022,27]-hexatriaconta-1(35),5(10),6,8,14,16,18(36),22(27),23,25,31,33-dodecaene (1); 2,3,11,12-bis (4-methylbenzo)-1,4,10,13-tetrathia-7,16-dioxacyclo-octadeca-2,11-diene (2); 7,16-diaza-1,4,10,13-tetraoxa-2,3,11,12-dibenzocyclooctadeca-2,11-diene (3); 2-[19-(2-hydroxy-2-phenylethyl)-7,8,9,10, 18,19,20,21-octahydro-6H,17H-dibenzo[b,k][1,4,10,13,7,16]tetraoxadiazacyclooctadecin-8-yl]-1-phenyl-1-ethanol (4); 1,4,10,13-tetraoxa-7,16-diazacyclo-octadecane (5); and 2-[16-(2-hydroxy-2-phenylethyl)-1,4,10,13-tetraoxa-7,16-diazacyclo-octadecanyl]-1-phenyl-1-ethanol (6) is described. Coronands 1 and 3 were prepared by literature methods, improved methods were used to prepare 2, and 4 and 6 were prepared from 3 and 5 (obtained commercially), respectively. Potentiometric studies in N,N-dimethylformamide yielded (logK/dm3 mol−1)=5.50, 6.49, 9.42 and 7.52 for [Ag · 1]+, [Ag · 2]+, [Ag · 5]+ and [Ag · 6]+, respectively; <2, <2, 4.30 and <2 for [Zn · 1]2+, [Zn · 2]2+, [Zn · 5]2+ and [Zn · 6]2+, respectively, <2, <2, 5.92 and >7.52 for [Cd · 1]2+, [Cd · 2]2+, [Cd · 5]2+, and [Cd · 6]2+, respectively, and 2.62, 2.38, 6.71 and >7.52 for [Pb · 1]2+, [Pb · 2]2+, [Pb · 5]2+, and [Pb · 6]2+, respectively. ESI-MS studies of the interactions of 1-6 with Ag+, Zn2+, Cd2+ and Pb2+ are also reported.  相似文献   

18.
Treatment of the ligands 1,8-bis(3,5-dimethyl-1-pyrazolyl)-3,6-dithiaoctane (bddo), 1,9-bis(3,5-dimethyl-1-pyrazolyl)-3,7-dithianonane (bddn), and 1,6-bis(3,5-dimethyl-1-pyrazolyl)-2,5-dithiahexane (bddh) with several platinum starting materials as K2PtCl4, PtCl2, [PtCl2(CH3CN)2] and [PtCl2(PhCN)2] was developed under different conditions. The reactions did not yield pure products. The ratio of the NSSN, NS, SS, NN, and 2NS isomers has been calculated through NMR experiments. Treatment of the mixtures of complexes with NaBPh4 affords [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements, IR and 1H and 13C NMR spectroscopy. The X-ray structures of the complexes [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) have also been determined. In these complexes, the metal atom is tetracoordinated by the two azine nitrogen atoms of the pyrazole rings and two thioether sulfur atoms. When the [Pt(NSSN)](BPh4)2 (NSSN = bddo, bddn) complexes were heated under reflux in a solution of Et4NBr in CH2Cl2/CH3OH (1:1), a mixture of isomers was obtained.  相似文献   

19.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

20.
The coordination chemistry of the ligand bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]ether (L1) was tested in front of Pd(II) and Pt(II). Complexes cis-[MCl2(L1)] (M=Pd(II) and Pt(II)) were obtained, due to the chelate condition of the ligand and the formation of a stable 10-membered ring. The crystal structure of cis-[PtCl2(L1)] was resolved by X-ray diffraction. Treatment of [PdCl2(L1)] or [Pd(CH3CN)4](BF4)2 with AgBF4 in the presence of L1 gave the complex [Pd(L1)2](BF4)2. The initial cis-[PdCl2(L1)] was recovered by reacting [Pd(L1)2](BF4)2 with an excess of NEt4Cl. Reaction of [Pt(CH3CN)4](BF4)2 (generated in situ from [PtCl2(CH3CN)2] and AgBF4 in acetonitrile) with ligand L1 yields complex [Pt(L1)2](BF4)2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号